Morphogenesis of decidual transformation of the endometrium. A literature review
Tatiana G. Tral , Darya D. Kruglova , Gulrukhsor Kh. Tolibova
Journal of obstetrics and women's diseases ›› 2023, Vol. 72 ›› Issue (5) : 105 -114.
Morphogenesis of decidual transformation of the endometrium. A literature review
Decidual transformation of the endometrium is the final stage of the cyclic endometrial transformation during pregnancy. The morphogenesis of endometrial transformation is represented by clearly coordinated hormone-receptor interactions via immunological, angiogenic, and apoptotic factors that are necessary for pregnancy development. The pathology of morphogenesis can cause implantation disorders and early reproductive losses, highlighting the medical and social relevance of this issue.
The aim of this review was to analyze the literature data on the morphogenesis of endometrial transformation in the first trimester of pregnancy. Open access full-text publications from the PubMed and eLibrary databases, as well as Russian relevant journals from 1999 to 2021 were used for the analysis.
The morphogenesis of endometrial transformation in the first trimester of pregnancy is determined by cyclic endometrial transformation adequacy and the optimal endometrium-embryo interaction under the influence of many factors. The complex approach in evaluation of multiple links in the morphogenesis of decidual transformation of the endometrium (steroidogenesis, immunogenesis, angiogenesis, and apoptosis) will reveal molecular mechanisms of pregnancy termination due to altered decidual membrane formation.
The fundamental value of molecular mechanisms underlying endometrial transformation in understanding the pathogenesis of reproductive failures dictates the necessity of endometrial transformation investigation under conditions of reprogramming and remodeling during pregnancy.
endometrial decidualization / estrogen receptors / progesterone receptor / progesterone-induced blocking factor / stromal cell-derived factor-1 / endothelial cell marker CD34+ / apoptosis-inducting factor
| [1] |
Frolova NI, Belokrinitskaya TE. Epigenetic factors and molecular markers of the risk of early pregnancy loss. Gynecology. 2019;21(3):9–16. (In Russ.) DOI: 10.26442/20795696.2019.4.190523 |
| [2] |
Фролова Н.И, Белокриницкая Т.Е. Эпигенетические факторы и молекулярные маркеры риска ранних потерь беременности // Гинекология. 2019. Т. 21. № 3. С. 9–16. DOI: 10.26442/20795696.2019.4.190523 |
| [3] |
Kushubekova AK, Samigullina AE, Boobekova AA. Non-care of pregnancy: histological study of cerebrates from the cavity of the uterus. International Journal of Applied and Fundamental Research. 2019;(5):66–71. (In Russ.) DOI: 10.17513/mjpfi.12740 |
| [4] |
Кушубекова А.К., Самигуллина А.Э., Бообекова А.А. Невынашивание беременности: гистологическое исследование соскобов из полости матки // Международный журнал прикладных и фундаментальных исследований. 2019. № 5. С. 66–71. DOI: 10.17513/mjpfi.12740 |
| [5] |
Popescu F, Jaslow CR, Kutteh WH. Recurrent pregnancy loss evaluation combined with 24-chromosome microarray of miscarriage tissue provides a probable or definite cause of pregnancy loss in over 90% of patients. Hum Reprod. 2018;33(4):579–587. DOI: 10.1093/humrep/dey021 |
| [6] |
Popescu F., Jaslow C.R., Kutteh W.H. Recurrent pregnancy loss evaluation combined with 24-chromosome microarray of miscarriage tissue provides a probable or definite cause of pregnancy loss in over 90% of patients // Hum. Reprod. 2018. Vol. 33. No. 4. P. 579–587. DOI: 10.1093/humrep/dey021 |
| [7] |
Tral TG, Tolibova GK, Serdiukov SV, et al. Morpho-functional evaluation of the causes of stilled pregnancy in the first trimester. Journal of Obstetrics and Women’s Diseases. 2013;62(3):83–87. (In Russ.) DOI: 10.17816/JOWD62383-87 |
| [8] |
Траль Т.Г., Толибова Г.Х., Сердюков С.В., и др. Морфофункциональная оценка причин замершей беременности в первом триместре // Журнал акушерства и женских болезней. 2013. Т. 62. № 3. C. 83–87. DOI: 10.17816/JOWD62383-87 |
| [9] |
Shaulov T, Sierra S, Sylvestre C. Recurrent implantation failure in IVF: a canadian fertility and andrology society clinical practice guideline. Reprod Biomed Online. 2020;41(5):819–833. DOI: 10.1016/j.rbmo.2020.08.007 |
| [10] |
Shaulov T., Sierra S., Sylvestre C. Recurrent implantation failure in IVF: a canadian fertility and andrology society clinical practice guideline // Reprod. Biomedю Online. 2020. Vol. 41. No. 5. Р. 819–833. DOI: 10.1016/j.rbmo.2020.08.007 |
| [11] |
Ticconi C, Pietropolli A, Di Simone N, et al. Endometrial immune dysfunction in recurrent pregnancy loss. Int J Mol Sci. 2019;2(21). DOI: 10.3390/ijms20215332 |
| [12] |
Ticconi C., Pietropolli A., Di Simone N., et al. Endometrial immune dysfunction in recurrent pregnancy loss // Int. J. Mol. Sci. 2019. Vol. 2. No. 21. DOI: 10.3390/ijms20215332 |
| [13] |
Farrahova KL. The course of pregnancy and labour in primipara or senior repoductie age. Smolenskiy meditsinskiy al’manakh. 2018;(2):146–147. (In Russ.) |
| [14] |
Фаррахова К.Л. Течение беременности и родов у первородящих женщин старшего репродуктивного возраста // Смоленский медицинский альманах. 2018. № 2. С. 146–147. |
| [15] |
Mikhaleva LM, Boltovskaya MN, Mikhalev SA, et al. Endometrial dysfunction caused by chronic endometritis: сlinical and morphological aspects. Arkhiv Patologii. 2017;79(6):22-29. (In Russ.) DOI: 10.17116/patol201779622-29 |
| [16] |
Михалева Л.М., Болтовская М.Н., Михалев С.А., и др. Клинико-морфологические аспекты эндометриальной дисфункции, обусловленной хроническим эндометритом // Архив патологии. 2017. Т. 79. № 6. С. 22–29. DOI: 10.17116/patol201779622-29 |
| [17] |
Tapilskaya NI, Budilovskaya OV, Krysanova AA, et al. Microbiota of the endometrium of women with chronic endometritis and idiopathic infertility. Obstetrics and gynecology. 2020;(4):72–81. (In Russ.) DOI: 10.18565/aig.2020.4.72-81 |
| [18] |
Тапильская Н.И., Будиловская О.В., Крысанова А.А., и др. Микробиота эндометрия женщин с хроническим эндометритом и идиопатическим бесплодием // Акушерство и гинекология. 2020. № 4. С. 72–81 DOI: 10.18565/aig.2020.4.72-81 |
| [19] |
Patel B, Elguero S, Thakore S, et al. Role of nuclear progesterone receptor isoforms in uterine pathophysiology. Hum Reprod Update. 2015;21:155–173. DOI: 10.1093/humupd/dmu056 |
| [20] |
Patel B., Elguero S., Thakore S., et al. Role of nuclear progesterone receptor isoforms in uterine pathophysiology // Hum. Reprod. Update 2015. Vol. 21. Р. 155–173. DOI: 10.1093/humupd/dmu056 |
| [21] |
Tolibova GKh. Endometrial’naya disfunktsiya u zhenshchin s besplodiem patogeneticheskie determinanty i kliniko-morfologicheskaya diagnostika. [dissertation]. Saint Petersburg; 2018. (In Russ.) [cited 2023 Jul 3]. Available from: https://ott.ru/files/news/pg/2018_tolibova/dissertatsiia_tolibovoy.pdf |
| [22] |
Толибова Г.Х. Эндометриальная дисфункция у женщин с бесплодием патогенетические детерминанты и клинико-морфологическая диагностика: дис. … д-ра мед. наук. Санкт-Петербург, 2018 [дата обращения 03.07.2023]. Доступ по ссылке: https://ott.ru/files/news/pg/2018_tolibova/dissertatsiia_tolibovoy.pdf |
| [23] |
Tral TG, Tolibova GH. Morphological and immunohistochemical features of non-developing pregnancy of the first trimester. Journal of Obstetrics and Women’s Diseases. 2014;63(40):60–67. (In Russ.) DOI: 10.17816/JOWD63460-68 |
| [24] |
Траль Т.Г., Толибова Г.Х. Морфологические и иммуногистохимические особенности неразвивающейся беременности I триместра // Журнал акушерства и женских болезней. 2014. Т. 63. № 4. С. 60–67. DOI: 10.17816/JOWD63460-68 |
| [25] |
Milne SA, Henderson TA, Kelly RW, et al. Leukocyte populations and steroid receptor expression in human first-trimester decidua; regulation by antiprogestin and prostaglandin E analog. J Clin Endocrinol Metab. 2005;90(7):4315–4321. DOI: 10.1210/jc.2004-2338 |
| [26] |
Milne S.A., Henderson T.A., Kelly R.W., et al. Leukocyte populations and steroid receptor expression in human first-trimester decidua; regulation by antiprogestin and prostaglandin E analog // J. Clin. Endocrinol. Metab. 2005. Vol. 90. No. 7. Р. 4315–4321. DOI: 10.1210/jc.2004-2338 |
| [27] |
Early pregnancy. Ed. by V.E. Radzinsky, A.A. Orazmuradova. Moscow: Status Praesens; 2009. (In Russ.) |
| [28] |
Ранние сроки беременности / под ред. В.Е. Радзинского, А.А. Оразмурадова. Москва: Status Praesens, 2009. |
| [29] |
Okada H, Tsuzuki T, Murata H. Decidualization of the human endometrium. Reprod Med Biol. 2018;(17):220–227. DOI: 10.1002/rmb2.12088 |
| [30] |
Okada H., Tsuzuki T., Murata H. Decidualization of the human endometrium // Reprod. Med. Biol. 2018. Vol. 17. Р. 220–227. DOI: 10.1002/rmb2.12088 |
| [31] |
Mori M, Bogdan A, Balassa T, et al. The decidua-the maternal bed embracing the embryo-maintains the pregnancy. Semin Immunopathol. 2016;38(6):635–649. DOI: 10.1007/s00281-016-0574-0 |
| [32] |
Mori M., Bogdan A., Balassa T., et al. The decidua-the maternal bed embracing the embryo-maintains the pregnancy // Semin. Immunopathol. 2016. Vol. 38. No. 6. Р. 635–649. DOI: 10.1007/s00281-016-0574-0 |
| [33] |
Coulam C. What about superfertility, decidualization, and natural selection? J Assist Reprod Genet. 2016;(33):577–580. DOI: 10.1007/s10815-016-0658-8 |
| [34] |
Coulam C. What about superfertility, decidualization, and natural selection? // J. Assist. Reprod. Genet. 2016. Vol. 33. Р. 577–580. DOI: 10.1007/s10815-016-0658-8 |
| [35] |
Chen GT, Getsios S, MacCalman CD. Cadherin-11 is a hormonally regulated cellular marker of decidualization in human endometrial stromal cells. Mol Reprod Dev. 1999;52(2):158–165. DOI: 10.1002/(SICI)1098-2795(199902)52:2<158::AID-MRD6>3.0.CO;2-3 |
| [36] |
Chen G.T., Getsios S., MacCalman C.D. Cadherin-11 is a hormonally regulated cellular marker of decidualization in human endometrial stromal cells // Mol. Reprod. Dev. 1999. Vol. 52. No. 2. Р. 158–165. DOI: 10.1002/(SICI)1098-2795(199902)52:2<158::AID-MRD6>3.0.CO;2-3 |
| [37] |
Sternberg AK, Buck VU, Classen-Linke I, et al. How mechanical forces change the human endometrium during the menstrual cycle in preparation for embryo implantation. Cells. 2021;10(8). DOI: 10.3390/cells10082008 |
| [38] |
Sternberg A.K., Buck V.U., Classen-Linke I., et al. How mechanical forces change the human endometrium during the menstrual cycle in preparation for embryo implantation // Cells. 2021. Vol. 10. No. 8. DOI: 10.3390/cells10082008 |
| [39] |
Vinketova K, Mourdjeva M, Oreshkova T. Human decidual stromal cells as a component of the implantation niche and a modulator of maternal immunity. J Pregnancy. 2016;(2016). DOI: 10.1155/2016/8689436 |
| [40] |
Vinketova K. Mourdjeva M., Oreshkova T. Human decidual stromal cells as a component of the implantation niche and a modulator of maternal immunity // J. Pregnancy. 2016. Vol. 2016. DOI: 10.1155/2016/8689436 |
| [41] |
Ng SW. Norwitz GA, Pavlicev M, et al. Endometrial decidualization: the primary driver of pregnancy health. Int J Mol Sci. 2020;2(11). DOI: 10.3390/ijms21114092 |
| [42] |
Ng S.W., Norwitz G.A., Pavlicev M., et al. Endometrial decidualization: the primary driver of pregnancy health // Int. J. Mol. Sci. 2020. Vol. 2. No. 11. DOI: 10.3390/ijms21114092 |
| [43] |
Nakagawa K, Kwak-Kim J, Ota K, et al. Immunosuppression with tacrolimus improved reproductive outcome of women with repeated implantation failure and elevated peripheral blood TH1/TH2 cell ratios. Am J Reprod Immunol. 2015;(73):353–361. DOI: DOI.ORG/10.1111/aji.12338 |
| [44] |
Nakagawa K., Kwak-Kim J., Ota K., et al. Immunosuppression with tacrolimus improved reproductive outcome of women with repeated implantation failure and elevated peripheral blood TH1/TH2 cell ratios // Am. J. Reprod. Immunol. 2015. Vol. 73. Р. 353–361. DOI: DOI.ORG/10.1111/aji.12338 |
| [45] |
Ander SE, Diamond MS, Coyne CB. Immune responses at the maternal-fetal interface. Sci Immunol. 2019; 11;4(31). DOI: 10.1126/sciimmunol.aat6114 |
| [46] |
Ander S.E., Diamond M.S., Coyne C.B. Immune responses at the maternal-fetal interface // Sci. Immunol. 2019. Vol. 4. DOI: 10.1126/sciimmunol.aat6114 |
| [47] |
Salker MS. Nautiyal J, Steel JH, et al. Disordered IL-33/ST2 activation in decidualizing stromal cells prolongs uterine receptivity in women with recurrent pregnancy loss. PLoS One. 2012;7(12). DOI: 10.1371/journal.pone.0052252 |
| [48] |
Salker M.S., Nautiyal J., Steel J.H., et al. Disordered IL-33/ST2 activation in decidualizing stromal cells prolongs uterine receptivity in women with recurrent pregnancy loss // PLoS One. 2012. Vol. 7. No. 12. DOI: 10.1371/journal.pone.0052252 |
| [49] |
Santos ED, Moindjie H, Sérazin V, et al. Preimplantation factor modulates trophoblastic invasion through the decidualization of human endometrial stromal cells. Reprod Biol Endocrinol. 202;19(1). DOI: 10.1186/s12958-021-00774-5 |
| [50] |
Santos E.D., Moindjie H., Sérazin V., et al. Preimplantation factor modulates trophoblastic invasion throughout the decidualization of human endometrial stromal cells // Reprod. Biol. Endocrinol. 2021. Vol. 19. No. 1. DOI: 10.1186/s12958-021-00774-5 |
| [51] |
Balassa T, Berta G, Jakab L, et al. The effect of the Progesterone-Induced Blocking Factor (PIBF) on E-cadherin expression, cell motility and invasion of primary tumour cell lines. J Reprod Immunol. 2018;(125):8–15. DOI: 10.1016/j.jri.2017.10.047 |
| [52] |
Balassa T., Berta G., Jakab L., et al. The effect of the Progesterone-Induced Blocking Factor (PIBF) on E-cadherin expression, cell motility and invasion of primary tumour cell lines // J. Reprod. Immunol. 2018. Vol. 125. Р. 8–15. DOI: 10.1016/j.jri.2017.10.047 |
| [53] |
Mulac-Jericevic B, Sucurovic S, Gulic T, et al. The involvement of the progesterone receptor in PIBF and Gal-1 expression in the mouse endometrium. Am J Reprod Immunol. 2019;(81). DOI: 10.1111/aji.13104 |
| [54] |
Mulac-Jericevic B., Sucurovic S., Gulic T., et al. The involvement of the progesterone receptor in PIBF and Gal-1 expression in the mouse endometrium // Am. J. Reprod. Immunol. 2019. Vol. 81. DOI: 10.1111/aji.13104 |
| [55] |
Szekeres-Bartho J. The role of progesteronein feto-maternal immunological cross talk. Med Princ Pract. 2018;27(4):301–307. DOI: 10.1159/000491576 |
| [56] |
Szekeres-Bartho J. The role of progesteronein feto-maternal immunological cross talk // Med. Princ. Pract. 2018. Vol. 27. No. 4. Р. 301–307. DOI: 10.1159/000491576 |
| [57] |
Quinn KE, Ashley AK, Reynolds LP, et al. Activation of the CXCL12/CXCR4 signaling axis may drive vascularization of the ovine placenta. Domest Anim Endocrinol 2014;(47):11–21. DOI: 10.1016/j.domaniend.2013.12.004 |
| [58] |
Quinn K.E., Ashley A.K., Reynolds L.P., et al. Activation of the CXCL12/CXCR4 signaling axis may drive vascularization of the ovine placenta // Domest. Anim. Endocrinol 2014. Vol. 47. Р. 11–21. DOI: 10.1016/j.domaniend.2013.12.004 |
| [59] |
Lu J, Zhou WH, Ren L, et al. CXCR4, CXCR7 and CXCL12 are associated with trophoblastic cells apoptosis and linked to pathophysiology of severe preeclampsia. Exp Mol Pathol. 2016;100(1):184–191. DOI: 10.1016/j.yexmp.2015.12.013 |
| [60] |
Lu J., Zhou W.H., Ren L., et al. CXCR4, CXCR7 and CXCL12 are associated with trophoblastic cells apoptosis and linked to pathophysiology of severe preeclampsia // Exp. Mol. Pathol. 2016. Vol. 100. No. 1. Р. 184–191. DOI: 10.1016/j.yexmp.2015.12.013 |
| [61] |
Park DW, Lee HJ, Park CW, et al. Peripheral blood NK cells reflect changes in decidual NK cells in women with recurrent miscarriages. Am J Reprod Immunol. 2010;63(2):173–180. DOI: 10.1111/j.1600-0897.2009.00777.x |
| [62] |
Park D.W., Lee H.J., Park C.W., et al. Peripheral blood NK cells reflect changes in decidual NK cells in women with recurrent miscarriages // Am. J. Reprod. Immunol. 2010. Vol. 63. No. 2. Р. 173–180. DOI: 10.1111/j.1600-0897.2009.00777.x |
| [63] |
Windsperger K, Dekan S, Pils S, et al. Extravillous trophoblast invasion of venous as well as lymphatic vessels is altered in idiopathic, recurrent, spontaneous abortions. Hum Reprod (Oxford, England). 2017;32(6):1208–1217. DOI: 10.1093/humrep/dex058 |
| [64] |
Windsperger K., Dekan S., Pils S., et al. Extravillous trophoblast invasion of venous as well as lymphatic vessels is altered in idiopathic, recurrent, spontaneous abortions // Hum. Reprod. (Oxford, England). 2017. Vol. 32. No. 6. P. 1208–1217. DOI: 10.1093/humrep/dex058 |
| [65] |
Jiang S, Du L, Liu J, et al. Conditioned medium from primary cytotrophoblasts, primary placenta-derived mesenchymal stem cells, or sub-cultured placental tissue promoted HUVEC angiogenesis in vitro. Stem Cell Res Ther. 2021;12(1). DOI: 10.1186/s13287-021-02192-1 |
| [66] |
Jiang S., Du L., Liu J., et al. Conditioned medium from primary cytotrophoblasts, primary placenta-derived mesenchymal stem cells, or sub-cultured placental tissue promoted HUVEC angiogenesis in vitro // Stem. Cell Res. Ther. 2021. Vol. 12. No. 1. DOI: 10.1186/s13287-021-02192-1 |
| [67] |
Kuo CY, Shevchuk M, Opfermann J, et al. Trophoblast–endothelium signaling involves angiogenesis and apoptosis in a dynamic bioprinted placenta model. Biotechnol Bioeng. 2019;(16):181–192. DOI: 10.1002/bit.26850 |
| [68] |
Kuo C.Y., Shevchuk M., Opfermann J., et al. Trophoblast–endothelium signaling involves angiogenesis and apoptosis in a dynamic bioprinted placenta model // Biotechnol. Bioeng. 2019. Vol. 16. Р. 181–192. DOI: 10.1002/bit.26850 |
| [69] |
Moser G, Windsperger K, Pollheimer J, et al. Human trophoblast invasion: new and unexpected routes and functions. Histochem Cell Biol. 2018;150(4):361–370. DOI: 10.1007/s00418-018-1699-0 |
| [70] |
Moser G., Windsperger K., Pollheimer J., et al. Human trophoblast invasion: new and unexpected routes and functions // Histochem. Cell Biol. 2018. Vol. 150. No. 4. Р. 361–370. DOI: 10.1007/s00418-018-1699-0 |
| [71] |
Huang Q, Ding J, Gong M, et al. Effect of miR-30e regulating NK cell activities on immune tolerance of maternal-fetal interface by targeting PRF1. Biomed Pharmacother. 2019;(109):1478–1487. DOI: 10.1016/j.biopha.2018.09.172 |
| [72] |
Huang Q., Ding J., Gong M., et al. Effect of miR-30e regulating NK cell activities on immune tolerance of maternal-fetal interface by targeting PRF1 // Biomed. Pharmacother. 2019. Vol. 109. Р. 1478–1487. DOI: 10.1016/j.biopha.2018.09.172 |
| [73] |
Chen X, Liu Y, Cheung WC, et al. Increased expression of angiogenic cytokines in CD56+ uterine natural killer cells from women with recurrent miscarriage. Cytokine. 2018;(110):272–276. DOI: 10.1016/j.cyto.2018.01.013 |
| [74] |
Chen X., Liu Y., Cheung W.C., et al. Increased expression of angiogenic cytokines in CD56+ uterine natural killer cells from women with recurrent miscarriage // Cytokine. 2018. Vol. 110. Р. 272–276. DOI: 10.1016/j.cyto.2018.01.013 |
| [75] |
Moser G, Weiss G, Sundl M, et al. Extravillous trophoblasts invade more than uterine arteries: evidence for the invasion of uterine veins. Histochem Cell Biol. 2017;147(3):353–366. DOI: 10.1007/s00418-016-1509-5 |
| [76] |
Moser G., Weiss G., Sundl M., et al. Extravillous trophoblasts invade more than uterine arteries: evidence for the invasion of uterine veins // Histochem. Cell Biol. 2017. Vol. 147. No. 3. Р. 353–366. DOI: 10.1007/s00418-016-1509-5 |
| [77] |
Huhn O, Zhao X, Esposito L, et al. How do uterine natural killer and innate lymphoid cells contribute to successful pregnancy? Front Immunol. 2021;21(12). DOI: 10.3389/fimmu.2021.607669 |
| [78] |
Huhn O., Zhao X., Esposito L., et al. How do uterine natural killer and innate lymphoid cells contribute to successful pregnancy? // Front. Immunol. 2021. Vol. 21. No. 12. DOI: 10.3389/fimmu.2021.607669 |
| [79] |
Huppertz B, Weiss G, Moser G. Trophoblast invasion and oxygenation of the placenta: Measurements versus presumptions. J Reprod Immunol. 2014;(101–102):74–79. DOI: 10.1016/j.jri.2013.04.003 |
| [80] |
Huppertz B., Weiss G., Moser G. Trophoblast invasion and oxygenation of the placenta: Measurements versus presumptions // J. Reprod. Immunol. 2014. Vol. 101–102. Р. 74–79. DOI: 10.1016/j.jri.2013.04.003 |
| [81] |
Burton GJ, Jauniaux E. Placement in the human and higher primate. Adv Anat Embryol Cell Biol. 2021;234:223–254. DOI: 10.1007/978-3-030-77360-1_11 |
| [82] |
Burton G.J., Jauniaux E. Placentation in the human and higher primate // Adv. Anat. Embryol. Cell Biol. 2021. Vol. 234. Р. 223–254. DOI: 10.1007/978-3-030-77360-1_11 |
| [83] |
Hussain T, Murtaza G, Metwally E, et al. The role of oxidative stress and antioxidant balance in pregnancy. Mediators Inflamm. 2021;(2021). DOI: 10.1155/2021/9962860 |
| [84] |
Hussain T., Murtaza G., Metwally E., et al. The role of oxidative stress and antioxidant balance in pregnancy // Mediators Inflamm. 2021. Vol. 2021. DOI: 10.1155/2021/9962860 |
| [85] |
Sidney LE, Branch MJ, Dunphy SE, et al. Concise review: evidence for CD34 as a common marker for diverse progenitors. Stem Cells. 2014;32(6):1380–1389. DOI: 10.1002/stem.1661 |
| [86] |
Sidney L.E., Branch M.J., Dunphy S.E., et al. Concise review: evidence for CD34 as a common marker for diverse progenitors // Stem. Cells. 2014. Vol. 32. No. 6. Р. 1380–1309. DOI: 10.1002/stem.1661 |
| [87] |
Plaisier M, Dennert I, Rost E, et al. Decidual vascularization and the expression of angiogenic growth factors and proteases in first trimester spontaneous abortions. Hum Reprod. 2009;24(1):185–197. DOI: 10.1093/humrep/den296 |
| [88] |
Plaisier M., Dennert I., Rost E., et al. Decidual vascularization and the expression of angiogenic growth factors and proteases in first trimester spontaneous abortions // Hum. Reprod. 2009. Vol. 24. No. 1. Р. 185–97. DOI: 10.1093/humrep/den296 |
| [89] |
Matsumoto L, Hirota Y, Saito-Fujita T, et al. HIF2a in the uterine stroma permits embryo invasion and luminal epithelium detachment. J Clin Investig. 2018;(128):3186–3197. DOI: 10.1172/JCI98931 |
| [90] |
Matsumoto L., Hirota Y., Saito-Fujita T., et al. HIF2α in the uterine stroma permits embryo invasion and luminal epithelium detachment //J. Clin. Investig. 2018. Vol. 128. Р. 3186–3197. DOI: 10.1172/JCI98931 |
| [91] |
Babawale MO, Mobberley MA, Ryder TA, et al. Ultrastructure of the early human feto-maternal interface co-cultured in vitro. Hum Reprod. 2002;(17):1351–1357. DOI: 10.1093/humrep/17.5.1351 |
| [92] |
Babawale M.O., Mobberley M.A., Ryder T.A., et al. Ultrastructure of the early human feto-maternal interface co-cultured in vitro // Hum. Reprod. 2002. Vol. 17. Р. 1351–1357. DOI: 10.1093/humrep/17.5.1351 |
| [93] |
Riddell MR, Winkler-Lowen B, Guilbert LJ. The contribution of apoptosis-inducing factor (AIF) to villous trophoblast differentiation. Placenta. 2012;33(2):88–93. DOI: 10.1016/j.placenta.2011.11.008 |
| [94] |
Riddell M.R., Winkler-Lowen B., Guilbert L.J. The contribution of apoptosis-inducing factor (AIF) to villous trophoblast differentiation // Placenta. 2012. Vol. 33. No. 2. Р. 88–93. DOI: 10.1016/j.placenta.2011.11.008 |
| [95] |
Hempstock J, Jauniaux E, Greenwold N, et al. The contribution of placental oxidative stress to early pregnancy failure. Hum Pathol. 2003;(34). DOI: 10.1016/j.humpath.2003.08.006 |
| [96] |
Hempstock J., Jauniaux E., Greenwold N., et al. The contribution of placental oxidative stress to early pregnancy failure // Hum. Pathol. 2003. Vol. 34. DOI: 10.1016/j.humpath.2003.08.006 |
| [97] |
He H, Zhang H, Li Q, et al. Low oxygen concentrations improve yak oocyte maturation and enhance the developmental competence of preimplantation embryos. Theriogenology. 2020;(156):46–58. DOI: 10.1016/j.theriogenology.2020.06.022 |
| [98] |
He H., Zhang H., Li Q., et al. Low oxygen concentrations improve yak oocyte maturation and enhance the developmental competence of preimplantation embryos // Theriogenology. 2020. Vol. 156. Р. 46–58. DOI: 10.1016/j.theriogenology.2020.06.022 |
| [99] |
Ramos-Ibeas P, Heras S, Gómez-Redondo I, et al. Embryo responses to stress induced by assisted reproductive technologies. Mol Reprod. 2019;(86):1292–1306. DOI: 10.1002/mrd.23119 |
| [100] |
Ramos-Ibeas P., Heras S., Gómez-Redondo I., et al. Embryo responses to stress induced by assisted reproductive technologies // Mol. Reprod. 2019. Vol. 86. Р. 1292–1306. DOI: 10.1002/mrd.23119 |
| [101] |
Adamyan LV, Artymuk NV, Belokrinitskaya TE, et al. Vykidysh v rannie sroki beremennosti: diagnostika i taktika vedeniya. Klinicheskie rekomendatsii (protokol lecheniya). 2016. (In Russ.) [cited 2023 Jun 4.]. Available from: http://uklcrb.ru/doc/010419_1504.pdf |
| [102] |
Адамян Л.В., Артымук Н.В., Белокриницкая Т.Е., и др. Выкидыш в ранние сроки беременности: диагностика и тактика ведения. Клинические рекомендации (протокол лечения). 2016 [дата обращения 06.04.2023]. Доступ по ссылке: http://uklcrb.ru/doc/010419_1504.pdf |
| [103] |
Tral TG, Tolibova GKh. Morphological variants of decidual endometrial transformation in missed abortion after in vitro fertilization. Clinical and Experimental Morphology. 2021;10(S4):42–51. (In Russ.) DOI: 10.31088/CEM2021.10.S4.42-51 |
| [104] |
Траль Т.Г., Толибова Г.Х. Морфологические варианты гравидарной трансформации эндометрия при неразвивающейся беременности после экстракорпорального оплодотворения // Клиническая и экспериментальная морфология. 2021. Т. 10. № 4S. С. 40–49. DOI: 10.31088/CEM2021.10.S4.42-51 |
Eсо-Vector
/
| 〈 |
|
〉 |