Current relevance of non-invasive prenatal study of cell-free fetal DNA in the mother’s blood and prospects for its application in mass screening of pregnant women in the Russian Federation

Elena A. Kalashnikova , Andrey S. Glotov , Elena N. Andreyeva , Ilya Yu. Barkov , Galina Yu. Bobrovnik , Elena V. Dubrovina , Lyudmila A. Zhuchenko

Journal of obstetrics and women's diseases ›› 2021, Vol. 70 ›› Issue (1) : 19 -50.

PDF (442KB)
Journal of obstetrics and women's diseases ›› 2021, Vol. 70 ›› Issue (1) : 19 -50. DOI: 10.17816/JOWD56573
Current public health problems
research-article

Current relevance of non-invasive prenatal study of cell-free fetal DNA in the mother’s blood and prospects for its application in mass screening of pregnant women in the Russian Federation

Author information +
History +
PDF (442KB)

Abstract

This review article offers an analysis of application of cell-free fetal DNA non-invasive prenatal screening test for chromosome abnormalities in the mother’s blood in different countries. The diagnostic capacities of the method, its limitations, execution models and ethical aspects pertinent to its application are discussed. The data for the discordant results is shown and analyzed. The advantages of the genome-wide variant of cell-free fetal DNA analysis and the problems concerning its application in the mass screening are described. The main suggestion is to implement the contingent cell-free fetal DNA testing model for the common trisomies (for the chromosomes 21, 18 and 13) into the prenatal diagnostic screening programs in the Russian Federation. This novel model is based on the results of the mass combined first trimester prenatal screening in four federal subjects of the country completed by 2019 and is offered as an additional screening in the mid-level risk group (with cut-off from 1 : 100 to 1 : 500 or from 1 : 100 to 1 : 1000) defined according to the first trimester prenatal screening results. The basic requirements for the implementation of the contingent model in the Russian Federation are stated.

Keywords

non-invasive prenatal screening / non-invasive prenatal test / cell-free fetal DNA / chromosomal abnormalities / early prenatal combined screening

Cite this article

Download citation ▾
Elena A. Kalashnikova, Andrey S. Glotov, Elena N. Andreyeva, Ilya Yu. Barkov, Galina Yu. Bobrovnik, Elena V. Dubrovina, Lyudmila A. Zhuchenko. Current relevance of non-invasive prenatal study of cell-free fetal DNA in the mother’s blood and prospects for its application in mass screening of pregnant women in the Russian Federation. Journal of obstetrics and women's diseases, 2021, 70(1): 19-50 DOI:10.17816/JOWD56573

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Nikolaides K. Ul’trazvukovoe issledovanie v 11-13.6 nedel’ beremennosti: perevod s angl. Saint Petersburg: Petropolis; 2007. (In Russ.)

[2]

Николаидес К. Ультразвуковое исследование в 11–13,6 недели беременности: перевод с англ. Санкт-Петербург: Петрополис, 2007.

[3]

Alldred SK, Takwoingi Y, Guo B, et al. First trimester ultrasound tests alone or in combination with first trimester serum tests for Down’s syndrome screening. Cochrane Database Syst Rev. 2017;3(3):CD012600. doi: 10.1002/14651858.CD012600

[4]

Alldred S.K., Takwoingi Y., Guo B. et al. First trimester ultrasound tests alone or in combination with first trimester serum tests for Down’s syndrome screening // Cochrane Database Syst. Rev. 2017. Vol. 3. No. 3. P. CD012600. doi: 10.1002/14651858.CD012600

[5]

Baranov VS, Kuznecova TV, Kashheeva TK, Ivashhenko TJe. Prenatal’naja diagnostika nasledstvennyh boleznej. Sostojanie i perspektivy. Saint Petersburg: Jeko-Vektor; 2017. (In Russ.)

[6]

Баранов В.С., Кузнецова Т.В., Кащеева Т.К., Иващенко Т.Э. Пренатальная диагностика наследственных болезней. Состояние и перспективы. Санкт-Петербург: Эко-Вектор, 2017.

[7]

Analiz rezul’tatov rannego prenatal’nogo skrininga v Rossijskoj Federacii AUDIT – 2019. Informacionno-spravochnye materialy. Pis’mo MZR F No. 15-4/2963-07 11 Oct 2019. [cited: 2021 Jan 19]. Avaible from: https://fma-russia.ru/img/New %20Folder/ %D0 %90 %D0 %A3 %D0 %94 %D0 %98 %D0 %A2-2019 %20 %D1 %81 %20 %D0 %BF %D0 %B8 %D1 %81 %D1 %8C %D0 %BC %D0 %BE %D0 %BC %20 %D0 %9C %D0 %97 %D0 %A0 %D0 %A4.pdf. (In Russ.)

[8]

Анализ результатов раннего пренатального скрининга в Российской Федерации АУДИТ – 2019. Информационно-справочные материалы. Письмо МЗРФ № 15-4/2963-07 от 11.10.2019 [дата обращения: 19.01.2021]. Доступ по ссылке: https://fma-russia.ru/img/New20Folder/D090D0A3D094D098D0A2-201920D18120D0BFD0B8D181D18CD0BCD0BED0BC20D09CD097D0A0D0A4.pdf

[9]

Bianchi DW, Chiu RWK. Sequencing of circulating cell-free DNA during pregnancy. N Engl J Med. 2018;379(5):464–473. doi: 10.1056/NEJMra1705345

[10]

Bianchi D.W., Chiu R.W.K. Sequencing of circulating cell-free DNA during pregnancy // N. Engl. J. Med. 2018. Vol. 379. No. 5. P. 464–473. doi: 10.1056/NEJMra1705345

[11]

Green ED, Rubin EM, Olson MV. The future of DNA sequencing. Nature. 2017;550:179–181. doi: 10.1038/550179a

[12]

Green E.D., Rubin E.M., Olson M.V. The future of DNA sequencing // Nature. 2017. Vol. 550. P. 179–181. doi: 10.1038/550179a

[13]

Taglauer ES, Wilkins-Haug L, Bianchi DW. Review: cell-free fetal DNA in the maternal circulation as an indication of placental health and disease. Placenta. 2014;35(Suppl):S64–S68. doi: 10.1016/j.placenta.2013.11.014

[14]

Taglauer E.S., Wilkins-Haug L., Bianchi D.W. Review: cell-free fetal DNA in the maternal circulation as an indication of placental health and disease // Placenta. 2014. Vol. 35. Suppl. P. S64–S68. doi: 10.1016/j.placenta.2013.11.014

[15]

Baranov VS, Lebedev VM, Poleev AV, Kuznecova TV. Uskorennyj prjamoj metod poluchenija metafaznyh i prometafaznyh hromosom iz kletok bioptata horiona i jembrionov cheloveka v pervom trimestre beremennosti. Bjulleten’ jeksperimental’noj biologii i mediciny.1990;110(8):196–198. (In Russ.)

[16]

Баранов В.С., Лебедев В.М., Полеев А.В., Кузнецова Т.В. Ускоренный прямой метод получения метафазных и прометафазных хромосом из клеток биоптата хориона и эмбрионов человека в первом триместре беременности // Бюллетень экспериментальной биологии и медицины. 1990. Т. 110. № 8. С. 196–198.

[17]

Kazakov VI, Bozhkov VM, Linde VA, et al. Vnekletochnaja DNK v krovi beremennyh zhenshhin. Tsitologiia. 1995;37(3):232–236. (In Russ.)

[18]

Казаков В.И., Божков В.М., Линде В.А. и др. Внеклеточная ДНК в крови беременных женщин // Цитология. 1995. Т. 37. № 3. С. 232–236.

[19]

Lo YM, Corbetta N, Chamberlain PF, et al. Presence of fetal DNA in maternal plasma and serum. Lancet. 1997;350(9076):485–487. doi: 10.1016/S0140-6736(97)02174-0

[20]

Lo Y.M., Corbetta N., Chamberlain P.F. et al. Presence of fetal DNA in maternal plasma and serum // Lancet. 1997. Vol. 350. No. 9076. P. 485–487. doi: 10.1016/S0140-6736(97)02174-0

[21]

Hahn S, Lapaire O, Tercanli S, et al. Determination of fetal chromosome aberrations from fetal DNA in maternal blood: has the challenge finally been met? Expert Rev Mol Med. 2011;13:e16. doi: 10.1017/S1462399411001852

[22]

Hahn S., Lapaire O., Tercanli S. et al. Determination of fetal chromosome aberrations from fetal DNA in maternal blood: has the challenge finally been met? // Expert. Rev. Mol. Med. 2011. P. 13:e16. doi: 10.1017/S1462399411001852

[23]

Neinvazivnyj prenatal’nyj DNK-skrining aneuploidij ploda po krovi materi metodom vysokoproizvoditel’nogo sekvenirovanija. Klini¬cheskie rekomendacii. Obstetrics and Gynecology. 2016;6(suppl):24. (In Russ.). doi: 10.18565/aig.2016.6.recomendations

[24]

Неинвазивный пренатальный ДНК-скрининг анеуплоидий плода по крови матери методом высокопроизводительного секвенирования. Клинические рекомендации // Акушерство и гинекология. 2016. № 6 (приложение). doi: 10.18565/aig.2016.6.recomendations

[25]

Ivashchenko TE, Vashukova ES, Kozyulina PY, et al. Noninvasive Prenatal Testing Using Next Generation Sequencing: Pilot Experience of the D.O. Ott Research Institute of Obstetrics, Gynecology and Reproductology. Russian Journal of Genetics. 2019;55(10):1208–1213. (In Russ.). doi: 10.1134/S1022795419100053

[26]

Иващенко Т.Э., Вашукова Е.С., Козюлина П.Ю. и др. Первый опыт применения NGS секвенирования для проведения НИПТ на базе НИИ АГи Р им. Д.О. Отта // Генетика. 2019. Т. 55. № 10. С. 1151–1157. doi: 10.1134/S1022795419100053

[27]

Faas BH. Prenatal genetic care: debates and considerations of the past, present and future. Expert Opin Biol Ther. 2015;15(8):1101–1105. doi: 10.1517/14712598.2015.1045873

[28]

Faas B.H. Prenatal genetic care: debates and considerations of the past, present and future // Expert. Opin. Biol. Ther. 2015. Vol. 15. No. 8. P. 1101–1105. doi: 10.1517/14712598.2015.1045873

[29]

Ericsson O, Ahola T, Dahl F, et al. Clinical validation of a novel automated cell-free DNA screening assay for trisomies 21, 13, and 18 in maternal plasma. Prenat Diagn. 2019;39(11):1011–1015. doi: 10.1002/pd.5528

[30]

Ericsson O., Ahola T., Dahl F. et al. Clinical validation of a novel automated cell-free DNA screening assay for trisomies 21, 13, and 18 in maternal plasma // Prenat. Diagn. 2019. Vol. 39. No. 11. P. 1011–1015. doi: 10.1002/pd.5528

[31]

Wright D, Wright A, Nicolaides KH. A unified approach to risk assessment for fetal aneuploidies. Ultrasound Obstet Gynecol. 2015;45(1):48–54. doi: 10.1002/uog.14694

[32]

Wright D., Wright A., Nicolaides K.H. A unified approach to risk assessment for fetal aneuploidies // Ultrasound. Obstet. Gynecol. 2015. Vol. 45. No. 1. P. 48–54. doi: 10.1002/uog.14694

[33]

Committee on practice bulletins — obstetrics, committee on genetics, and the society for maternal-fetal medicine. Practice bulletin No. 163: Screening for fetal aneuploidy. Obstet Gynecol. 2016;127(5):e123–37. doi: 10.1097/AOG.0000000000001406

[34]

Committee on practice bulletins — obstetrics, committee on genetics, and the society for maternal-fetal medicine. Practice bulletin No. 163: Screening for fetal aneuploidy // Obstet. Gynecol. 2016. Vol. 127. No. 5. P. e123–37. doi: 10.1097/AOG.0000000000001406

[35]

Gil MM, Quezada MS, Revello R, et al. Analysis of cell-free DNA in maternal blood in screening for fetal aneuploidies: updated meta-analysis. Ultrasound Obstet Gynecol. 2015;45:249–266. doi: 10.1002/uog.14791

[36]

Gil M.M., Quezada M.S., Revello R. et al. Analysis of cell-free DNA in maternal blood in screening for fetal aneuploidies: updated meta-analysis // Ultrasound. Obstet. Gynecol. 2015. Vol. 45. P. 249–266. doi: 10.1002/uog.14791

[37]

Gil MM, Accurti V, Santacruz B, et al. Analysis of cell-free DNA in maternal blood in screening for aneuploidies: updated meta-analysis. Ultrasound Obstet Gynecol. 2017;50:302–314. doi: 10.1002/uog.17484

[38]

Gil M.M., Accurti V., Santacruz B. et al. Analysis of cell-free DNA in maternal blood in screening for aneuploidies: updated meta-analysis // Ultrasound Obstet. Gynecol. 2017. Vol. 50. P. 302–314. doi: 10.1002/uog.17484

[39]

Mackie FL, Hemming K, Allen S, et al. The accuracy of cell-free fetal DNA-based non-invasive prenatal testing in singleton pregnancies: a systematic review and bivariate meta-analysis. BJOG. 2017;124:32–46. doi: 10.1111/1471-0528.14050

[40]

Mackie F.L., Hemming K., Allen S. et al. The accuracy of cell-free fetal DNA-based non-invasive prenatal testing in singleton pregnancies: a systematic review and bivariate meta-analysis // BJOG. 2017. Vol. 124. P. 32–46. doi: 10.1111/1471-0528.14050

[41]

Taylor-Phillips S, Freeman K, Geppert J, et al. Accuracy of non-invasive prenatal testing using cell-free DNA for detection of Down, Edwards and Patau syndromes: a systematic review and meta-analysis. BMJ Open. 2016;6(1):e010002. doi: 10.1136/bmjopen-2015-010002

[42]

Taylor-Phillips S., Freeman K., Geppert J. et al. Accuracy of non-invasive prenatal testing using cell-free DNA for detection of Down, Edwards and Patau syndromes: a systematic review and meta-analysis // BMJ Open. 2016. Vol. 6. No. 1. P. e010002. doi: 10.1136/bmjopen-2015-010002

[43]

Gil MM, Galeva S, Jani J, et al. Screening for trisomies by cfDNA testing of maternal blood in twin pregnancy: update of The Fetal Medicine Foundation results and meta-analysis. Ultrasound Obstet Gynecol. 2019;53(6):734–742. doi: 10.1002/uog.20284

[44]

Gil M.M., Galeva S., Jani J. et al. Screening for trisomies by cfDNA testing of maternal blood in twin pregnancy: update of The Fetal Medicine Foundation results and meta-analysis // Ultrasound Obstet. Gynecol. 2019. Vol. 53. No. 6. P. 734–742. doi: 10.1002/uog.20284

[45]

Wang Y, Li S, Wang W, et al. Cell-free DNA screening for sex chromosome aneuploidies by non-invasive prenatal testing in maternal plasma. Mol Cytogenet. 2020;13:10. doi: 10.1186/s13039-020-0478-5

[46]

Wang Y., Li S., Wang W. et al. Cell-free DNA screening for sex chromosome aneuploidies by non-invasive prenatal testing in maternal plasma // Mol. Cytogenet. 2020. Vol. 13. P. 10. doi: 10.1186/s13039-020-0478-5

[47]

Helgeson J, Wardrop J, Boomer T, et al. Clinical outcome of subchromosomal events detected by whole-genome noninvasive prenatal testing. Prenat Diagn. 2015;35(10):999–1004. doi: 10.1002/pd.4640

[48]

Helgeson J., Wardrop J., Boomer T. et al. Clinical outcome of subchromosomal events detected by whole-genome noninvasive prenatal testing // Prenat. Diagn. 2015. Vol. 35. No. 10. P. 999–1004. doi: 10.1002/pd.4640

[49]

Martin K, Iyengar S, Kalyan A, et al. Clinical experience with a single-nucleotide polymorphism-based non-invasive prenatal test for five clinically significant microdeletions. Clin Genet. 2018;93:293–300. doi: 10.1111/cge.13098

[50]

Martin K., Iyengar S., Kalyan A. et al. Clinical experience with a single-nucleotide polymorphism-based non-invasive prenatal test for five clinically significant microdeletions // Clin. Genet. 2018. Vol. 93. P. 293–300. doi: 10.1111/cge.13098

[51]

Van der Meij KRM, Sistermans EA, Macville MVE, et al. TRIDENT-2: National implementation of genome-wide non-invasive prenatal testing as a first-tier screening test in the Netherlands. Am J Hum Genet. 2019;105:1091–1101. doi: 10.1016/j.ajhg.2019.10.005

[52]

Van der Meij K.R.M., Sistermans E.A., Macville M.V.E. et al. TRIDENT-2: National implementation of genome-wide non-invasive prenatal testing as a first-tier screening test in the Netherlands // Am. J. Hum. Genet. 2019. Vol. 105. P. 1091–1101. doi: 10.1016/j.ajhg.2019.10.005

[53]

Zhang H, Gao Y, Jiang F, et al. Non-invasive prenatal testing for trisomies 21, 18 and 13: clinical experience from 146,958 pregnancies. Ultrasound Obstet Gynecol. 2015;45(5):530–538. doi: 10.1002/uog.14792

[54]

Zhang H., Gao Y., Jiang F. et al. Non-invasive prenatal testing for trisomies 21, 18 and 13: clinical experience from 146,958 pregnancies // Ultrasound Obstet. Gynecol. 2015. Vol. 45. No. 5. P. 530–538. doi: 10.1002/uog.14792

[55]

Chitty LS, Hudgins L, Norton ME. Current controversies in prenatal diagnosis 2: Cell-free DNA prenatal screening should be used to identify all chromosome abnormalities. Prenatal Diagnosis. 2018;38:160–165. doi: 10.1002/pd.5216

[56]

Chitty L.S., Hudgins L., Norton M.E. Current controversies in prenatal diagnosis 2: Cell-free DNA prenatal screening should be used to identify all chromosome abnormalities // Prenat. Diagn. 2018. Vol. 38. P. 160–165. doi: 10.1002/pd.5216

[57]

Reiss RE, Discenza M, Foster J, Dobson L, Wilkins-Haug L. Sex chromosome aneuploidy detection by noninvasive prenatal testing: helpful or hazardous? Prenat Diagn. 2017;37:515–520. doi: 10.1002/pd.5039

[58]

Reiss R.E., Discenza M., Foster J., Dobson L., Wilkins-Haug L. Sex chromosome aneuploidy detection by noninvasive prenatal testing: helpful or hazardous? // Prenat. Diagn. 2017. Vol. 37. P. 515–520. doi: 10.1002/pd.5039

[59]

Bianchi DW, Parsa S, Bhatt S, et al. Fetal sex chromosome testing by maternal plasma DNA sequencing: clinical laboratory experience and biology. Obstet Gynecol. 2015;125:375–382. doi: 10.1097/AOG.0000000000000637

[60]

Bianchi D.W., Parsa S., Bhatt S. et al. Fetal sex chromosome testing by maternal plasma DNA sequencing: clinical laboratory experience and biology // Obstet. Gynecol. 2015. Vol. 125. P. 375–382. doi: 10.1097/AOG.0000000000000637

[61]

Chen Y, Yu Q, Mao X, et al. Noninvasive prenatal testing for chromosome aneuploidies and subchromosomal microdeletions/microduplications in a cohort of 42,910 single pregnancies with different clinical features. Hum Genomics. 2019;13:60. doi: 10.1186/s40246-019-0250-2

[62]

Chen Y., Yu Q., Mao X. et al. Noninvasive prenatal testing for chromosome aneuploidies and subchromosomal microdeletions/microduplications in a cohort of 42,910 single pregnancies with different clinical features // Hum. Genomics. 2019. Vol. 13. P. 60. doi: 10.1186/s40246-019-0250-2

[63]

Badeau M, Lindsay C, Blais J, et al. Genomics-based non-invasive prenatal testing for detection of fetal chromosomal aneuploidy in pregnant women. Cochrane Database Syst Rev. 2017;11(11):CD011767. doi: 10.1002/14651858.CD011767.pub2

[64]

Badeau M., Lindsay C., Blais J. et al. Genomics-based non-invasive prenatal testing for detection of fetal chromosomal aneuploidy in pregnant women // Cochrane Database Syst. Rev. 2017. Vol. 11. No. 11. P. CD011767. doi: 10.1002/14651858.CD011767.pub2

[65]

Hartwig TS, Ambye L, Sørensen S, Jørgensen FS. Discordant non-invasive prenatal testing (NIPT) — a systematic review. Prenat Diagn. 2017;37(6):527–539. doi: 10.1002/pd.5049

[66]

Hartwig T.S., Ambye L., Sørensen S., Jørgensen F.S. Discordant non-invasive prenatal testing (NIPT) — a systematic review // Prenat. Diagn. 2017. Vol. 37. No. 6. P. 527–539. doi: 10.1002/pd.5049

[67]

Wilkins-Haug L, Zhang C, Cerveira E, et al. Biological explanations for discordant noninvasive prenatal test results: Preliminary data and lessons learned. Prenat Diagn. 2018;38(6):445–458. doi: 10.1002/pd.5260

[68]

Wilkins-Haug L., Zhang C., Cerveira E. et al. Biological explanations for discordant noninvasive prenatal test results: Preliminary data and lessons learned // Prenat. Diagn. 2018. Vol. 38. No. 6. P. 445–458. doi: 10.1002/pd.5260

[69]

Grati FR, Malvestiti F, Ferreira JCPB, et al. Fetoplacental mosaicism: potential implications for false-positive and false-negative noninvasive prenatal screening results. Genet Med. 2014;16:620–624. doi: 10.1038/gim.2014.3

[70]

Grati F.R., Malvestiti F., Ferreira J.C.P.B. et al. Fetoplacental mosaicism: potential implications for false-positive and false-negative noninvasive prenatal screening results // Genet. Med. 2014. Vol. 16. P. 620–624. doi: 10.1038/gim.2014.3

[71]

Grati FR, Malvestiti F, Branca L, et al. Chromosomal mosaicism in the fetoplacental unit. Best Pract Res Clin Obstet Gynaecol. 2017;42:39–52. doi: 10.1016/j.bpobgyn.2017.02.004

[72]

Grati F.R., Malvestiti F., Branca L. et al. Chromosomal mosaicism in the fetoplacental unit // Best Pract. Res. Clin. Obstet. Gynaecol. 2017. Vol. 42. P. 39–52. doi: 10.1016/j.bpobgyn.2017.02.004

[73]

Grati FR, Ferreira J, Benn P, et al. Outcomes in pregnancies with a confined placental mosaicism and implications for prenatal screening using cell-free DNA. Genet Med. 2020;22:309–316. doi: 10.1038/s41436-019-0630-y

[74]

Grati F.R., Ferreira J., Benn P. et al. Outcomes in pregnancies with a confined placental mosaicism and implications for prenatal screening using cell-free DNA // Genet. Med. 2020. Vol. 22. P. 309–316. doi: 10.1038/s41436-019-0630-y

[75]

Malvestiti F, Agrati C, Grimi B, et al. Interpreting mosaicism in chorionic villi: results of a monocentric series of 1001 mosaics in chorionic villi with follow-up amniocentesis. Prenat Diagn. 2015;35:1117–1127. doi: 10.1002/pd.4656

[76]

Malvestiti F., Agrati C., Grimi B. et al. Interpreting mosaicism in chorionic villi: results of a monocentric series of 1001 mosaics in chorionic villi with follow-up amniocentesis // Prenat. Diagn. 2015. Vol. 35. P. 1117–1127. doi: 10.1002/pd.4656

[77]

Shubina J, Trofimov DY, Barkov IY, et al. In silico size selection is effective in reducing false positive NIPS cases of monosomy X that are due to maternal mosaic monosomy X. Prenat Diagn. 2017;37(13):1305–1310. doi: 10.1002/pd.5178

[78]

Shubina J., Trofimov D.Y., Barkov I.Y. et al. In silico size selection is effective in reducing false positive NIPS cases of monosomy X that are due to maternal mosaic monosomy X // Prenat. Diagn. 2017. Vol. 37. No. 13. P. 1305–1310. doi: 10.1002/pd.5178

[79]

Benn P. Expanding non-invasive prenatal testing beyond chromosomes 21, 18, 13, X and Y. Clin Genet. 2016;90:477–485. doi: 10.1111/cge.12818

[80]

Benn P. Expanding non-invasive prenatal testing beyond chromosomes 21, 18, 13, X and Y // Clin. Genet. 2016. Vol. 90. P. 477–485. doi: 10.1111/cge.12818

[81]

Shubina J, Barkov IY, Stupko OK, et al. Prenatal diagnosis of Prader-Willi syndrome due to uniparental disomy with NIPS: Case report and literature review. Mol Genet Genomic Med. 2020;8(10):e1448. doi: 10.1002/mgg3.1448

[82]

Shubina J., Barkov I.Y., Stupko O.K. et al. Prenatal diagnosis of Prader-Willi syndrome due to uniparental disomy with NIPS: Case report and literature review // Mol. Genet. Genomic. Med. 2020. Vol. 8. No. 10. P. e1448. doi: 10.1002/mgg3.1448

[83]

Barkov IY, Shubina J, Kuznetsova M, et al. Detection of partial 4-th chromosome deletion and 12-th chromosome duplication with noninvasive prenatal DNA screening. Prenat. Diagn. 2018;(38):S.1–P2–25:75–76. doi: 10.1002/pd.5301

[84]

Barkov I.Y., Shubina J., Kuznetsova M. et al. Detection of partial 4-th chromosome deletion and 12-th chromosome duplication with noninvasive prenatal DNA screening // Prenat. Diagn. 2018. Vol. 38. No. S.1–P2–25. P. 75–76. doi: 10.1002/pd.5301

[85]

Grati FR, Benn P. Comment on “The clinical utility of genome-wide non invasive prenatal screening”. Prenat Diagn. 2017;37:1050–1052. doi: 10.1002/pd.5098

[86]

Grati F.R., Benn P. Comment on “The clinical utility of genome-wide non invasive prenatal screening” // Prenat. Diagn. 2017. Vol. 37. P. 1050–1052. doi: 10.1002/pd.5098

[87]

Fiorentino F, Bono S, Pizzuti F, et al. The clinical utility of genome-wide noninvasive prenatal screening. Prenat Diagn. 2017;37:593–601. doi: 10.1002/pd.5053

[88]

Fiorentino F., Bono S., Pizzuti F. et al. The clinical utility of genome-wide noninvasive prenatal screening // Prenat. Diagn. 2017. Vol. 37. P. 593–601. doi: 10.1002/pd.5053

[89]

Fiorentino F, Bono S, Pizzuti F, et al. Author’s reply to Grati and Benn. Prenat Diagn. 2017;37:1053–1054. doi: 10.1002/pd.5136

[90]

Fiorentino F., Bono S., Pizzuti F. et al. Author’s reply to Grati and Benn // Prenat. Diagn. 2017. Vol. 37. P. 1053–1054. doi: 10.1002/pd.5136

[91]

Benn P, Grati FR. Genome-wide non-invasive prenatal screening for all cytogenetically visible imbalances. Ultrasound Obstet Gynecol. 2018;51:429–433. doi: 10.1002/uog.19014

[92]

Benn P., Grati F.R. Genome-wide non-invasive prenatal screening for all cytogenetically visible imbalances // Ultrasound Obstet. Gynecol. 2018. Vol. 51. P. 429–433. doi: 10.1002/uog.19014

[93]

Ferreira JC, Grati FR, Bajaj K, et al. Frequency of fetal karyotype abnormalities in women undergoing invasive testing in the absence of ultrasound and other high-risk indications. Prenat Diagn. 2016;36:1146–1155. doi: 10.1002/pd.4951

[94]

Ferreira J.C., Grati F.R., Bajaj K. et al. Frequency of fetal karyotype abnormalities in women undergoing invasive testing in the absence of ultrasound and other high-risk indications // Prenat. Diagn. 2016. Vol. 36. P. 1146–1155. doi: 10.1002/pd.4951

[95]

Wang Y, Zhu J, Chen Y, et al. Two cases of placental T21 mosaicism: challenging the detection limits of non-invasive prenatal testing. Prenat Diagn. 2013;33:1207–1210. doi: 10.1002/pd.4212

[96]

Wang Y., Zhu J., Chen Y. et al. Two cases of placental T21 mosaicism: challenging the detection limits of non-invasive prenatal testing // Prenat. Diagn. 2013. Vol. 33. P. 1207–1210. doi: 10.1002/pd.4212

[97]

Pan M, Li FT, Li Y, et al. Discordant results between fetal karyotyping and non-invasive prenatal testing by maternal plasma sequencing in a case of uniparental disomy 21 due to trisomic rescue. Prenat Diagn. 2013;33:598–601. doi: 10.1002/pd.4069

[98]

Pan M., Li F.T., Li Y. et al. Discordant results between fetal karyotyping and non-invasive prenatal testing by maternal plasma sequencing in a case of uniparental disomy 21 due to trisomic rescue // Prenat. Diagn. 2013. Vol. 33. P. 598–601. doi: 10.1002/pd.4069

[99]

Benn P, Malvestiti F, Grimi B, et al. Rare autosomal trisomies: comparison of detection through cell-free DNA analysis and direct chromosome preparation of chorionic villus samples. Ultrasound Obstet Gynecol. 2019;54:458–467. doi: 10.1002/uog.20383

[100]

Benn P., Malvestiti F., Grimi B. et al. Rare autosomal trisomies: comparison of detection through cell-free DNA analysis and direct chromosome preparation of chorionic villus samples // Ultrasound Obstet. Gynecol. 2019. Vol. 54. P. 458–467. doi: 10.1002/uog.20383

[101]

Pertile MD, Halks-Miller M, Flowers N, et al. Rare autosomal trisomies, revealed by maternal plasma DNA sequencing, suggest increased risk of feto-placental disease. Sci Transl Med. 2017;9(405):eaan1240. doi: 10.1126/scitranslmed.aan1240

[102]

Pertile M.D., Halks-Miller M., Flowers N. et al. Rare autosomal trisomies, revealed by maternal plasma DNA sequencing, suggest increased risk of feto-placental disease // Sci. Transl. Med. 2017. Vol. 9. No. 405. P. eaan1240. doi: 10.1126/scitranslmed.aan1240

[103]

Bianchi DW, Chudova D, Sehnert AJ, et al. Noninvasive prenatal testing and incidental detection of occult maternal malignancies. JAMA. 2015;314:162–169. doi: 10.1001/jama.2015.7120

[104]

Bianchi D.W., Chudova D., Sehnert A.J. et al. Noninvasive prenatal testing and incidental detection of occult maternal malignancies // JAMA. 2015. Vol. 314. P. 162–169. doi: 10.1001/jama.2015.7120

[105]

Curnow KJ, Wilkins-Haug L, Ryan A, et al. Detection of triploid, molar, and vanishing twin pregnancies by a single-nucleotide polymorphism-based noninvasive prenatal test. Am J Obstet Gynecol. 2015;212:79.e1–9. doi: 10.1016/j.ajog.2014.10.012

[106]

Curnow K.J., Wilkins-Haug L., Ryan A. et al. Detection of triploid, molar, and vanishing twin pregnancies by a single-nucleotide polymorphism-based noninvasive prenatal test // Am. J. Obstet. Gynecol. 2015. Vol. 212. P. 79.e1–9. doi: 10.1016/j.ajog.2014.10.012

[107]

Wapner RJ, Babiarz JE, Levy B, et al. Expanding the scope of noninvasive prenatal testing: detection of fetal microdeletion syndromes. Am J Obstet Gynecol. 2015;212:332.e1–332.e339. doi: 10.1016/j.ajog.2014.11.041

[108]

Wapner R.J., Babiarz J.E., Levy B. et al. Expanding the scope of noninvasive prenatal testing: detection of fetal microdeletion syndromes // Am. J. Obstet. Gynecol. 2015. Vol. 212. P. 332.e1–332.e339. doi: 10.1016/j.ajog.2014.11.041

[109]

Grace MR, Hardisty E, Dotters-Katz SK, Vora NL, Kuller JA. Cell-free DNA screening: complexities and challenges of clinical implementation. Obstet Gynecol Surv. 2016;71:477–487. doi: 10.1097/OGX.0000000000000342

[110]

Grace M.R., Hardisty E., Dotters-Katz S.K., Vora N.L., Kuller J.A. Cell-free DNA screening: complexities and challenges of clinical implementation // Obstet. Gynecol. Surv. 2016. Vol. 71. P. 477–487. doi: 10.1097/OGX.0000000000000342

[111]

Genetics Committee on Genetics Society for Maternal-Fetal Medicine. Committee Opinion No. 640: Cell-free DNA screening for fetal aneuploidy. Obstet Gynecol. 2015;126(3):e31–e37. doi: 10.1097/AOG.0000000000001051

[112]

Committee on Genetics Society for Maternal-Fetal Medicine. Committee Opinion No. 640: Cell-free DNA screening for fetal aneuploidy // Obstet. Gynecol. 2015. Vol. 126. No. 3. P. e31–7. doi: 10.1097/AOG.0000000000001051

[113]

Gregg AR, Skotko BG, Benkendorf JL, et al. Noninvasive prenatal screening for fetal aneuploidy, 2016 update: a position statement of the American College of Medical Genetics and Genomics. Genet Med. 2016;18(10):1056–1065. doi: 10.1038/gim.2016.97

[114]

Gregg A.R., Skotko B.G., Benkendorf J.L. et al. Noninvasive prenatal screening for fetal aneuploidy, 2016 update: a position statement of the American College of Medical Genetics and Genomics // Genet. Med. 2016. Vol. 18. No. 10. P. 1056–65. doi: 10.1038/gim.2016.97

[115]

Di Renzo GC, Bartha JL, Bilardo CM. Expanding the indications for cell-free DNA in the maternal circulation: clinical considerations and implications. Am J Obstet Gynecol. 2019;220:537–542. doi: 10.1016/j.ajog.2019.01.009

[116]

Di Renzo G.C., Bartha J.L., Bilardo C.M. Expanding the indications for cell-free DNA in the maternal circulation: clinical considerations and implications // Am. J. Obstet. Gynecol. 2019. Vol. 220. P. 537–542. doi: 10.1016/j.ajog.2019.01.009

[117]

Di Renzo GC, Luis Bartha J, Bilardo CM. More research is needed prior to the implementation of genome-wide cell-free DNA testing in specific populations. (Response to letter L19-020A: Confined placental trisomy detection through cell-free DNA in the maternal circulation: Benefit for pregnancy management). Am J Obstet Gynecol. 2019;221(3):287. doi: 10.1016/j.ajog.2019.05.031

[118]

Di Renzo G.C., Luis Bartha J., Bilardo C.M. More research is needed prior to the implementation of genome-wide cell-free DNA testing in specific populations (Response to letter L19-020A: Confined placental trisomy detection through cell-free DNA in the maternal circulation: Benefit for pregnancy management) // Am. J. Obstet. Gynecol. 2019. Vol. 221. No. 3. P. 287. doi: 10.1016/j.ajog.2019.05.031

[119]

Benn P, Borrell A, Chiu RW, et al. Position statement from the Chromosome Abnormality Screening Committee on behalf of the Board of the International Society for Prenatal Diagnosis. Prenat Diagn. 2015;35(8):725–734. doi: 10.1002/pd.4608

[120]

Benn P., Borrell A., Chiu R.W. et al. Position statement from the Chromosome Abnormality Screening Committee on behalf of the Board of the International Society for Prenatal Diagnosis // Prenat. Diagn. 2015. Vol. 35. No. 8. P. 725–734. doi: 10.1002/pd.4608

[121]

Jani JC, Gil MM, Benachi A, et al. Genome — wide cfDNA testing of maternal blood. Ultrasound Obstet Gynecol. 2020;55(1):13–14. doi: 10.1002/uog.21945

[122]

Jani J.C., Gil M.M., Benachi A. et al. Genome – wide cfDNA testing of maternal blood // Ultrasound Obstet. Gynecol. 2020. Vol. 55. No. 1. P. 13–14. doi: 10.1002/uog.21945

[123]

De Wergifosse S, Bevilacqua E, Mezela I, et al. Cell-free DNA analysis in maternal blood: comparing genome-wide versus targeted approach as a first-line screening test. J Matern Fetal Neonatal Med. 2019;13:1–10. doi: 10.1080/14767058.2019.1686478

[124]

De Wergifosse S., Bevilacqua E., Mezela I. et al. Cell-free DNA analysis in maternal blood: comparing genome-wide versus targeted approach as a first-line screening test // J. Matern. Fetal Neonatal. Med. 2019. Vol. 13. P. 1–10. doi: 10.1080/14767058.2019.1686478

[125]

Wilson JMG, Jungner G. Principles and practice of screening for disease. Geneva: World Health Organization; 1968 [cited 2021 Jan 19]. Available from: https://apps.who.int/iris/handle/10665/37650

[126]

Wilson J.M.G., Jungner G. Principles and practice of screening for disease. Geneva: World Health Organization; 1968 [дата обращения: 19.01.2021]. Доступ по ссылке: https://apps.who.int/iris/handle/10665/37650

[127]

Suciu ID, Toader OD, Galeva S, Pop L. Non-invasive prenatal testing beyond trisomies. J Med Life. 2019;12(3):221–224. doi: 10.25122/jml-2019-0053

[128]

Suciu I.D., Toader O.D., Galeva S., Pop L. Non-invasive prenatal testing beyond trisomies // J. Med. Life. 2019. Vol. 12. No. 3. P. 221–224. doi: 10.25122/jml-2019-0053

[129]

Han BW, Yang F, Guo ZW, et al. Noninvasive inferring expressed genes and in vivo monitoring of the physiology and pathology of pregnancy using cell-free DNA. Am J Obstet Gynecol. 2020;29:S0002-9378(20)30985-6. doi: 10.1016/j.ajog.2020.08.104

[130]

Han B.W., Yang F., Guo Z.W. et al. Noninvasive inferring expressed genes and in vivo monitoring of the physiology and pathology of pregnancy using cell-free DNA // Am. J. Obstet Gynecol. 2020. Vol. 29. P. S0002–9378(20)30985-6. doi: 10.1016/j.ajog.2020.08.104

[131]

Baranov VS, Kashheeva TK, Kuznecova YV. Achievements, sensations and problems of molecular prenatal diagnostics. Journal of Obstetrics and Women’s Diseases. 2016;65(2):70–80. (In Russ.). doi: 10.17816/JOWD65270-80

[132]

Баранов В.С., Кащеева Т.К., Кузнецова Т.В. Достижения, сенсации и трудности пренатальной молекулярно-генетической диагностики // Журнал акушерства и женских болезней. 2016. Т. 65. № 2. С. 70–80. doi: 10.17816/JOWD65270-80

[133]

Baranov VS, Kuznecova TV, Kashheeva TK, Ivashhenko TJe. Prenatal’naja diagnostika nasledstvennyh boleznej. Sostojanie i perspektivy. 3rd ed. Saint Petersburg: Jeko-Vektor; 2020. (In Russ.)

[134]

Баранов В.С., Кузнецова Т.В., Кащеева Т.К, Иващенко Т.Э. Пренатальная диагностика наследственных болезней. Состояние и перспективы. 3-е изд. Санкт-Петербург: Эко-Вектор, 2020.

[135]

Federal’nyj zakon ot 21 nojabrja 2011 No. 323-FZ “Ob osnovah ohrany zdorov’ja grazhdan v Rossijskoj Federacii” [cited: 2021 Jan 19]. Avaible from: https://www.rosminzdrav.ru/documents/7025. (In Russ.)

[136]

Федеральный закон от 21 ноября 2011 г. № 323-ФЗ «Об основах охраны здоровья граждан в Российской Федерации» [дата обращения: 19.01.2021]. Доступ по ссылке: https://www.rosminzdrav.ru/documents/7025

[137]

Dondorp W, de Wert G, Bombard Y, et al.; European Society of Human Genetics; American Society of Human Genetics. Non-invasive prenatal testing for aneuploidy and beyond: challenges of responsible innovation in prenatal screening. Eur J Hum Genet. 2015;23(11):1438-1450. doi: 10.1038/ejhg.2015.57

[138]

Dondorp W., de Wert G., Bombard Y. et al.; European Society of Human Genetics; American Society of Human Genetics. Non-invasive prenatal testing for aneuploidy and beyond: challenges of responsible innovation in prenatal screening // Eur. J. Hum. Genet. 2015. Vol. 23. No. 11. P. 1438–1450. doi: 10.1038/ejhg.2015.57

[139]

Skotko BG, Allyse MA, Bajaj K, et al. Adherence of Cell-free DNA Noninvasive Prenatal Screens to ACMG Recommendations. Genetics in Medicine. 2019;21(10):2285–2292. doi: 10.1038/s41436-019-0485-2

[140]

Skotko B.G., Allyse M.A., Bajaj K. et al. Adherence of cell-free DNA noninvasive prenatal screens to ACMG recommendations // Genetics in Medicine. 2019. Vol. 21. No. 10. P. 2285–2292. doi: 10.1038/s41436-019-0485-2

[141]

Skotko BG, Allyse MA, Bajaj K, et al. Response to Johansen Taber et al. Genet Med. 2019;21:2660–2661. doi: 10.1038/s41436-019-0556-4

[142]

Skotko B.G., Allyse M.A., Bajaj K. et al. Response to Johansen Taber et al. // Genet. Med. 2019. Vol. 21. P. 2660–2661. doi: 10.1038/s41436-019-0556-4

[143]

Baranova EE, Belenikin MS, Zhuchenko LA, Izhevskaya VL. Non-invasive prenatal tests: European and American recommendations. Medical genetics. 2017;16(8):3–11. (In Russ.)

[144]

Баранова Е.Е., Беленикин М.С., Жученко Л.А., Ижевская В.Л. Неинвазивные пренатальные тесты: европейские и американские рекомендации по применению в клинической практике // Медицинская генетика. 2017. Т. 16. № 8(182). С. 3–11.

[145]

Sachs A, Blanchard L, Buchanan A, et al. Recommended pre-test counseling points for noninvasive prenatal testing using cell-free DNA: a 2015 perspective. Prenat Diagn. 2015;35:968–971. doi: 10.1002/pd.4666

[146]

Sachs A., Blanchard L., Buchanan A. et al. Recommended pre-test counseling points for noninvasive prenatal testing using cell-free DNA: a 2015 perspective // Prenat. Diagn. 2015. Vol. 35. P. 968–971. doi: 10.1002/pd.4666

[147]

Hill M, Johnson JA, Langlois S, et al. Preferences for prenatal tests for Down Syndrome: an international comparison of the views of pregnant women and health professionals. Eur J Hum Genet. 2016;24(7):968–975. doi: 10.1038/ejhg.2015.249

[148]

Hill M., Johnson J.A., Langlois S. et al. Preferences for prenatal tests for Down Syndrome: an international comparison of the views of pregnant women and health professionals // Eur. J. Hum. Genet. 2016. Vol. 24. No. 7. P. 968–975. doi: 10.1038/ejhg.2015.249

[149]

Sayres LC, Allyse M, Goodspeed TA, Cho MK. Demographic and experiential correlates of public attitudes towards cell-free fetal DNA screening. J Genet Couns. 2014;23(6):957–967. doi: 10.1007/s10897-014-9704-9

[150]

Sayres L.C., Allyse M., Goodspeed T.A., Cho M.K. Demographic and experiential correlates of public attitudes towards cell-free fetal DNA screening // J. Genet. Couns. 2014. Vol. 23. No. 6. P. 957–967. doi: 10.1007/s10897-014-9704-9

[151]

Gil MM, Giunta G, Macalli EA, et al. UK NHS pilot study on cell-free DNA testing in screening for fetal trisomies factors affecting uptake. Ultrasound Obstet Gynecol. 2015;45(1):67–73. doi: 10.1002/uog.14683

[152]

Gil M.M., Giunta G., Macalli E.A. et al. UK NHS pilot study on cell-free DNA testing in screening for fetal trisomies factors affecting uptake // Ultrasound Obstet. Gynecol. 2015. Vol. 45. No. 1. P. 67–73. doi: 10.1002/uog.14683

[153]

Izhevskaia VL, Zhuchenko LA, Zaiaeva EE, et al. Predpochtenija vrachej v vybore metodov rannego prenatal’nogo testirovanija: pilotnoe issledovanie v Rossii. In: XIII Mezhdunarodnyj kongress po reproduktivnoj medicine. Moscow; 2019:13–14 [cited: 2021 Jan 19]. Avaible from: https://docviewer.yandex.ru/view/94511273/?page = 466&* = BbQw6iSQgVon4tvZhMKcI8YbKrR7InVybCI6InlhLW1haWw6Ly8xNzQ1MTQ0ODU1NjA2MjY1MjQvMS4yIiwidGl0bGUiOiJ0aGVzaXNfcnpzMTkucGRmIiwibm9pZnJhbWUiOmZhbHNlLCJ1aWQiOiI5NDUxMTI3MyIsInRzIjoxNjA4MjI1NDQ2NDMwLCJ5dSI6IjY5MTQ5MTk3MTE0OTk3MTg3MDAifQ %3D %3D. (In Russ.)

[154]

Ижевская В.Л., Жученко Л.А., Заяева Е.Е. и др. Предпочтения врачей в выборе методов раннего пренатального тестирования: пилотное исследование в России // XIII Международный конгресс по репродуктивной медицине. Москва, 2019. С. 13–14 [дата обращения: 19.01.2021]. Доступ по ссылке: https://docviewer.yandex.ru/view/94511273/?page = 466&* = BbQw6iSQgVon4tvZhMKcI8YbKrR7InVybCI6InlhLW1haWw6Ly8xNzQ1MTQ0ODU1NjA2MjY1MjQvMS4yIiwidGl0bGUiOiJ0aGVzaXNfcnpzMTkucGRmIiwibm9pZnJhbWUiOmZhbHNlLCJ1aWQiOiI5NDUxMTI3MyIsInRzIjoxNjA4MjI1NDQ2NDMwLCJ5dSI6IjY5MTQ5MTk3MTE0OTk3MTg3MDAifQ3D3D

[155]

Baranova EE, Zayaeva EE, Zhuchenko LA, et al. A survey of pregnant women about their preferences for prenatal tests with different characteristics. Medical Genetics. 2020;19(3):74–75. (In Russ.). doi: 10.25557/2073-7998.2020.03.74-75

[156]

Баранова Е.Е., Заяева Е.Е., Жученко Л.А. и др. Результаты опроса беременных об их предпочтениях пренатальных тестов с разными характеристиками // Медицинская генетика. 2020. № 3. C. 74–75. doi: 10.25557/2073-7998.2020.03.74-75

[157]

Oepkes D, Bartha JL, Schmid M, Yaron Y. Benefits of contingent screening vs primary screening by cell-free DNA testing: think again. Ultrasound Obstet Gynecol. 2016;47:542–545. doi: 10.1002/uog.15758

[158]

Oepkes D., Bartha J.L., Schmid M., Yaron Y. Benefits of contingent screening vs primary screening by cell-free DNA testing: think again // Ultrasound Obstet. Gynecol. 2016. Vol. 47. P. 542–545. doi: 10.1002/uog.15758

[159]

Salomon LJ, Alfirevic Z, Audibert F, et al. ISUOG updated consensus statement on the impact of cfDNA aneuploidy testing on screening policies and prenatal ultrasound practice. Ultrasound Obstet Gynecol. 2017;49:815–816. doi: 10.1002/uog.17483

[160]

Salomon L.J., Alfirevic Z., Audibert F. et al. ISUOG updated consensus statement on the impact of cfDNA aneuploidy testing on screening policies and prenatal ultrasound practice // Ultrasound Obstet. Gynecol. 2017. Vol. 49. P. 815–816. doi: 10.1002/uog.17483

[161]

Abousleiman C, Lismonde A, Jani JC. Concerns following rapid implementation of first-line screening for aneuploidy by cell-free DNA analysis in the Belgian healthcare system. Ultrasound Obstet Gynecol. 2019;53(6):847–848. doi: 10.1002/uog.20280

[162]

Abousleiman C., Lismonde A., Jani J.C. Concerns following rapid implementation of first-line screening for aneuploidy by cell-free DNA analysis in the Belgian healthcare system // Ultrasound Obstet. Gynecol. 2019. Vol. 53. No. 6. P. 847–848. doi: 10.1002/uog.20280

[163]

Van Opstal D, van Maarle M, Lichtenbelt K, et al. Origin and clinical relevance of chromosomal aberrations other than the common trisomies detected by genome-wide NIPS: results of the TRIDENT study. Genet Med. 2018;20:480–485. doi: 10.1038/gim.2017.132

[164]

Van Opstal D., van Maarle M., Lichtenbelt K. et al. Origin and clinical relevance of chromosomal aberrations other than the common trisomies detected by genome-wide NIPS: results of the TRIDENT study // Genet. Med. 2018. Vol. 20. P. 480–485. doi: 10.1038/gim.2017.132

[165]

Nicolaides KH, Wright D, Poon LC, et al. First-trimester contingent screening for trisomy 21 by biomarkers and maternal blood cell-free DNA testing. Ultrasound Obstet Gynecol. 2013;42(1):41–50. doi: 10.1002/uog.12511

[166]

Nicolaides K.H., Wright D., Poon L.C. et al. First-trimester contingent screening for trisomy 21 by biomarkers and maternal blood cell-free DNA testing // Ultrasound Obstet. Gynecol. 2013. Vol. 42. No. 1. P. 41–50. doi: 10.1002/uog.12511

[167]

Chitty LS, Wright D, Hill M, et al. Uptake, outcomes, and costs of implementing non-invasive prenatal testing for Down’s syndrome into NHS maternity care: prospective cohort study in eight diverse maternity units. BMJ. 2016;354:i3426. doi: 10.1136/bmj.i3426

[168]

Chitty L.S., Wright D., Hill M. et al. Uptake, outcomes, and costs of implementing non-invasive prenatal testing for Down’s syndrome into NHS maternity care: prospective cohort study in eight diverse maternity units // BMJ. 2016. Vol. 354. P. i3426. doi: 10.1136/bmj.i3426

[169]

Miltoft CB, Rode L, Ekelund CK, et al. Contingent first-trimester screening for aneuploidies ith cell-free DNA in a Danish clinical setting. Ultrasound Obstet Gynecol. 2018;51(4):470–479. doi: 10.1002/uog.17562

[170]

Miltoft C.B., Rode L., Ekelund C.K. et al. Contingent first-trimester screening for aneuploidies ith cell-free DNA in a Danish clinical setting // Ultrasound Obstet. Gynecol. 2018. Vol. 51. No. 4. P. 470–479. doi: 10.1002/uog.17562

[171]

Nicolaides KH, Spencer K, Avgidou K, et al. Multicenter study of first-trimester screening for trisomy 21 in 75 821 pregnancies: results and estimation of the potential impact of individual risk-orientated two-stage first-trimester screening. Ultrasound Obstet Gynecol. 2005;25:221–226. doi: 10.1002/uog.1860

[172]

Nicolaides K.H., Spencer K., Avgidou K. et al. Multicenter study of first-trimester screening for trisomy 21 in 75 821 pregnancies: results and estimation of the potential impact of individual risk-orientated two-stage first-trimester screening // Ultrasound Obstet. Gynecol. 2005. Vol. 25. P. 221–226.doi: 10.1002/uog.1860

[173]

Kagan KO, Etchegaray A, Zhou Y, et al. Prospective validation of first-trimester combined screening for trisomy 21. Ultrasound Obstet Gynecol. 2009;34:14–18. doi: 10.1002/uog.6412

[174]

Kagan K.O., Etchegaray A., Zhou Y. et al. Prospective validation of first-trimester combined screening for trisomy 21 // Ultrasound Obstet. Gynecol. 2009. Vol. 34. P. 14–18. doi: 10.1002/uog.6412

[175]

Kagan KO, Hoopmann M, Hammer R, et al. Screening for chromosomal abnormalities by first trimester combined screening and noninvasive prenatal testing. Ultraschall Med. 2015;36:40–46. doi: 10.1055/s-0034-1385059

[176]

Kagan K.O., Hoopmann M., Hammer R. et al. Screening for chromosomal abnormalities by first trimester combined screening and noninvasive prenatal testing // Ultraschall Med. 2015. Vol. 36. P. 40–46. doi:10.1055/s-0034-1385059

[177]

Santorum M, Wright D, Syngelaki A, et al. Accuracy of first trimester combined test in screening for trisomies 21, 18 and 13. Ultrasound Obstet Gynecol. 2017;49(6):714–720. doi: 10.1002/uog.17283

[178]

Santorum M., Wright D., Syngelaki A. et al. Accuracy of first trimester combined test in screening for trisomies 21, 18 and 13 // Ultrasound Obstet. Gynecol. 2017. Vol. 49. No. 6. P. 714–720. doi: 10.1002/uog.17283

[179]

Kagan KO, Sonek J, Wagner P, Hoopmann M. Principles of first trimester screening in the age of non-invasive prenatal diagnosis: screening for chromosomal abnormalities. Arch Gynecol Obstet. 2017;296(4):645–651. doi: 10.1007/s00404-017-4459-9

[180]

Kagan K.O., Sonek J., Wagner P., Hoopmann M. Principles of first trimester screening in the age of non-invasive prenatal diagnosis: screening for chromosomal abnormalities // Arch. Gynecol. Obstet. 2017. Vol. 296. No. 4. P. 645–651. doi: 10.1007/s00404-017-4459-9

[181]

Miranda J, Paz y Miño F, Borobio V, et al. Should cell-free DNA testing be used in pregnancy with increased fetal nuchal translucency? Ultrasound Obstet Gynecol. 2020;55(5):645–651. doi: 10.1002/uog.20397

[182]

Miranda J., Paz y Miño F., Borobio V. et al. Should cell-free DNA testing be used in pregnancy with increased fetal nuchal translucency? // Ultrasound Obstet. Gynecol. 2020. Vol. 55. No. 5. P. 645–651. doi: 10.1002/uog.20397

[183]

Bardi F, Bosschieter P, Verheij J, et al. Is there still a role for nuchal translucency measurement in the changing paradigm of first trimester screening? Prenatal Diagnosis. 2020;40:197–205. doi: 10.1002/pd.5590

[184]

Bardi F., Bosschieter P., Verheij J. et al. Is there still a role for nuchal translucency measurement in the changing paradigm of first trimester screening? // Prenatal. Diagnosis. 2020. Vol. 40. P. 197–205. doi: 10.1002/pd.5590

[185]

Kagan KO, Sroka F, Sonek J, et al. First-trimester risk assessment based on ultrasound and cell-free DNA vs combined screening: a randomized controlled trial. Ultrasound Obstet Gynecol. 2018;51(4):437–444. doi: 10.1002/uog.18905

[186]

Kagan K.O., Sroka F., Sonek J. et al. First-trimester risk assessment based on ultrasound and cell-free DNA vs combined screening: a randomized controlled trial // Ultrasound Obstet. Gynecol. 2018. Vol. 51. No. 4. P. 437–444. doi: 10.1002/uog.18905

[187]

Sonek JD, Kagan KO, Nicolaides KH. Inverted Pyramid of Care. Clin Lab Med. 2016;36(2):305–317. doi: 10.1016/j.cll.2016.01.009

[188]

Sonek J.D., Kagan K.O., Nicolaides K.H. Inverted pyramid of care // Clin. Lab. Med. 2016. Vol. 36. No. 2. P. 305-317. doi: 10.1016/j.cll.2016.01.009

[189]

Nshimyumukiza L, Menon S, Hina H, et al. Cell-free DNA noninvasive prenatal screening for aneuploidy versus conventional screening: a systematic review of economic evaluations. Clin Genet. 2018;94:3–21. doi: /10.1111/cge.13155

[190]

Nshimyumukiza L., Menon S., Hina H. et al. Cell-free DNA noninvasive prenatal screening for aneuploidy versus conventional screening: a systematic review of economic evaluations // Clin. Genet. 2018. Vol. 94. P. 3–21. doi: 10.1111/cge.13155

[191]

Emel’janenko ES, Vetrova NV, Masjuk SV, et al. Prenatal diagnosis of chromosomal abnormalities: Clinical- and cost-effectiveness. Doctor.ru. 2016;3(120):43–51. (In Russ.)

[192]

Емельяненко Е.С., Ветрова Н.В., Масюк С.В. и др. Клиническая и экономическая эффективность методов пренатальной диагностики хромосомных аномалий // Доктор.Ру. 2016. № 3 (120). С. 43–51.

[193]

Nicolaides KH, Syngelaki A, Poon LC, et al. First-trimester contingent screening for trisomies 21, 18 and 13 by biomarkers and maternal blood cell-free DNA testing. Fetal Diagn Ther. 2014;35(3):185–192. doi: 10.1159/000356066

[194]

Nicolaides K.H., Syngelaki A., Poon L.C. et al. First-trimester contingent screening for trisomies 21, 18 and 13 by biomarkers and maternal blood cell-free DNA testing // Fetal Diagn. Ther. 2014. Vol. 35. No. 3. P. 185–92. doi: 10.1159/000356066

[195]

Gil MM, Quezada MS, Bregant B, et al. Implementation of maternal blood cell-free DNA testing in early screening for aneuploidies. Ultrasound Obstet Gynecol. 2013;42:34–40. doi: 10.1002/uog.12504

[196]

Gil M.M., Quezada M.S., Bregant B., et al. Implementation of maternal blood cell-free DNA testing in early screening for aneuploidies // Ultrasound Obstet. Gynecol. 2013. Vol. 42. P. 34–40. doi: 10.1002/uog.12504

[197]

Gil MM, Revello R, Poon LC, et al. Clinical implementation of routine screening for fetal trisomies in the UK NHS: cell-free DNA test contingent on results from first-trimester combined test. Ultrasound Obstet Gynecol. 2016;47(1):45–52. doi: 10.1002/uog.15783

[198]

Gil M.M., Revello R., Poon L.C. et al. Clinical implementation of routine screening for fetal trisomies in the UK NHS: cell-free DNA test contingent on results from first-trimester combined test // Ultrasound Obstet. Gynecol. 2016. Vol. 47. No. 1. P. 45–52. doi: 10.1002/uog.15783

[199]

Cotarelo-Pérez C, Oancea-Ionescu R, Asenjo-de-la-Fuente E, et al. A contingent model for cell-free DNA ¬testing to detect fetal aneuploidy¬ after first trimester combined ¬screening. Eur J Obstet Gynecol Reprod Biol X. 2019;1:100002. doi: 10.1016/j.eurox.2019.100002

[200]

Cotarelo-Pérez C., Oancea-Ionescu R., Asenjo-de-la-Fuente E. et al. A contingent model for cell-free DNA testing to detect fetal aneuploidy after first trimester combined screening // Eur. J. Obstet. Gynecol. Reprod. Biol. X. 2019. Vol. 1. P. 100002. doi: 10.1016/j.eurox.2019.100002

[201]

Rose NC, Kaimal AJ, Dugoff L, Norton ME; American College of Obstetricians and Gynecologists’ Committee on Practice Bulletins — Obstetrics; Committee on Genetics; Society for Maternal-Fetal Medicine. Screening for fetal chromosomal abnormalities: ACOG Practice Bulletin, Number 226. Obstet Gynecol. 2020;136(4):e48–e69. doi: 10.1097/AOG.0000000000004084

[202]

Rose N.C., Kaimal A.J., Dugoff L., Norton M.E.; American College of Obstetricians and Gynecologists’ Committee on Practice Bulletins — Obstetrics; Committee on Genetics; Society for Maternal-Fetal Medicine. Screening for Fetal Chromosomal Abnormalities: ACOG Practice Bulletin, Number 226 // Obstet. Gynecol. 2020. Vol. 136. No. 4. P. e48–e69. doi: 10.1097/AOG.0000000000004084

[203]

Vossaert L, Wang Q, Salman R, et al. Reliable detection of subchromosomal deletions and duplications using cell-based noninvasive prenatal testing. Prenatal Diagnosis. 2018;38(13):1069–1078. doi: 10.1002/pd.5377

[204]

Vossaert L., Wang Q., Salman R. et al. Reliable detection of subchromosomal deletions and duplications using cell-based noninvasive prenatal testing // Prenatal. Diagnosis. 2018. Vol. 38. No. 13. P. 1069–1078. doi: 10.1002/pd.5377

[205]

Evans MI, Evans SM, Bennett TA, Wapner RJ. The price of abandoning diagnostic testing for cell-free fetal DNA screening. Prenatal Diagnosis. 2018;38:243–245. doi: 10.1002/pd.5226

[206]

Evans M.I., Evans S.M., Bennett T.A., Wapner R.J. The price of abandoning diagnostic testing for cell-free fetal DNA screening // Prenatal. Diagnosis. 2018. Vol. 38. P. 243–245. doi.org//10.1002/pd.5226

[207]

Srebniak MI, Knapen MFCM, Govaerts LCP, et al. Social and medical need for whole genome high resolution NIPT. Mol Genet Genomic Med. 2020;8:e1062. doi: 10.1002/mgg3.1062

[208]

Srebniak M.I., Knapen M.F.C.M., Govaerts L.C.P. et al. Social and medical need for whole genome high resolution NIPT // Mol. Genet. Genomic. Med. 2020. Vol. 8. P. e1062. doi: 10.1002/mgg3.1062

[209]

Prikaz Ministerstva zdravoohranenija Rossijskoj Federacii ot 20.10.2020 No. 1130n “Ob utverzhdenii Porjadka okazanija medicinskoj pomoshhi po profilju “akusherstvo i ginekologija”” [cited: 2021 Jan 19]. Available from: http://publication.pravo.gov.ru/Document/View/0001202011130037. (In Russ.)

[210]

Приказ Министерства здравоохранения Российской Федерации от 20.10.2020 г. № 1130н «Об утверждении Порядка оказания медицинской помощи по профилю „акушерство и гинекология“». (Зарегистрирован 12.11.2020) [дата обращения: 19.01.2021]. Доступ по ссылке: http://publication.pravo.gov.ru/Document/View/0001202011130037

RIGHTS & PERMISSIONS

Eсо-Vector

AI Summary AI Mindmap
PDF (442KB)

141

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/