Micronutrient status of pregnant women with fetal congenital malformations
Yulia P. Milyutina , Margarita O. Shengelia , Olesya N. Bespalova , Olga V. Pachuliya , Aleksandra A. Blazhenko , Kirill А. Denisov , Anastasia P. Sazonova , Andrey V. Korenevsky
Journal of obstetrics and women's diseases ›› 2023, Vol. 72 ›› Issue (5) : 61 -74.
Micronutrient status of pregnant women with fetal congenital malformations
BACKGROUND: Congenital malformations of the central nervous system have extremely severe consequences, which makes it important to study their development and diagnosis during embryogenesis. Therefore, particularly relevant are studies in the field of prevention of fetal сongenital malformations.
AIM: The aim of this study was to assess the micronutrient status (vitamin D, serum and erythrocyte folic acid, vitamin B12) and homocysteine levels in women with induced abortion in the second trimester of pregnancy based on fetal indications (fetal сongenital malformations).
MATERIALS AND METHODS: This prospective cohort study enrolled 53 women with induced abortion for medical reasons from the fetus in the second trimester of gestation. All pregnant women were divided into two groups. Group 1 included 28 individuals without an established chromosomal abnormality in the fetus: with fetal сongenital malformations and no neural tube defects (n = 16) or with fetal сongenital malformations and neural tube defects (n = 12). Group 2 consisted of 25 pregnant women with established chromosomal abnormalities in the fetus.
RESULTS: In pregnant women with fetal сongenital malformations and neural tube defects, blood serum vitamin B12 level correlated with erythrocyte folic acid level and was lower compared with women with fetal сongenital malformations and no neural tube defects (p < 0.05). No significant differences were found for other parameters. In pregnant women with fetal сongenital malformations, homocysteine level did not differ from that in women with normal fetal development at this stage of pregnancy. Meanwhile, folic acid and vitamin B12 levels in women with fetal сongenital malformations were lower compared with pregnant women without this pathology (p < 0.001).
CONCLUSIONS: The features of micronutrient status found in patients with fetal сongenital malformations, in particular with neural tube defects, and the relationships between its individual parameters indicate complex etiologies of these pathologies. The data obtained indicate the expediency of assessing one-carbon metabolic parameters in the mother not only during pregnancy, but also at the stage of preconception preparation, as well as the need for additional research related to adequate control of vitamin intake and assessment of methionine cycle gene polymorphism.
fetal congenital malformations / neural tube defect / abortion / micronutrient status / vitamins / II trimester / pregnancy
| [1] |
Finnell RH, Caiaffa CD, Kim SE, et al. Gene environment interactions in the etiology of neural tube defects. Front Genet. 2021;12. DOI: 10.3389/fgene.2021.659612 |
| [2] |
Finnell R.H., Caiaffa C.D., Kim S.E., et al. Gene environment interactions in the etiology of neural tube defects // Front. Genet. 2021. Vol. 12. DOI: 10.3389/fgene.2021.659612 |
| [3] |
Martino F, Magenta A, Pannarale G, et al. Epigenetics and cardiovascular risk in childhood. J Cardiovasc Med (Hagerstown). 2016;17(8):539–546. DOI: 10.2459/JCM.0000000000000334 |
| [4] |
Martino F., Magenta A., Pannarale G., et al. Epigenetics and cardiovascular risk in childhood // J. Cardiovasc. Med. 2016. Vol. 17. No. 8. P. 539–546. DOI: 10.2459/JCM.0000000000000334 |
| [5] |
Morris JK, Springett AL, Greenlees R, et al. Trends in congenital anomalies in Europe from 1980 to 2012. PLoS One. 2018;13(4). DOI: 10.1371/journal.pone.0194986 |
| [6] |
Morris J.K., Springett A.L. Greenlees R., et al. Trends in congenital anomalies in Europe from 1980 to 2012 // PLoS One. 2018. Vol. 13. No. 4. DOI: 10.1371/journal.pone.0194986 |
| [7] |
Detrait ER, George TM, Etchevers HC, et al. Human neural tube defects: developmental biology, epidemiology, and genetics. Neurotoxicol Teratol. 2005;27(3):515–524. DOI: 10.1016/j.ntt.2004.12.007 |
| [8] |
Detrait E.R., George T.M., Etchevers H.C., et al. Human neural tube defects: developmental biology, epidemiology, and genetics // Neurotoxicol. Teratol. 2005. Vol. 27. No. 3. P. 515–524. DOI: 10.1016/j.ntt.2004.12.007 |
| [9] |
Greene ND, Copp AJ. Neural tube defects. Annu Rev Neurosci. 2014;37:221–242. DOI: 10.1146/annurev-neuro-062012-170354 |
| [10] |
Greene N.D., Copp A.J. Neural tube defects // Annu. Rev. Neurosci. 2014. Vol. 37. P. 221–242. DOI: 10.1146/annurev-neuro-062012-170354 |
| [11] |
Practice Bulletin No. 187: Neural tube defects. Obstet Gynecol. 2017;130(6):e279–e290. DOI: 10.1097/AOG.0000000000002412 |
| [12] |
Practice Bulletin No. 187: Neural tube defects // Obstet. Gynecol. 2017. Vol. 130. No. 6. P. e279–e290. DOI: 10.1097/AOG.0000000000002412 |
| [13] |
Avagliano L, Massa V, George TM, et al. Overview on neural tube defects: from development to physical characteristics. Birth Defects Res. 2019;111(19):1455–1467. DOI: 10.1002/bdr2.1380 |
| [14] |
Avagliano L., Massa V., George T.M., et al. Overview on neural tube defects: from development to physical characteristics // Birth Defects Resh. 2019. Vol. 111. No. 19. P. 1455–1467. DOI: 10.1002/bdr2.1380 |
| [15] |
Peake JN, Knowles RL, Shawe J, et al. Maternal ethnicity and the prevalence of British pregnancies affected by neural tube defects. Birth Defects Res. 2021;113(12):968–980. DOI: 10.1002/bdr2.1893 |
| [16] |
Peake J.N., Knowles R.L., Shawe J., et al. Maternal ethnicity and the prevalence of British pregnancies affected by neural tube defects // Birth Defects Res. 2021. Vol. 113. No. 13. P. 968–980. DOI: 10.1002/bdr2.1893 |
| [17] |
Geneti SA, Dimsu GG, Sori DA, et al. Prevalence and patterns of birth defects among newborns in southwestern Ethiopia: a retrospective study. Pan Afr Med J. 2021;40:248. DOI: 10.11604/pamj.2021.40.248.25286 |
| [18] |
Geneti S.A., Dimsu G.G., Sori D.A., et al. Prevalence and patterns of birth defects among newborns in southwestern Ethiopia: a retrospective study // Pan Afr. Med. J. 2021. Vol. 40. P. 248. DOI: 10.11604/pamj.2021.40.248.25286 |
| [19] |
Tsiklauri R, Jijeishvili L, Kherkheulidze M, et al. Neural tube defects and micronutrients deficiency prevalence in Georgia. Georgian Med News. 2020;(298):61–66. |
| [20] |
Tsiklauri R., Jijeishvili L., Kherkheulidze M., et al. Neural tube defects and micronutrients deficiency prevalence in Georgia // Georgian Med. News. 2020. No. 298. P. 61–66. |
| [21] |
Li H, Zhang J, Chen S, et al. Genetic contribution of retinoid-related genes to neural tube defects. Hum Mutat. 2018;39(4):550–562. DOI: 10.1002/humu.23397 |
| [22] |
Li H., Zhang J., Chen S., et al. Genetic contribution of retinoid-related genes to neural tube defects // Hum. Mutat. 2018. Vol. 39. No. 4. P. 550–562. DOI: 10.1002/humu.23397 |
| [23] |
Golden JA, Chernoff GF. Multiple sites of anterior neural tube closure in humans: evidence from anterior neural tube defects (anencephaly). Pediatrics. 1995;95(4):506–510. |
| [24] |
Golden J.A., Chernoff G.F. Multiple sites of anterior neural tube closure in humans: evidence from anterior neural tube defects (anencephaly) // Pediatrics. 1995. Vol. 95. No. 4. P. 506–510. |
| [25] |
Copp AJ, Greene ND. Neural tube defects--disorders of neurulation and related embryonic processes. Wiley Interdiscip Rev Dev Biol. 2013;2(2):213–227. DOI: 10.1002/wdev.71 |
| [26] |
Copp A.J., Greene N.D. Neural tube defects--disorders of neurulation and related embryonic processes // Wiley Interdiscip. Rev. Dev. Biol. 2013. Vol. 2. No. 2. P. 213–227. DOI: 10.1002/wdev.71 |
| [27] |
Copp AJ, Adzick NS, Chitty LS, et al. Spina bifida. Nat Rev Dis Primers. 2015;1. DOI: 10.1038/nrdp.2015.7 |
| [28] |
Copp A.J., Adzick N.S., Chitty L.S., et al. Spina bifida // Nat. Rev. Dis. Primers. 2015. Vol. 1. DOI: 10.1038/nrdp.2015.7 |
| [29] |
Janik K, Manire MA, Smith GM, Krynska B. Spinal cord injury in myelomeningocele: prospects for therapy. Front Cell Neurosci. 2020;14:201. DOI: 10.3389/fncel.2020.00201 |
| [30] |
Janik K., Manire M.A., Smith G.M., et al. Spinal cord injury in myelomeningocele: prospects for therapy // Front. Cell. Neurosci. 2020. Vol. 14. P. 201. DOI: 10.3389/fncel.2020.00201 |
| [31] |
Greene ND, Copp AJ. Development of the vertebrate central nervous system: formation of the neural tube. Prenat Diagn. 2009;29(4):303–311. DOI: 10.1002/pd.2206 |
| [32] |
Greene N.D., Copp A.J. Development of the vertebrate central nervous system: formation of the neural tube. // Prenat. Diagn. 2009. Vol. 29. No. 4. P. 303–311. DOI: 10.1002/pd.2206 |
| [33] |
US Preventive Services Task Force, Bibbins-Domingo K, Grossman DC, et al. Folic acid supplementation for the prevention of neural tube defects: US preventive services task force recommendation statement. JAMA. 2017;317(2):183–189. DOI: 10.1001/jama.2016.19438 |
| [34] |
US Preventive Services Task Force, Bibbins-Domingo K., Grossman D.C., et al. Folic acid supplementation for the prevention of neural tube defects: US preventive services task force recommendation statement // JAMA. 2017. Vol. 317. No. 2. P. 183–189. DOI: 10.1001/jama.2016.19438 |
| [35] |
Czeizel AE, Dudás I, Vereczkey A, et al. Folate deficiency and folic acid supplementation: the prevention of neural-tube defects and congenital heart defects. Nutrients. 2013;5(11):4760–4775. DOI: 10.3390/nu5114760 |
| [36] |
Czeizel A.E., Dudas I., Vereczkey A., et al. Folate deficiency and folic acid supplementation: the prevention of neural-tube defects and congenital heart defects // Nutrients. 2013. Vol. 5. No. 1. P. 4760–4775. DOI: 10.3390/nu5114760 |
| [37] |
Chon J, Field MS, Stover PJ. Deoxyuracil in DNA and disease: genomic signal or managed situation?. DNA Repair. 2019;77:36–44. DOI: 10.1016/j.dnarep.2019.02.014 |
| [38] |
Chon J., Field M.S., Stover P.J. Deoxyuracil in DNA and disease: genomic signal or managed situation? // DNA Repair. 2019. Vol. 77. P. 36–44. DOI: 10.1016/j.dnarep.2019.02.014 |
| [39] |
Crider KS, Yang TP, Berry RJ, et al. Folate and DNA methylation: a review of molecular mechanisms and the evidence for folate’s role. Adv Nutr. 2012;3(1):21–38. DOI: 10.3945/an.111.000992 |
| [40] |
Crider K.S., Yang T.P., Berry R.J., et al. Folate and DNA methylation: a review of molecular mechanisms and the evidence for folate’s role // Adv. Nutr. 2012. Vol. 3. No. 1. P. 21–38. DOI: 10.3945/an.111.000992 |
| [41] |
Lv X, Zhou D, Ge B, et al. Association of folate metabolites and mitochondrial function in peripheral blood cells in Alzheimer’s disease: a matched case-control study. J Alzheimers Dis. 2019;70(4):1133–1142. DOI: 10.3233/JAD-190477 |
| [42] |
Lv X., Zhou D., Ge B., et al. Association of folate metabolites and mitochondrial function in peripheral blood cells in Alzheimer’s disease: a matched case-control study // J. Alzheimers Dis. 2019. Vol. 70. No. 4. P. 1133–1142. DOI: 10.3233/JAD-190477 |
| [43] |
van Gool JD, Hirche H, Lax H, et al. Folic acid and primary prevention of neural tube defects: a review. Reprod Toxicol. 2018;80:73–84. DOI: 10.1016/j.reprotox.2018.05.004 |
| [44] |
van Gool J.D., Hirche H., Lax H., et al. Folic acid and primary prevention of neural tube defects: a review // Reprod. Toxicol. 2018. Vol. 80. P. 73–84. DOI: 10.1016/j.reprotox.2018.05.004 |
| [45] |
Levine SZ, Kodesh A, Viktorin A, et al. Association of maternal use of folic acid and multivitamin supplements in the periods before and during pregnancy with the risk of autism spectrum disorder in offspring. JAMA Psychiatry. 2018;75(2):176–184. DOI: 10.1001/jamapsychiatry.2017.4050 |
| [46] |
Levine S.Z., Kodesh A., Viktorin A., et al. Association of maternal use of folic acid and multivitamin supplements in the periods before and during pregnancy with the risk of autism spectrum disorder in offspring // JAMA Psychiatry. 2018. Vol. 75. No. 2. P. 176–184. DOI: 10.1001/jamapsychiatry.2017.4050 |
| [47] |
Raghavan R, Riley AW, Volk H, et al. Maternal multivitamin intake, plasma folate and vitamin B12 levels and autism spectrum disorder risk in offspring. Paediatr Perinat Epidemiol. 2018;32(1):100–111. DOI: 10.1111/ppe.12414 |
| [48] |
Raghavan R., Riley A.W., Volk H., et al. Maternal multivitamin intake, plasma folate and vitamin B12 levels and autism spectrum disorder risk in offspring // Paediatr. Perinat. Epidemiol. 2018. Vol. 32. No. 1. P. 100–111. DOI: 10.1111/ppe.12414 |
| [49] |
Yajnik CS, Deshpande SS, Jackson AA, et al. Vitamin B12 and folate concentrations during pregnancy and insulin resistance in the offspring: the Pune Maternal Nutrition Study. Diabetologia. 2008;51(1):29–38. DOI: 10.1007/s00125-007-0793-y |
| [50] |
Yajnik C.S., Deshpande S.S., Jackson A.A., et al. Vitamin B12 and folate concentrations during pregnancy and insulin resistance in the offspring: the pune maternal nutrition study // Diabetologia. 2008. Vol. 51. No. 1. P. 29–38. DOI: 10.1007/s00125-007-0793-y |
| [51] |
McGowan EC, Hong X, Selhub J, et al. Association between folate metabolites and the development of food allergy in children. J Allergy Clin Immunol Pract. 2020;8(1):132–140.e5. DOI: 10.1016/j.jaip.2019.06.017 |
| [52] |
McGowan E.C., Hong X., Selhub J., et al. Association between folate metabolites and the development of food allergy in children // J. Allergy Clin. Immunol. Pract. 2020. Vol. 8. No. 1. P. 132–140.e5. DOI: 10.1016/j.jaip.2019.06.017 |
| [53] |
Cordero AM, Crider KS, Rogers LM, et al. Optimal serum and red blood cell folate concentrations in women of reproductive age for prevention of neural tube defects: World Health Organization guidelines. Morb Mortal Wkly Rep. 2015;64(15):421–423. |
| [54] |
Cordero A.M., Crider K.S., Rogers L.M., et al. Optimal serum and red blood cell folate concentrations in women of reproductive age for prevention of neural tube defects: World Health Organization guidelines // Morb. Mortal. Wkly Rep. 2015. Vol. 64. No. 15. P. 421–423. |
| [55] |
Hao L, Yang QH, Li Z, et al. Folate status and homocysteine response to folic acid doses and withdrawal among young Chinese women in a large-scale randomized double-blind trial. Am J Clin Nutr. 2008;88(2):448–457. DOI: 10.1093/ajcn/88.2.448 |
| [56] |
Hao L., Yang Q.H., Li Z., et al. Folate status and homocysteine response to folic acid doses and withdrawal among young Chinese women in a large-scale randomized double-blind trial // Am. J. Clin. Nutr. 2008. Vol. 88. No. 2. P. 448–457. DOI: 10.1093/ajcn/88.2.448 |
| [57] |
Smithells RW, Sheppard S, Schorah CJ. Vitamin deficiencies and neural tube defects. Arch Dis Child. 1976;51(12):944–950. DOI: 10.1136/adc.51.12.944 |
| [58] |
Smithells R.W., Sheppard S., Schorah C.J. Vitamin deficiencies and neural tube defects. // Arch. Dis. Child. 1976. Vol. 51. No. 12. P. 944–950. DOI: 10.1136/adc.51.12.944 |
| [59] |
Daly LE, Kirke PN, Molloy A, et al. Folate levels and neural tube defects. Implications for prevention. JAMA. 1995;274(21):1698–1702. DOI: 10.1001/jama.1995.03530210052030 |
| [60] |
Daly L.E., Kirke P.N., Molloy A., et al. Folate levels and neural tube defects. Implications for prevention // JAMA. 1995. Vol. 274. No. 21. P. 1698–1702. DOI: 10.1001/jama.1995.03530210052030 |
| [61] |
Crider KS, Devine O, Hao L, et al. Population red blood cell folate concentrations for prevention of neural tube defects: Bayesian model. BMJ. 2014;349. DOI: 10.1136/bmj.g4554 |
| [62] |
Crider K.S., Devine O., Hao L., et al. Population red blood cell folate concentrations for prevention of neural tube defects: Bayesian model // BMJ. 2014. Vol. 349. DOI: 10.1136/bmj.g4554 |
| [63] |
Cortellino S, Wang C, Wang B, et al. Defective ciliogenesis, embryonic lethality and severe impairment of the Sonic Hedgehog pathway caused by inactivation of the mouse complex A intraflagellar transport gene Ift122/Wdr10, partially overlapping with the DNA repair gene Med1/Mbd4. Dev Biol. 2009;325(1):225–237. DOI: 10.1016/j.ydbio.2008.10.020 |
| [64] |
Cortellino S., Wang C., Wang B., et al. Defective ciliogenesis, embryonic lethality and severe impairment of the Sonic Hedgehog pathway caused by inactivation of the mouse complex A intraflagellar transport gene Ift122/Wdr10, partially overlapping with the DNA repair gene Med1/Mbd4 // Dev. Biol. 2009. Vol. 325. No. 1. P. 225–237. DOI: 10.1016/j.ydbio.2008.10.020 |
| [65] |
Juriloff DM, Harris MJ. Insights into the etiology of mammalian neural tube closure defects from developmental, genetic and evolutionary studies. J Dev Biol. 2018;6(3):22. DOI: 10.3390/jdb6030022 |
| [66] |
Juriloff D.M., Harris M.J. Insights into the etiology of mammalian neural tube closure defects from developmental, genetic and evolutionary studies // J. Dev. Biol. 2018. Vol. 6. No. 3. P. 22. DOI: 10.3390/jdb6030022 |
| [67] |
Lee S, Gleeson JG. Closing in on mechanisms of open neural tube defects. Trends Neurosci. 2020;43(7):519–532. DOI: 10.1016/j.tins.2020.04.009 |
| [68] |
Lee S., Gleeson J.G. Closing in on mechanisms of open neural tube defects // Trends Neurosci. 2020. Vol. 43. No. 7. P. 519–532. DOI: 10.1016/j.tins.2020.04.009 |
| [69] |
Molloy AM, Pangilinan F, Brody LC. Genetic risk factors for folate-responsive neural tube defects. Annu Rev Nutr. 2017;37:269–291. DOI: 10.1146/annurev-nutr-071714-034235 |
| [70] |
Molloy A.M., Pangilinan F., Brody L.C. Genetic risk factors for folate-responsive neural tube defects // Annu. Rev. Nutr. 2017. Vol. 37. P. 269–291. DOI: 10.1146/annurev-nutr-071714-034235 |
| [71] |
Burren KA, Savery D, Massa V, et al. Gene-environment interactions in the causation of neural tube defects: folate deficiency increases susceptibility conferred by loss of Pax3 function. Hum Mol Genet. 2008;17(23):3675–3685. DOI: 10.1093/hmg/ddn262 |
| [72] |
Burren K.A., Savery D., Massa V., et al. Gene-environment interactions in the causation of neural tube defects: folate deficiency increases susceptibility conferred by loss of Pax3 function // Hum. Mol. Genet. 2008. Vol. 17. No. 23. P. 3675–3685. DOI: 10.1093/hmg/ddn262 |
| [73] |
Buyukkurt S, Binokay F, Seydaoglu G, et al. Prenatal determination of the upper lesion level of spina bifida with three-dimensional ultrasound. Fetal Diagn Ther. 2013;33(1):36–40. DOI: 10.1159/000341568 |
| [74] |
Buyukkurt S., Binokay F., Seydaoglu G., et al. Prenatal determination of the upper lesion level of spina bifida with three-dimensional ultrasound // Fetal Diagn. Ther. 2013. Vol. 33. No. 1. P. 36–40. DOI: 10.1159/000341568 |
| [75] |
Steele JW, Kim SE, Finnell RH. One-carbon metabolism and folate transporter genes: Do they factor prominently in the genetic etiology of neural tube defects? Biochimie. 2020;173:27–32. DOI: 10.1016/j.biochi.2020.02.005 |
| [76] |
Steele J.W., Kim S.-E., Finnell R.H. One-carbon metabolism and folate transporter genes: Do they factor prominently in the genetic etiology of neural tube defects? // Biochimie. 2020. Vol. 173. P. 27–32. DOI: 10.1016/j.biochi.2020.02.005 |
| [77] |
Osterhues A, Ali NS, Michels KB. The role of folic acid fortification in neural tube defects: a review. Crit Rev Food Sci Nutr. 2013;53(11):1180–1190. DOI: 10.1080/10408398.2011.575966 |
| [78] |
Osterhues A., Ali N.S., Michels K.B. The Role of folic acid fortification in neural tube defects: a review // Crit. Rev. Food Sci. Nutr. 2013. Vol. 53. No. 11. P. 1180–1190. DOI: 10.1080/10408398.2011.575966 |
| [79] |
Heseker HB, Mason JB, Selhub J, et al. Not all cases of neural-tube defect can be prevented by increasing the intake of folic acid. Br J Nutr. 2009;102(2):173–180. DOI: 10.1017/S0007114508149200 |
| [80] |
Heseker H.B., Mason J.B., Selhub J., et al. Not all cases of neural-tube defect can be prevented by increasing the intake of folic acid // Br. J. Nutr. 2008. Vol. 102. No. 2. P. 173–180. DOI: 10.1017/S0007114508149200 |
| [81] |
Stothard KJ, Tennant PW, Bell R, et al. Maternal overweight and obesity and the risk of congenital anomalies: a systematic review and meta-analysis. JAMA. 2009;301(6):636–650. DOI: 10.1001/jama.2009.113 |
| [82] |
Stothard K.J., Tennant P.W.G., Bell R., et al. Maternal overweight and obesity and the risk of congenital anomalies // JAM. 2009. Vol. 301. No. 6. P. 636. DOI: 10.1001/jama.2009.113 |
| [83] |
Korkmaz L, Baştuğ O, Kurtoğlu S. Maternal obesity and its short- and long-term maternal and infantile effects. J Clin Res Pediatr Endocrinol. 2016;8(2):114–124. DOI: 10.4274/jcrpe.2127 |
| [84] |
Korkmaz L., Baştuğ O., Kurtoğlu S. Maternal obesity and its short- and long-term maternal and infantile effects // J. Clin. Res. Pediatr. Endocrinol. 2016. Vol. 8. No. 2. P. 114–124. DOI: 10.4274/jcrpe.2127 |
| [85] |
Werler MM, Ahrens KA, Bosco JL, et al. Use of antiepileptic medications in pregnancy in relation to risks of birth defects. Ann Epidemiol. 2011;21(11):842–850. DOI: 10.1016/j.annepidem.2011.08.002 |
| [86] |
Werler M.M., Ahrens K.A., Bosco J.L., et al. Use of antiepileptic medications in pregnancy in relation to risks of birth defects // Ann. Epidemiol. 2011. Vol. 21. No. 11. P. 842–850. DOI: 10.1016/j.annepidem.2011.08.002 |
| [87] |
Becerra JE, Khoury MJ, Cordero JF, et al. Diabetes mellitus during pregnancy and the risks for specific birth defects: a population-based case-control study. Pediatrics. 1990;85(1):1–9. |
| [88] |
Becerra J.E., Khoury M.J., Cordero J.F., et al. Diabetes mellitus during pregnancy and the risks for specific birth defects: a population-based case-control study. // Pediatrics. 1990. Vol. 85. No. 1. P. 1–9. |
| [89] |
Kakebeen AD. Niswander L. Micronutrient imbalance and common phenotypes in neural tube defects. Genesis. 2021;59(11). DOI: 10.1002/dvg.23455 |
| [90] |
Kakebeen A.D., Niswander L. Micronutrient imbalance and common phenotypes in neural tube defects // Genesis. 2021. Vol. 59. No. 11. DOI: 10.1002/dvg.23455 |
| [91] |
De Wals P, Tairou F, Van Allen MI, et al. Reduction in neural-tube defects after folic acid fortification in Canada. N Engl J Med. 2007;357(2):135–142. DOI: 10.1056/NEJMoa067103 |
| [92] |
De Wals P., Tairou F., Van Allen M.I., et al. Reduction in neural-tube defects after folic acid fortification in Canada // N. Engl. J. Med. 2007. Vol. 357. P. 135–142. DOI: 10.1056/NEJMoa067103 |
| [93] |
Tang K-F, Li Y-L, Wang H-Y. Quantitative assessment of maternal biomarkers related to one-carbon metabolism and neural tube defects. Sci Rep. 2015;5. DOI: 10.1038/srep08510 |
| [94] |
Tang K.-F., Li Y.-L., Wang H.-Y. Quantitative assessment of maternal biomarkers related to one-carbon metabolism and neural tube defects // Sci. Rep. 2015. Vol. 5. P. 8510. DOI: 10.1038/srep08510 |
| [95] |
Yang M, Li W, Wan Z, Du Y. Elevated homocysteine levels in mothers with neural tube defects: a systematic review and meta-analysis. J Matern Fetal Neonatal Med. 2017;30(17):2051–2057. DOI: 10.1080/14767058.2016.1236248 |
| [96] |
Yang M., Li W., Wan Z., et al. Elevated homocysteine levels in mothers with neural tube defects: a systematic review and meta-analysis // J. Matern. Fetal Neonatal. Medicine. 2016. Vol. 30. No. 17. P. 2051–2057. DOI: 10.1080/14767058.2016.1236248 |
| [97] |
Saraswathy KN, Kaur L, Talwar S, et al. Methylenetetrahydrofolate reductase gene-specific methylation and recurrent miscarriages: a case-control study from North India. J Hum Reprod Sci. 2018;11(2):142–147. DOI: 10.4103/jhrs.JHRS_145_17 |
| [98] |
Saraswathy K., Kaur L., Talwar S., et al. Methylenetetrahydrofolate reductase gene-specific methylation and recurrent miscarriages: a case- control study from North India. // J. Hum. Reprod. Sci. 2018. Vol. 11. No. 2. P. 142–147. DOI: 10.4103/jhrs.JHRS_145_17 |
| [99] |
Kirke PN, Molloy AM, Daly LE, et al. Maternal plasma folate and vitamin B12 are independent risk factors for neural tube defects. Q J Med. 1993;86(11):703–708. |
| [100] |
Kirke P.N., Molloy A.M., Daly L.E., et al. Maternal plasma folate and vitamin B12 are independent risk factors for neural tube defects // Q. J. Med. 1993. Vol. 86. No. 11. P. 703–708. |
| [101] |
Groenen PM, van Rooij IA, Peer PG, et al. Marginal maternal vitamin B12 status increases the risk of offspring with spina bifida. Am J Obstet Gynecol. 2004;191(1):11–17. DOI: 10.1016/j.ajog.2003.12.032 |
| [102] |
Groenen P.M., van Rooij I.A., Peer P.G., et al. Marginal maternal vitamin B12 status increases the risk of offspring with spina bifida // Am. J. Obstet. Gynecol. 2004. Vol. 191. No. 1. P. 11–17. DOI: 10.1016/j.ajog.2003.12.032 |
| [103] |
Sirinoglu HA, Pakay K, Aksoy M, et al. Comparison of serum folate, 25-OH vitamin D, and calcium levels between pregnants with and without fetal anomaly of neural tube origin. J Matern Fetal Neonatal Med. 2018;31(11):1490–1493. DOI: 10.1080/14767058.2017.1319924 |
| [104] |
Sirinoglu H.A., Pakay K., Aksoy M., et al. Comparison of serum folate, 25-OH vitamin D, and calcium levels between pregnants with and without fetal anomaly of neural tube origin // J. Matern. Fetal Neonatal. Med. 2018. Vol. 31. No. 11. P. 1490–1493. DOI: 10.1080/14767058.2017.1319924 |
| [105] |
Daglar K, Tokmak A, Kirbas A, et al. Maternal serum vitamin D levels in pregnancies complicated by neural tube defects. J Matern Fetal Neonatal Med. 2016;29(2):298–302. DOI: 10.3109/14767058.2014.999037 |
| [106] |
Daglar K., Tokmak A., Kirbas A., et al. Maternal serum vitamin D levels in pregnancies complicated by neural tube defects // J. Matern. Fetal Neonatal. Med. 2014. Vol. 29. No. 2. P. 298–302. DOI: 10.3109/14767058.2014.999037 |
| [107] |
Larqué E, Morales E, Leis R, et al. Maternal and foetal health implications of vitamin D status during pregnancy. Ann Nutr Metab. 2018;72(3):179–192. DOI: 10.1159/000487370 |
| [108] |
Larqué E., Morales E., Leis R, et al. Maternal and foetal health implications of vitamin D status during pregnancy // Ann. Nutr. Metab. 2018. Vol. 72. No. 3. P. 179–192. DOI: 10.1159/000487370 |
| [109] |
Hamza M, Halayem S, Mrad R, et al. Implication de l’épigénétique dans les troubles du spectre autistique: revue de la littérature. Encephale. 2017;43(4):374–381. (In Fr.) DOI: 10.1016/j.encep.2016.07.007 |
| [110] |
Hamza M., Halayem S., Mrad R., et al. Implication de l’épigénétique dans les troubles du spectre autistique: revue de la littérature // Encephale. 2017. Vol. 43. No. 4. P. 374–381. DOI: 10.1016/j.encep.2016.07.007 |
| [111] |
Tous M, Villalobos M, Iglesias L, et al. Vitamin D status during pregnancy and offspring outcomes: a systematic review and meta-analysis of observational studies. Eur J Clin Nutr. 2020;74(1):36–53. DOI: 10.1038/s41430-018-0373-x |
| [112] |
Tous M., Villalobos M., Iglesias L., et al. Vitamin D status during pregnancy and offspring outcomes: a systematic review and meta-analysis of observational studies // Eur. J. Clin. Nutr. 2020. Vol. 74. No. 1. P. 36–53. DOI: 10.1038/s41430-018-0373-x |
| [113] |
Eyles D, Brown J, Mackay-Sim A, et al. Vitamin D3 and brain development. Neuroscience. 2003;118(3):641–653. DOI: 10.1016/s0306-4522(03)00040-x |
| [114] |
Eyles D., Brown J., Mackay-Sim A., et al. Vitamin D3 and brain development // Neuroscience. 2003. Vol. 118. No. 3. P. 641–653. DOI: 10.1016/s0306-4522(03)00040-x |
| [115] |
Sánchez-Hernández D, Anderson GH, Poon AN, et al. Maternal fat-soluble vitamins, brain development, and regulation of feeding behavior: an overview of research. Nutr Res. 2016;36(10):1045–1054. DOI: 10.1016/j.nutres.2016.09.009 |
| [116] |
Sánchez-Hernández D., Anderson G.H., Poon A.N., et al. Maternal fat-soluble vitamins, brain development, and regulation of feeding behavior: an overview of research // Nutr. Res. 2016. Vol. 36. No. 10. P. 1045–1054. DOI: 10.1016/j.nutres.2016.09.009 |
| [117] |
Greene ND, Copp AJ. Inositol prevents folate-resistant neural tube defects in the mouse. Nat Med. 1997;3(1):60–66. DOI: 10.1038/nm0197-60 |
| [118] |
Greene N.D., Copp A.J. Inositol prevents folate-resistant neural tube defects in the mouse // Nat. Med. 1997. Vol. 3. No. 1. P. 60–66. DOI: 10.1038/nm0197-60 |
| [119] |
Cavalli P, Cavallari U, Unfer V, et al. Caffeine intake and risk of neural tube defects. Birth Defects Res A Clin Mol Teratol. 2011;91(1):67–68. DOI: 10.1002/bdra.20739 |
| [120] |
Cavalli P., Cavallari U., Unfer V., et al. Caffeine intake and risk of neural tube defects. // Birth Defects Res. A Clin. Mol. Teratol. 2011. Vol. 91. No. 1. P. 67–67. DOI: 10.1002/bdra.20739 |
| [121] |
Ferrazzi E, Tiso G, Di Martino D. Folic acid versus 5- methyl tetrahydrofolate supplementation in pregnancy. Eur J Obstet Gynecol Reprod Biol. 2020;253:312–319. DOI: 10.1016/j.ejogrb.2020.06.012 |
| [122] |
Ferrazzi E., Tiso G., Di Martino D. Folic acid versus 5- methyl tetrahydrofolate supplementation in pregnancy // Eur. J. Obstet. Gynecol. Reprod. Biol. 2020. Vol. 253. P. 312–319. DOI: 10.1016/j.ejogrb.2020.06.012 |
| [123] |
Kerkeshko GO, Arutjunyan AV, Arzhanova ON, et al. Folate therapy optimization in complicated pregnancy. Journal of Obstetrics and Women’s Diseases. 2013;62(6):25–36. (In Russ.) DOI: 10.17816/JOWD62625-36 |
| [124] |
Керкешко Г.О., Арутюнян А.В., Аржанова О.Н., и др. Оптимизация терапии фолатами при осложнениях беременности // Журнал акушерства и женских болезней. 2013. Т. 62. № 6. C. 25–36. DOI: 10.17816/JOWD62625-36 |
| [125] |
Li Z, Ren A, Zhang L, et al. Extremely high prevalence of neural tube defects in a 4-county area in Shanxi Province, China. Birth Defects Res A Clin Mol Teratol. 2006;76(4):237–240. DOI: 10.1002/bdra.20248 |
| [126] |
Li Z., Ren A., Zhang L., et al. Extremely high prevalence of neural tube defects in a 4-county area in Shanxi Province, China // Birth Defects Res A Clin Mol Teratol. 2006. Vol. 76. No. 4. P. 237–240. DOI: 10.1002/bdra.20248 |
Eсо-Vector
/
| 〈 |
|
〉 |