Mechanisms of injury in the nervous system in fetuses with growth restriction

Igor P. Nikolayenkov , Dmitry V. Shakalis , Dmitry S. Sudakov

Journal of obstetrics and women's diseases ›› 2024, Vol. 73 ›› Issue (1) : 125 -136.

PDF
Journal of obstetrics and women's diseases ›› 2024, Vol. 73 ›› Issue (1) : 125 -136. DOI: 10.17816/JOWD501748
Reviews
review-article

Mechanisms of injury in the nervous system in fetuses with growth restriction

Author information +
History +
PDF

Abstract

This review article analyzes current literature on the mechanisms of damage to the nervous system in fetal growth restriction, which is a leading cause of perinatal morbidity and mortality in the economically developed countries. In some cases, this condition is associated with damage to the fetal nervous system, the symptoms of which can persist throughout life. Foundation of the effective pathogenetic therapy for intrauterine growth restriction during pregnancy would significantly reduce child mortality, morbidity and disability, and ease the financial burden on the healthcare system and social institutions.

Keywords

fetal growth restriction / neurogenesis / pregnancy / fetal brain injury

Cite this article

Download citation ▾
Igor P. Nikolayenkov, Dmitry V. Shakalis, Dmitry S. Sudakov. Mechanisms of injury in the nervous system in fetuses with growth restriction. Journal of obstetrics and women's diseases, 2024, 73(1): 125-136 DOI:10.17816/JOWD501748

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Miller SL, Huppi PS, Mallard C. The consequences of fetal growth restriction on brain structure and neurodevelopmental outcome. J Physiol. 2016;594(4):807–823. doi: 10.1113/JP271402

[2]

Miller S.L., Huppi P.S., Mallard C. The consequences of fetal growth restriction on brain structure and neurodevelopmental outcome // J Physiol. 2016. Vol. 594, N. 4. P. 807–823. doi: 10.1113/JP271402.

[3]

Audette MC, Kingdom JC. Screening for fetal growth restriction and placental insufficiency. Semin Fetal Neonatal Med. 2018;23(2):119–125. doi: 10.1016/j.siny.2017.11.004

[4]

Audette M.C., Kingdom J.C. Screening for fetal growth restriction and placental insufficiency // Semin Fetal Neonatal Med. 2018. Vol. 23, N. 2. P. 119–125. doi: 10.1016/j.siny.2017.11.004

[5]

Bruin C, Damhuis S, Gordijn S, et al. Evaluation and management of suspected fetal growth restriction. Obstet Gynecol Clin North Am. 2021;48(2):371–385. doi: 10.1016/j.ogc.2021.02.007

[6]

Bruin C., Damhuis S., Gordijn S., et al. Evaluation and management of suspected fetal growth restriction // Obstet Gynecol Clin North Am. 2021. Vol. 48, N. 2. P. 371–385. doi: 10.1016/j.ogc.2021.02.007

[7]

Ignatko IV, Bogomazova IM, Kardanova MA. Current views on the diagnosis and prognosis of fetal growth restriction (a literature review). Journal of Obstetrics and Women’s Diseases. 2023;72(3):65–76. EDN: JAVPCA doi: 10.17816/JOWD344442

[8]

Игнатко И.В., Богомазова И.М., Карданова М.А. Современные представления о диагностике и прогнозировании задержки роста плода // Журнал акушерства и женских болезней. 2023. Т. 72, № 3. С. 65–76. EDN: JAVPCA doi: 10.17816/JOWD344442

[9]

Russian Society of Obstetricians and Gynecologists. Insufficient fetal growth requiring maternal medical care (fetal growth restriction). Clinical recommendations. 2022. Available from: https://roag-portal.ru/recommendations_obstetrics (In Russ.)

[10]

ООО «Российское общество акушеров-гинекологов». Недостаточный рост плода, требующий предоставления медицинской помощи матери (задержка роста плода). Клинические рекомендации. 2022. Режим доступа: https://roag-portal.ru/recommendations_obstetrics. Дата обращения: 10.07.2023.

[11]

Morales-Roselló J, Khalil A, Morlando M, et al. Changes in fetal Doppler indices as a marker of failure to reach growth potential at term. Ultrasound Obstet Gynecol. 2014;43(3):303–310. doi: 10.1002/uog.13319

[12]

Morales-Roselló J., Khalil A., Morlando M. et al. Changes in fetal Doppler indices as a marker of failure to reach growth potential at term // Ultrasound Obstet Gynecol. 2014. Vol. 43, N. 3. P. 303–310. doi: 10.1002/uog.13319

[13]

Prior T, Paramasivam G, Bennett P, et al. Are fetuses that fail to achieve their growth potential at increased risk of intrapartum compromise? Ultrasound Obstet Gynecol. 2015;46(4):460–464. doi: 10.1002/uog.14758

[14]

Prior T., Paramasivam G., Bennett P., et al. Are fetuses that fail to achieve their growth potential at increased risk of intrapartum compromise? // Ultrasound Obstet Gynecol. 2015. Vol. 46, N. 4. P. 460–464. doi: 10.1002/uog.14758

[15]

Poon LC, Tan MY, Yerlikaya G, et al. Birth weight in live births and stillbirths. Ultrasound Obstet Gynecol. 2016;48(5):602–606. doi: 10.1002/uog.17287

[16]

Poon L.C., Tan M.Y., Yerlikaya G., et al. Birth weight in live births and stillbirths // Ultrasound Obstet Gynecol. 2016. Vol. 48, N. 5. P. 602–606. doi: 10.1002/uog.17287

[17]

Bligh LN, Flatley CJ, Kumar S. Reduced growth velocity at term is associated with adverse neonatal outcomes in non-small for gestational age infants. Eur J Obstet Gynecol Reprod Biol. 2019;240:125–129. doi: 10.1016/j.ejogrb.2019.06.026

[18]

Bligh L.N., Flatley C.J., Kumar S. Reduced growth velocity at term is associated with adverse neonatal outcomes in non-small for gestational age infants // Eur J Obstet Gynecol Reprod Biol. 2019. Vol. 240. P. 125–129. doi: 10.1016/j.ejogrb.2019.06.026

[19]

Gordijn SJ, Beune IM, Thilaganathan B, et al. Consensus definition of fetal growth restriction: a Delphi procedure. Ultrasound Obstet Gynecol. 2016;48(3):333–339. doi: 10.1002/uog.15884

[20]

Gordijn S.J., Beune I.M., Thilaganathan B., et al. Consensus definition of fetal growth restriction: a Delphi procedure // Ultrasound Obstet Gynecol. 2016. Vol. 48, N. 3. P. 333–339. doi: 10.1002/uog.15884

[21]

Lees CC, Stampalija T, Baschat A, et al. ISUOG Practice Guidelines: diagnosis and management of small-for-gestational-age fetus and fetal growth restriction. Ultrasound Obstet Gynecol. 2020;56(2):298–312. doi: 10.1002/uog.22134

[22]

Lees C.C., Stampalija T., Baschat A., et al. ISUOG Practice Guidelines: diagnosis and management of small-for-gestational-age fetus and fetal growth restriction // Ultrasound Obstet Gynecol. 2020. Vol. 56, N. 2. P. 298–312. doi: 10.1002/uog.22134

[23]

Salomon LJ, Alfirevic Z, Da Silva Costa F, et al. ISUOG Practice Guidelines: ultrasound assessment of fetal biometry and growth. Ultrasound Obstet Gynecol. 2019;53(6):715–723. doi: 10.1002/uog.20272

[24]

Salomon L.J., Alfirevic Z., Da Silva Costa F., et al. ISUOG Practice Guidelines: ultrasound assessment of fetal biometry and growth // Ultrasound Obstet Gynecol. 2019. Vol. 53, N. 6. P. 715–723. doi: 10.1002/uog.20272

[25]

Molina LCG, Odibo L, Zientara S, et al. Validation of Delphi procedure consensus criteria for defining fetal growth restriction. Ultrasound Obstet Gynecol. 2020;56(1):61–66. doi: 10.1002/uog.20854

[26]

Molina L.C.G., Odibo L., Zientara S., et al. Validation of Delphi procedure consensus criteria for defining fetal growth restriction // Ultrasound Obstet Gynecol. 2020. Vol. 56, N. 1. P. 61–66. doi: 10.1002/uog.20854

[27]

Jarvis S, Glinianaia SV, Torrioli MG, et al; Surveillance of Cerebral Palsy in Europe (SCPE) collaboration of European Cerebral Palsy Registers. Cerebral palsy and intrauterine growth in single births: European collaborative study. Lancet. 2003;362(9390):1106–1111. doi: 10.1016/S0140-6736(03)14466-2

[28]

Jarvis S., Glinianaia S.V., Torrioli M.G., et al.; Surveillance of cerebral palsy in europe (scpe) collaboration of european cerebral palsy registers. cerebral palsy and intrauterine growth in single births: european collaborative study // Lancet. 2003. Vol. 362. N. 9390. P. 1106–1111. doi: 10.1016/S0140-6736(03)14466-2

[29]

Blair EM, Nelson KB. Fetal growth restriction and risk of cerebral palsy in singletons born after at least 35 weeks’ gestation. Am J Obstet Gynecol. 2015;212(4):520.e1–520.e7. doi: 10.1016/j.ajog.2014.10.1103

[30]

Blair E.M., Nelson K.B. Fetal growth restriction and risk of cerebral palsy in singletons born after at least 35 weeks’ gestation // Am J Obstet Gynecol. 2015. Vol. 212, N. 4. P. 520.e1–520.e7. doi: 10.1016/j.ajog.2014.10.1103

[31]

Jacobsson B, Ahlin K, Francis A, et al. Cerebral palsy and restricted growth status at birth: population-based case-control study. BJOG. 2008;115(10):1250–1255. doi: 10.1111/j.1471-0528.2008.01827.x

[32]

Jacobsson B., Ahlin K., Francis A., et al. Cerebral palsy and restricted growth status at birth: population-based case-control study // BJOG. 2008. Vol. 115, N. 10. P. 1250–1255. doi: 10.1111/j.1471-0528.2008.01827.x

[33]

Guellec I, Lapillonne A, Marret S, et al; Étude Épidémiologique sur les Petits Âges Gestationnels (EPIPAGE; [Epidemiological Study on Small Gestational Ages]) Study Group. Effect of intra- and extrauterine growth on long-term neurologic outcomes of very preterm infants. J Pediatr. 2016;175:93.e1–99.e1. doi: 10.1016/j.jpeds.2016.05.027

[34]

Guellec I., Lapillonne A., Marret S., et al.; Étude Épidémiologique sur les Petits Âges Gestationnels (EPIPAGE; [Epidemiological Study on Small Gestational Ages]) Study Group. Effect of Intra- and Extrauterine Growth on Long-Term Neurologic Outcomes of Very Preterm Infants // J Pediatr. 2016. Vol. 175. P. 93–99.e1. doi: 10.1016/j.jpeds.2016.05.027

[35]

Cordero L, Franco A, Joy SD, et al. Monochorionic diamniotic infants without twin-to-twin transfusion syndrome. J Perinatol. 2005;25(12):753–758. doi: 10.1038/sj.jp.7211405

[36]

Cordero L., Franco A., Joy S.D., et al. Monochorionic diamniotic infants without twin-to-twin transfusion syndrome // J Perinatol. 2005. Vol. 25, N. 12. P. 753–758. doi: 10.1038/sj.jp.7211405

[37]

Edmonds CJ, Isaacs EB, Cole TJ, et al. The effect of intrauterine growth on verbal IQ scores in childhood: a study of monozygotic twins. Pediatrics. 2010;126(5):e1095–e1101. doi: 10.1542/peds.2008-3684

[38]

Edmonds C.J., Isaacs E.B., Cole T.J., et al. The effect of intrauterine growth on verbal IQ scores in childhood: a study of monozygotic twins // Pediatrics. 2010. Vol. 126, N. 5. P. e1095–e1101. doi: 10.1542/peds.2008-3684

[39]

Baschat AA. Neurodevelopment after fetal growth restriction. Fetal Diagn Ther. 2014;36(2):136–142. doi: 10.1159/000353631

[40]

Baschat A.A. Neurodevelopment after fetal growth restriction // Fetal Diagn Ther. 2014. Vol. 36, N. 2. P. 136–142. doi: 10.1159/000353631

[41]

Olivier P, Baud O, Evrard P, et al. Prenatal ischemia and white matter damage in rats. J Neuropathol Exp Neurol. 2005;64(11):998–1006. doi: 10.1097/01.jnen.0000187052.81889.57

[42]

Olivier P., Baud O., Evrard P., et al. Prenatal ischemia and white matter damage in rats // J Neuropathol Exp Neurol. 2005. Vol. 64, N. 11. P. 998–1006. doi: 10.1097/01.jnen.0000187052.81889.57

[43]

Olivier P, Baud O, Bouslama M, et al. Moderate growth restriction: deleterious and protective effects on white matter damage. Neurobiol Dis. 200726(1):253–263. doi: 10.1016/j.nbd.2007.01.001

[44]

Olivier P., Baud O., Bouslama M., et al. Moderate growth restriction: deleterious and protective effects on white matter damage // Neurobiol Dis. 2007. Vol. 26, N. 1. P. 253–263. doi: 10.1016/j.nbd.2007.01.001

[45]

Dubois J, Benders M, Borradori-Tolsa C, et al. Primary cortical folding in the human newborn: an early marker of later functional development. Brain. 2008;131(Pt 8):2028–2041. doi: 10.1093/brain/awn137

[46]

Dubois J., Benders M., Borradori-Tolsa C., et al. Primary cortical folding in the human newborn: an early marker of later functional development // Brain. 2008. Vol. 131, Pt. 8. P. 2028–2041. doi: 10.1093/brain/awn137

[47]

Samuelsen GB, Pakkenberg B, Bogdanović N, et al. Severe cell reduction in the future brain cortex in human growth-restricted fetuses and infants. Am J Obstet Gynecol. 2007;197(1):56.e1–56.e.7. doi: 10.1016/j.ajog.2007.02.011

[48]

Samuelsen G.B., Pakkenberg B., Bogdanović N. et al. Severe cell reduction in the future brain cortex in human growth-restricted fetuses and infants // Am J Obstet Gynecol. 2007. Vol. 197, N. 1. P. 56.e1–56.e7. doi: 10.1016/j.ajog.2007.02.011

[49]

Fung C, Ke X, Brown AS, et al. Uteroplacental insufficiency alters rat hippocampal cellular phenotype in conjunction with ErbB receptor expression. Pediatr Res. 2012;72(1):2–9. doi: 10.1038/pr.2012.32

[50]

Fung C., Ke X., Brown A.S. et al. Uteroplacental insufficiency alters rat hippocampal cellular phenotype in conjunction with ErbB receptor expression // Pediatr Res. 2012. Vol. 72, N. 1. P. 2–9. doi: 10.1038/pr.2012.32

[51]

Isaacs EB, Lucas A, Chong WK, et al. Hippocampal volume and everyday memory in children of very low birth weight. Pediatr Res. 2000;47(6):713–720. doi: 10.1203/00006450-200006000-00006

[52]

Isaacs E.B., Lucas A., Chong W.K. Hippocampal volume and everyday memory in children of very low birth weight // Pediatr Res. 2000. Vol. 47, N. 6. P. 713–720. doi: 10.1203/00006450-200006000-00006

[53]

Weng C, Huang L, Feng H, et al. Gestational chronic intermittent hypoxia induces hypertension, proteinuria, and fetal growth restriction in mice. Sleep Breath. 2022;26(4):1661–1669. doi: 10.1007/s11325-021-02529-3

[54]

Weng C., Huang L., Feng H., et al. Gestational chronic intermittent hypoxia induces hypertension, proteinuria, and fetal growth restriction in mice // Sleep Breath. 2022. Vol. 26, N. 4. P. 1661–1669. doi: 10.1007/s11325-021-02529-3

[55]

Poudel R, McMillen IC, Dunn SL, et al. Impact of chronic hypoxemia on blood flow to the brain, heart, and adrenal gland in the late-gestation IUGR sheep fetus. Am J Physiol Regul Integr Comp Physiol. 2015;308(3):R151–R162. doi: 10.1152/ajpregu.00036.2014

[56]

Poudel R., McMillen I.C., Dunn S.L., et al. Impact of chronic hypoxemia on blood flow to the brain, heart, and adrenal gland in the late-gestation IUGR sheep fetus // Am J Physiol Regul Integr Comp Physiol. 2015. Vol. 308, N. 3. P. R151–R162. doi: 10.1152/ajpregu.00036.2014

[57]

Flood K, Unterscheider J, Daly S, et al. The role of brain sparing in the prediction of adverse outcomes in intrauterine growth restriction: results of the multicenter PORTO Study. Am J Obstet Gynecol. 2014;211(3):288.e1–288.e5. doi: 10.1016/j.ajog.2014.05.008

[58]

Flood K., Unterscheider J., Daly S., et al. The role of brain sparing in the prediction of adverse outcomes in intrauterine growth restriction: results of the multicenter PORTO Study // Am J Obstet Gynecol. 2014. Vol. 211, N. 3. P. 288.e1–288.e5. doi: 10.1016/j.ajog.2014.05.008

[59]

Mone F, McConnell B, Thompson A, et al. Fetal umbilical artery Doppler pulsatility index and childhood neurocognitive outcome at 12 years. BMJ Open. 2016;6(6). doi: 10.1136/bmjopen-2015-008916

[60]

Mone F., McConnell B., Thompson A., et al. Fetal umbilical artery Doppler pulsatility index and childhood neurocognitive outcome at 12 years // BMJ Open. 2016. Vol. 6, N. 6. doi: 10.1136/bmjopen-2015-008916

[61]

Hernandez-Andrade E, Figueroa-Diesel H, Jansson T, et al. Changes in regional fetal cerebral blood flow perfusion in relation to hemodynamic deterioration in severely growth-restricted fetuses. Ultrasound Obstet Gynecol. 2008;32(1):71–76. doi: 10.1002/uog.5377

[62]

Hernandez-Andrade E., Figueroa-Diesel H., Jansson T., et al. Changes in regional fetal cerebral blood flow perfusion in relation to hemodynamic deterioration in severely growth-restricted fetuses // Ultrasound Obstet Gynecol. 2008. Vol. 32, N. 1. P. 71–76. doi: 10.1002/uog.5377

[63]

Rees S, Harding R, Walker D. The biological basis of injury and neuroprotection in the fetal and neonatal brain. Int J Dev Neurosci. 2011;29(6):551–563. doi: 10.1016/j.ijdevneu.2011.04.004

[64]

Rees S., Harding R., Walker D. The biological basis of injury and neuroprotection in the fetal and neonatal brain // Int J Dev Neurosci. 2011. Vol. 29, N. 6. P. 551–563. doi: 10.1016/j.ijdevneu.2011.04.004

[65]

Favrais G, van de Looij Y, Fleiss B, et al. Systemic inflammation disrupts the developmental program of white matter. Ann Neurol. 2011;70(4):550–565. doi: 10.1002/ana.22489

[66]

Favrais G., van de Looij Y., Fleiss B., et al. Systemic inflammation disrupts the developmental program of white matter // Ann Neurol. 2011. Vol. 70, N. 4. P. 550–565. doi: 10.1002/ana.22489

[67]

Rideau Batista Novais A, Pham H, Van de Looij Y, et al. Transcriptomic regulations in oligodendroglial and microglial cells related to brain damage following fetal growth restriction. Glia. 2016;64(12):2306–2320. doi: 10.1002/glia.23079

[68]

Rideau Batista Novais A., Pham H., Van de Looij Y., et al. Transcriptomic regulations in oligodendroglial and microglial cells related to brain damage following fetal growth restriction // Glia. 2016. Vol. 64, N. 12. P. 2306–2320. doi: 10.1002/glia.23079

[69]

Campbell LR, Pang Y, Ojeda NB, et al. Intracerebral lipopolysaccharide induces neuroinflammatory change and augmented brain injury in growth-restricted neonatal rats. Pediatr Res. 2012;71(6):645–652. doi: 10.1038/pr.2012.26

[70]

Campbell L.R., Pang Y., Ojeda N.B., et al. Intracerebral lipopolysaccharide induces neuroinflammatory change and augmented brain injury in growth-restricted neonatal rats // Pediatr Res. 2012. Vol. 71, N. 6. P. 645–652. doi: 10.1038/pr.2012.26

[71]

Fleiss B, Gressens P. Tertiary mechanisms of brain damage: a new hope for treatment of cerebral palsy? Lancet Neurol. 2012;11(6):556–566. doi: 10.1016/S1474-4422(12)70058-3

[72]

Fleiss B., Gressens P. Tertiary mechanisms of brain damage: a new hope for treatment of cerebral palsy? // Lancet Neurol. 2012. Vol. 11, N. 6. P. 556–566. doi: 10.1016/S1474-4422(12)70058-3

[73]

Muniyappa R, Sowers JR. Role of insulin resistance in endothelial dysfunction. Rev Endocr Metab Disord. 2013;14(1):5–12. doi: 10.1007/s11154-012-9229-1

[74]

Muniyappa R., Sowers J.R. Role of insulin resistance in endothelial dysfunction // Rev Endocr Metab Disord. 2013. Vol. 14, N 1. P. 5–12. doi: 10.1007/s11154-012-9229-1

[75]

Kuzminykh TU, Borisova VYu, Nikolayenkov IP, et al. Role of biologically active molecules in uterine contractile activity. Journal of Obstetrics and Women’s Diseases. 2019;68(1):21–27. EDN: ZABXXV doi: 10.17816/JOWD68121-27

[76]

Кузьминых Т.У., Борисова В.Ю., Николаенков И.П., и др. Роль биологически активных молекул в развитии сократительной деятельности матки // Журнал акушерства и женских болезней. 2019. Т. 68, № 1. С. 21–27. EDN: ZABXXV doi: 10.17816/JOWD68121-27

[77]

Misharina EV, Borodina VL, Glavnova OB, et al. Insulin resistance and hyperinsulinemia. Journal of Obstetrics and Women’s Diseases. 2016;65(1):75–86. EDN: VVRVNL doi: 10.17816/JOWD65175-86

[78]

Мишарина Е.В., Бородина В.Л., Главнова О.Б., и др. Инсулинорезистентность и гиперандрогенемия // Журнал акушерства и женских болезней. 2016. Т. 65, № 1. C. 75–86. EDN: VVRVNL doi: 10.17816/JOWD65175-86

[79]

Nestler JE. Regulation of the aromatase activity of human placental cytotrophoblasts by insulin, insulin-like growth factor-I, and -II. J Steroid Biochem Mol Biol. 1993;44(4–6):449–457. doi: 10.1016/0960-0760(93)90249-v

[80]

Nestler J.E. Regulation of the aromatase activity of human placental cytotrophoblasts by insulin, insulin-like growth factor-I, and -II // J Steroid Biochem Mol Biol. 1993. Vol. 44, N. 4–6. P. 449–457. doi: 10.1016/0960-0760(93)90249-v

[81]

Jobe SO, Tyler CT, Magness RR. Aberrant synthesis, metabolism, and plasma accumulation of circulating estrogens and estrogen metabolites in preeclampsia implications for vascular dysfunction. Hypertension. 2013;61(2):480–487. doi: 10.1161/HYPERTENSIONAHA.111.201624

[82]

Jobe S.O., Tyler C.T., Magness R.R. Aberrant synthesis, metabolism, and plasma accumulation of circulating estrogens and estrogen metabolites in preeclampsia implications for vascular dysfunction // Hypertension. 2013. Vol. 61, N. 2. P. 480–487. doi: 10.1161/HYPERTENSIONAHA.111.201624

[83]

Berkane N, Liere P, Oudinet JP, et al. From pregnancy to preeclampsia: a key role for estrogens. Endocr Rev. 2017;38(2):123–144. doi: 10.1210/er.2016-1065

[84]

Berkane N., Liere P., Oudinet J.P., et al. From pregnancy to preeclampsia: a key role for estrogens // Endocr Rev. 2017. Vol. 38, N. 2. P. 123–144. doi: 10.1210/er.2016-1065

[85]

Berkane N, Liere P, Lefevre G, et al. Abnormal steroidogenesis and aromatase activity in preeclampsia. Placenta. 2018;69:40–49. doi: 10.1016/j.placenta.2018.07.004

[86]

Berkane N., Liere P., Lefevre G., et al. Abnormal steroidogenesis and aromatase activity in preeclampsia // Placenta. 2018. Vol. 69. P. 40–49. doi: 10.1016/j.placenta.2018.07.004

[87]

Boucher J, Charalambous M, Zarse K, et al. Insulin and insulin-like growth factor 1 receptors are required for normal expression of imprinted genes. Proc Natl Acad Sci USA. 2014;111(40):14512–14517. doi: 10.1073/pnas.1415475111

[88]

Boucher J., Charalambous M., Zarse K., et al. Insulin and insulin-like growth factor 1 receptors are required for normal expression of imprinted genes // Proc Natl Acad Sci USA. 2014. Vol. 111, N. 40. P. 14512–14517. doi: 10.1073/pnas.1415475111

[89]

Leger J, Noel M, Limal JM, et al. Growth factors and intrauterine growth retardation. II. Serum growth hormone, insulin-like growth factor (IGF) I, and IGF-binding protein 3 levels in children with intrauterine growth retardation compared with normal control subjects: prospective study from birth to two years of age. Study Group of IUGR. Pediatr Res. 1996;40(1):101–107. doi: 10.1203/00006450-199607000-00018

[90]

Leger J., Noel M., Limal J.M., et al. Growth factors and intrauterine growth retardation. II. Serum growth hormone, insulin-like growth factor (IGF) I, and IGF-binding protein 3 levels in children with intrauterine growth retardation compared with normal control subjects: prospective study from birth to two years of age. Study Group of IUGR // Pediatr Res. 1996. Vol. 40, N. 1. P. 101–107. doi: 10.1203/00006450-199607000-00018

[91]

Godfrey KM, Hales CN, Osmond C, et al. Relation of cord plasma concentrations of proinsulin, 32-33 split proinsulin, insulin and C-peptide to placental weight and the baby’s size and proportions at birth. Early Hum Dev. 1996;46(1–2):129–140. doi: 10.1016/0378-3782(96)01752-5

[92]

Godfrey K.M., Hales C.N., Osmond C., et al. Relation of cord plasma concentrations of proinsulin, 32–33 split proinsulin, insulin and C-peptide to placental weight and the baby’s size and proportions at birth // Early Hum Dev. 1996. Vol. 46, N. 1–2. P. 129–140. doi: 10.1016/0378-3782(96)01752-5

[93]

Gicquel C, Le Bouc Y. Hormonal regulation of fetal growth. Horm Res. 2006;65(Suppl 3):28–33. doi: 10.1159/000091503

[94]

Gicquel C., Le Bouc Y. Hormonal regulation of fetal growth // Horm Res. 2006. Vol. 65, N. 3 (suppl.). P. 28–33. doi: 10.1159/000091503

[95]

Dyer AH, Vahdatpour C, Sanfeliu A, et al. The role of Insulin-like growth factor 1 (IGF-1) in brain development, maturation and neuroplasticity. Neuroscience. 2016;325:89–99. doi: 10.1016/j.neuroscience.2016.03.056

[96]

Dyer A.H., Vahdatpour C., Sanfeliu A., et al. The role of Insulin-Like Growth Factor 1 (IGF-1) in brain development, maturation and neuroplasticity // Neuroscience. 2016. Vol. 325. P. 89–99. doi: 10.1016/j.neuroscience.2016.03.056

[97]

Park SE, Lawson M, Dantzer R, et al. Insulin-like growth factor-I peptides act centrally to decrease depression-like behavior of mice treated intraperitoneally with lipopolysaccharide. J Neuroinflammation. 2011;8:179. doi: 10.1186/1742-2094-8-179

[98]

Park S.E., Lawson M., Dantzer R., et al. Insulin-like growth factor-I peptides act centrally to decrease depression-like behavior of mice treated intraperitoneally with lipopolysaccharide // J Neuroinflammation. 2011. Vol. 8. P. 179. doi: 10.1186/1742-2094-8-179

[99]

Pang Y, Zheng B, Campbell LR, et al. IGF-1 can either protect against or increase LPS-induced damage in the developing rat brain. Pediatr Res. 2010;67(6):579–584. doi: 10.1203/PDR.0b013e3181dc240f

[100]

Pang Y., Zheng B., Campbell L.R., et al. IGF-1 can either protect against or increase LPS-induced damage in the developing rat brain // Pediatr Res. 2010. Vol. 67, N. 6. P. 579–584. doi: 10.1203/PDR.0b013e3181dc240f

[101]

Cai Z, Fan LW, Lin S, et al. Intranasal administration of insulin-like growth factor-1 protects against lipopolysaccharide-induced injury in the developing rat brain. Neuroscience. 2011;194:195–207. doi: 10.1016/j.neuroscience.2011.08.003

[102]

Cai Z., Fan L.W., Lin S., et al. Intranasal administration of insulin-like growth factor-1 protects against lipopolysaccharide-induced injury in the developing rat brain // Neuroscience. 2011. Vol. 194. P. 195–207. doi: 10.1016/j.neuroscience.2011.08.003

[103]

Lin S, Fan LW, Rhodes PG, et al. Intranasal administration of IGF-1 attenuates hypoxic-ischemic brain injury in neonatal rats. Exp Neurol. 2009;217(2):361–370. doi: 10.1016/j.expneurol.2009.03.021

[104]

Lin S., Fan L.W., Rhodes P.G., et al. Intranasal administration of IGF-1 attenuates hypoxic-ischemic brain injury in neonatal rats // Exp Neurol. 2009. Vol. 217, N. 2. P. 361–370. doi: 10.1016/j.expneurol.2009.03.021

[105]

Wood TL, Loladze V, Altieri S, et al. Delayed IGF-1 administration rescues oligodendrocyte progenitors from glutamate-induced cell death and hypoxic-ischemic brain damage. Dev Neurosci. 2007;29(4–5):302–310. doi: 10.1159/000105471

[106]

Wood T.L., Loladze V., Altieri S., et al. Delayed IGF-1 administration rescues oligodendrocyte progenitors from glutamate-induced cell death and hypoxic-ischemic brain damage // Dev Neurosci. 2007. Vol. 29, N. 4–5. P. 302–310. doi: 10.1159/000105471

[107]

Lopes C, Ribeiro M, Duarte AI, et al. IGF-1 intranasal administration rescues Huntington’s disease phenotypes in YAC128 mice. Mol Neurobiol. 2014;49(3):1126–1142. doi: 10.1007/s12035-013-8585-5

[108]

Lopes C., Ribeiro M., Duarte A.I., et al. IGF-1 intranasal administration rescues Huntington’s disease phenotypes in YAC128 mice // Mol Neurobiol. 2014. Vol. 49, N. 3. P. 1126–1142. doi: 10.1007/s12035-013-8585-5

[109]

Murphy VE, Smith R, Giles WB, et al. Endocrine regulation of human fetal growth: the role of the mother, placenta, and fetus. Endocr Rev. 2006;27(2):141–169. doi: 10.1210/er.2005-0011

[110]

Murphy V.E., Smith R., Giles W.B., et al. Endocrine regulation of human fetal growth: the role of the mother, placenta, and fetus // Endocr Rev. 2006. Vol. 27, N. 2. P. 141–169. doi: 10.1210/er.2005-0011

[111]

Gurpide E, Marks C, de Ziegler D, et al. Asymmetric release of estrone and estradiol derived from labeled precursors in perfused human placentas. Am J Obstet Gynecol. 1982;144(5):551–555. doi: 10.1016/0002-9378(82)90226-5

[112]

Gurpide E., Marks C., de Ziegler D., et al. Asymmetric release of estrone and estradiol derived from labeled precursors in perfused human placentas // Am J Obstet Gynecol. 1982. Vol. 144, N. 5. P. 551–555. doi: 10.1016/0002-9378(82)90226-5

[113]

Wu L, Einstein M, Geissler WM, et al. Expression cloning and characterization of human 17 beta-hydroxysteroid dehydrogenase type 2, a microsomal enzyme possessing 20 alpha-hydroxysteroid dehydrogenase activity. J Biol Chem. 1993;268(17):12964–12969. doi: 10.1016/s0021-9258(18)31480-7

[114]

Wu L., Einstein M., Geissler W.M., et al. Expression cloning and characterization of human 17 beta-hydroxysteroid dehydrogenase type 2, a microsomal enzyme possessing 20 alpha-hydroxysteroid dehydrogenase activity // J Biol Chem. 1993. Vol. 268, N. 17. P. 12964–12969. doi: 10.1016/s0021-9258(18)31480-7

[115]

Miranda A, Sousa N. Maternal hormonal milieu influence on fetal brain development. Brain Behav. 2018;8(2). doi: 10.1002/brb3.920

[116]

Miranda A., Sousa N. Maternal hormonal milieu influence on fetal brain development // Brain Behav. 2018. Vol. 8, N. 2. doi: 10.1002/brb3.920

[117]

Xiao Q, Luo Y, Lv F, et al. Protective effects of 17β-estradiol on hippocampal myelinated fibers in ovariectomized middle-aged rats. Neuroscience. 2018;385:143–153. doi: 10.1016/j.neuroscience.2018.06.006

[118]

Xiao Q., Luo Y., Lv F., et al. Protective Effects of 17β-estradiol on hippocampal myelinated fibers in ovariectomized middle-aged rats // Neuroscience. 2018. Vol. 385. P. 143–153. doi: 10.1016/j.neuroscience.2018.06.006

[119]

Cambiasso MJ, Colombo JA, Carrer HF. Differential effect of oestradiol and astroglia-conditioned media on the growth of hypothalamic neurons from male and female rat brains. Eur J Neurosci. 2000;12(7):2291–2298. doi: 10.1046/j.1460-9568.2000.00120.x

[120]

Cambiasso M.J., Colombo J.A., Carrer H.F. Differential effect of oestradiol and astroglia-conditioned media on the growth of hypothalamic neurons from male and female rat brains // Eur J Neurosci. 2000. Vol. 12, N. 7. P. 2291–2298. doi: 10.1046/j.1460-9568.2000.00120.x

[121]

Pansiot J, Mairesse J, Baud O. Protecting the developing brain by 17β-estradiol. Oncotarget. 2017;8(6):9011–9012. doi: 10.18632/oncotarget.14819

[122]

Pansiot J., Mairesse J., Baud O. Protecting the developing brain by 17β-estradiol // Oncotarget. 2017. Vol. 8, N. 6. P. 9011–9012. doi: 10.18632/oncotarget.14819

[123]

McCarthy MM. The two faces of estradiol: effects on the developing brain. Neuroscientist. 2009;15(6):599–610. doi: 10.1177/1073858409340924

[124]

McCarthy M.M. The two faces of estradiol: effects on the developing brain // Neuroscientist. 2009. Vol. 15, N. 6. P. 599–610. doi: 10.1177/1073858409340924

[125]

Schumacher M, Hussain R, Gago N, et al. Progesterone synthesis in the nervous system: implications for myelination and myelin repair. Front Neurosci. 2012;6:10. doi: 10.3389/fnins.2012.00010

[126]

Schumacher M., Hussain R., Gago N., et al. Progesterone synthesis in the nervous system: implications for myelination and myelin repair // Front Neurosci. 2012. Vol. 6. P. 10. doi: 10.3389/fnins.2012.00010

[127]

Tsutsui K, Ukena K. Neurosteroids in the cerebellar Purkinje neuron and their actions (review). Int J Mol Med. 1999;4(1):49–56. doi: 10.3892/ijmm.4.1.49

[128]

Tsutsui K., Ukena K. Neurosteroids in the cerebellar Purkinje neuron and their actions (review) // Int J Mol Med. 1999. Vol. 4, N. 1. P. 49–56. doi: 10.3892/ijmm.4.1.49

[129]

Luoma JI, Kelley BG, Mermelstein PG. Progesterone inhibition of voltage-gated calcium channels is a potential neuroprotective mechanism against excitotoxicity. Steroids. 2011;76(9):845–855. doi: 10.1016/j.steroids.2011.02.013

[130]

Luoma J.I., Kelley B.G., Mermelstein P.G. Progesterone inhibition of voltage-gated calcium channels is a potential neuroprotective mechanism against excitotoxicity // Steroids. 2011. Vol. 76, N. 9. P. 845–855. doi: 10.1016/j.steroids.2011.02.013

[131]

Pluchino N, Russo M, Genazzani AR. The fetal brain: role of progesterone and allopregnanolone. Horm Mol Biol Clin Investig. 2016;27(1):29–34. doi: 10.1515/hmbci-2016-0020

[132]

Pluchino N., Russo M., Genazzani A.R. The fetal brain: role of progesterone and allopregnanolone // Horm Mol Biol Clin Investig. 2016. Vol. 27, N. 1. P. 29–34. doi: 10.1515/hmbci-2016-0020

[133]

Nguyen PN, Billiards SS, Walker DW, et al. Changes in 5alpha-pregnane steroids and neurosteroidogenic enzyme expression in the perinatal sheep. Pediatr Res. 2003;53(6):956–964. doi: 10.1203/01.PDR.0000064905.64688.10

[134]

Nguyen P.N., Billiards S.S., Walker D.W., et al. Changes in 5alpha-pregnane steroids and neurosteroidogenic enzyme expression in the perinatal sheep // Pediatr Res. 2003. Vol. 53, N. 6. P. 956–964. doi: 10.1203/01.PDR.0000064905.64688.10

[135]

Brunton PJ, Russell JA, Hirst JJ. Allopregnanolone in the brain: protecting pregnancy and birth outcomes. Prog Neurobiol. 2014;113:106–136. doi: 10.1016/j.pneurobio.2013.08.005

[136]

Brunton P.J., Russell J.A., Hirst J.J. Allopregnanolone in the brain: protecting pregnancy and birth outcomes // Prog Neurobiol. 2014. Vol. 113. P. 106–136. doi: 10.1016/j.pneurobio.2013.08.005.

[137]

Palliser HK, Kelleher MA, Tolcos M, et al. Effect of postnatal progesterone therapy following preterm birth on neurosteroid concentrations and cerebellar myelination in guinea pigs. J Dev Orig Health Dis. 2015;6(4):350–361. doi: 10.1017/S2040174415001075

[138]

Palliser H.K., Kelleher M.A., Tolcos M., et al. Effect of postnatal progesterone therapy following preterm birth on neurosteroid concentrations and cerebellar myelination in guinea pigs // J Dev Orig Health Dis. 2015. Vol. 6, N. 4. P. 350–361. doi: 10.1017/S2040174415001075

[139]

Xiao G, Wei J, Yan W, et al. Improved outcomes from the administration of progesterone for patients with acute severe traumatic brain injury: a randomized controlled trial. Crit Care. 2008;12(2):R61. doi: 10.1186/cc6887

[140]

Xiao G., Wei J., Yan W., et al. Improved outcomes from the administration of progesterone for patients with acute severe traumatic brain injury: a randomized controlled trial // Crit Care. 2008. Vol. 12, N. 2. P. R61. doi: 10.1186/cc6887

[141]

Noorlander CW, De Graan PN, Middeldorp J, et al. Ontogeny of hippocampal corticosteroid receptors: effects of antenatal glucocorticoids in human and mouse. J Comp Neurol. 2006;499(6):924–932. doi: 10.1002/cne.21162

[142]

Noorlander C.W., De Graan P.N., Middeldorp J., et al. Ontogeny of hippocampal corticosteroid receptors: effects of antenatal glucocorticoids in human and mouse // J Comp Neurol. 2006. Vol. 499, N. 6. P. 924–932. doi: 10.1002/cne.21162

[143]

Anacker C, Cattaneo A, Luoni A, et al. Glucocorticoid-related molecular signaling pathways regulating hippocampal neurogenesis. Neuropsychopharmacology. 2013;38(5):872–883. doi: 10.1038/npp.2012.253

[144]

Anacker C., Cattaneo A., Luoni A., et al. Glucocorticoid-related molecular signaling pathways regulating hippocampal neurogenesis // Neuropsychopharmacology. 2013. Vol. 38, N. 5. P. 872–883. doi: 10.1038/npp.2012.253

[145]

Economides DL, Nicolaides KH, Linton EA, et al. Plasma cortisol and adrenocorticotropin in appropriate and small for gestational age fetuses. Fetal Ther. 1988;3(3):158–164. doi: 10.1159/000263348

[146]

Economides D.L., Nicolaides K.H., Linton E.A., et al. Plasma cortisol and adrenocorticotropin in appropriate and small for gestational age fetuses // Fetal Ther. 1988. Vol. 3, N. 3. P. 158–164. doi: 10.1159/000263348

[147]

Filiberto AC, Maccani MA, Koestler D, et al. Birthweight is associated with DNA promoter methylation of the glucocorticoid receptor in human placenta. Epigenetics. 2011;6(5):566–572. doi: 10.4161/epi.6.5.15236

[148]

Filiberto A.C., Maccani M.A., Koestler D., et al. Birthweight is associated with DNA promoter methylation of the glucocorticoid receptor in human placenta // Epigenetics. 2011. Vol. 6, N. 5. P. 566–572. doi: 10.4161/epi.6.5.15236

[149]

Ke X, Schober ME, McKnight RA, et al. Intrauterine growth retardation affects expression and epigenetic characteristics of the rat hippocampal glucocorticoid receptor gene. Physiol Genomics. 2010;42(2):177–189. doi: 10.1152/physiolgenomics.00201.2009

[150]

Ke X., Schober M.E., McKnight R.A., et al. Intrauterine growth retardation affects expression and epigenetic characteristics of the rat hippocampal glucocorticoid receptor gene // Physiol Genomics. 2010. Vol. 42, N. 2. P. 177–189. doi: 10.1152/physiolgenomics.00201.2009

[151]

Gómez-González B, Escobar A. Prenatal stress alters microglial development and distribution in postnatal rat brain. Acta Neuropathol. 2010;119(3):303–315. doi: 10.1007/s00401-009-0590-4

[152]

Gómez-González B., Escobar A. Prenatal stress alters microglial development and distribution in postnatal rat brain // Acta Neuropathol. 2010. Vol. 119, N. 3. P. 303–315. doi: 10.1007/s00401-009-0590-4

[153]

Roque A, Ochoa-Zarzosa A, Torner L. Maternal separation activates microglial cells and induces an inflammatory response in the hippocampus of male rat pups, independently of hypothalamic and peripheral cytokine levels. Brain Behav Immun. 2016;55:39–48. doi: 10.1016/j.bbi.2015.09.017

[154]

Roque A., Ochoa-Zarzosa A., Torner L. Maternal separation activates microglial cells and induces an inflammatory response in the hippocampus of male rat pups, independently of hypothalamic and peripheral cytokine levels // Brain Behav Immun. 2016. Vol. 55. P. 39–48. doi: 10.1016/j.bbi.2015.09.017

[155]

Matthews SG. Antenatal glucocorticoids and programming of the developing CNS. Pediatr Res. 2000;47(3):291–300. doi: 10.1203/00006450-200003000-00003

[156]

Matthews S.G. Antenatal glucocorticoids and programming of the developing CNS // Pediatr Res. 2000. Vol. 47, N 3. P. 291–300. doi: 10.1203/00006450-200003000-00003

[157]

Aylamazyan EK, Mozgovaya EV. Preeclampsia: theory and practice. Moscow: MEDpress-inform; 2008. EDN: QLRQIV

[158]

Айламазян Э.К., Мозговая Е.В. Гестоз: теория и практика. Москва: МЕДпресс-информ, 2008. EDN: QLRQIV

[159]

Nikolaenkov IP. Anti-Mullerian hormone in the pathogenesis of polycystic ovary syndrome [dissertation]. Saint Petersburg; 2014. Available from: https://www.dissercat.com/content/antimyullerovgormon-v-patogeneze-sindroma-olikistoznykh-yaichnikov EDN: ZPMABL

[160]

Николаенков И.П. Антимюллеров гормон в патогенезе синдрома поликистозных яичников: авотреф. дис. ... канд. мед. наук. Санкт-Петербург, 2014. Режим доступа: https://www.dissercat.com/content/antimyullerovgormon-v-patogeneze-sindroma-olikistoznykh-yaichnikov. Дата обращения: 04.02.2024. EDN: ZPMABL

[161]

Acromite MT, Mantzoros CS, Leach RE, et al. Androgens in preeclampsia. Am J Obstet Gynecol. 1999;180(1 Pt 1):60–63. doi: 10.1016/s0002-9378(99)70150-x

[162]

Acromite M.T., Mantzoros C.S., Leach R.E., et al. Androgens in preeclampsia // Am J Obstet Gynecol. 1999. Vol. 180, N. 1, Pt. 1. P. 60–63. doi: 10.1016/s0002-9378(99)70150-x

[163]

Pepene CE. Evidence for visfatin as an independent predictor of endothelial dysfunction in polycystic ovary syndrome. Clin Endocrinol. 2012;76(1):119–125. doi: 10.1111/j.1365-2265.2011.04171.x

[164]

Pepene C.E. Evidence for visfatin as an independent predictor of endothelial dysfunction in polycystic ovary syndrome // Clin Endocrinol. 2012. Vol. 76, N. 1. P. 119–125. doi: 10.1111/j.1365-2265.2011.04171.x

[165]

Kanasaki M, Srivastava SP, Yang F, et al. Deficiency in catechol-o-methyltransferase is linked to a disruption of glucose homeostasis in mice. Sci Rep. 2017;7(1):7927. doi: 10.1038/s41598-017-08513-w

[166]

Kanasaki M., Srivastava S.P., Yang F., et al. Deficiency in catechol-o-methyltransferase is linked to a disruption of glucose homeostasis in mice // Sci Rep. 2017. Vol. 7, N. 1. P. 7927. doi: 10.1038/s41598-017-08513-w

[167]

Nikolayenkov IP, Kuzminykh TU, Tarasova MA, et al. Features of the course of pregnancy in women with polycystic ovary syndrome. Journal of Obstetrics and Women’s Diseases. 2020;69(5):105–112. EDN: HNEEAT doi: 10.17816/JOWD695105-112

[168]

Николаенков И.П., Кузьминых Т.У., Тарасова М.А., и др. Особенности течения беременности у пациенток с синдромом поликистозных яичников // Журнал акушерства и женских болезней. 2020. Т. 69, № 5. С. 105–112. EDN: HNEEAT doi: 10.17816/JOWD695105-112

[169]

Sun M, Maliqueo M, Benrick A, et al. Maternal androgen excess reduces placental and fetal weights, increases placental steroidogenesis, and leads to long-term health effects in their female offspring. Am J Physiol Endocrinol Metab. 2012;303(11):E1373–E1385. doi: 10.1152/ajpendo.00421.2012

[170]

Sun M., Maliqueo M., Benrick A., et al. Maternal androgen excess reduces placental and fetal weights, increases placental steroidogenesis, and leads to long-term health effects in their female offspring // Am J Physiol Endocrinol Metab. 2012. Vol. 303, N. 11. P. E1373–1385. doi: 10.1152/ajpendo.00421.2012

[171]

Wixey JA, Chand KK, Pham L, et al. Therapeutic potential to reduce brain injury in growth restricted newborns. J Physiol. 2018;596(23):5675–5686. doi: 10.1113/JP275428

[172]

Wixey J.A., Chand K.K., Pham L., et al. Therapeutic potential to reduce brain injury in growth restricted newborns // J Physiol. 2018. Vol. 596, N. 23. P. 5675–5686. doi: 10.1113/JP275428

RIGHTS & PERMISSIONS

Eсо-Vector

AI Summary AI Mindmap
PDF

127

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/