The role of serotonin in prenatal ontogenesis
Inna I. Evsyukova
Journal of obstetrics and women's diseases ›› 2023, Vol. 72 ›› Issue (4) : 81 -92.
The role of serotonin in prenatal ontogenesis
This review article summarizes current ideas about the role of serotonin in prenatal ontogenesis. We herein present the results of experimental and clinical studies that reveal the mechanisms of serotonin involvement in the establishment and development of the single “mother-placenta-fetus” system. The article highlights the key role of maternal serotonin in the genetic program for the morphological and functional development of fetal organs from the earliest stages of prenatal ontogenesis, in both normal and complicated pregnancy. We also discuss gestational factors that affect the production of maternal, placental, and fetal serotonin, as its deficiency or excess during pregnancy determines perinatal and long-term pathology programming in the offspring. The article substantiates the prospects for using serotonin as a biochemical marker of brain damage in a newborn for the timely application of neuroprotection and the prevention of adverse consequences.
serotonin / placenta / fetus / brain / heart / lungs / programming
| [1] |
Bacqué-Cazenave J, Bharatiya R, Barrière G, et al. Serotonin in animal cognition and behavior. Int J Mol Sci. 2020;21(5). DOI: 10.3390/ijms21051649 |
| [2] |
Bacqué-Cazenave J., Bharatiya R., Barrière G., et al. Serotonin in animal cognition and behavior // Int. J. Mol. Sci. 2020. Vol. 21. No. 5. DOI: 10.3390/ijms21051649 |
| [3] |
Park S, Kim Y, Lee J, et al. A systems biology approach to investigating the interaction between serotonin synthesis by tryptophan hydroxylase and the metabolic homeostasis. Int J Mol Sci. 2021;22(5). DOI: 10.3390/ijms22052452 |
| [4] |
Park S., Kim Y., Lee J., et al. A systems biology approach to investigating the interaction between serotonin synthesis by tryptophan hydroxylase and the metabolic homeostasis // Int. J. Mol. Sci. 2021. Vol. 22. No. 5. DOI: 10.3390/ijms22052452 |
| [5] |
Wu H, Denna TH, Storkersen JN, Gerriets VA. Beyond a neurotransmitter: the role of serotonin in inflammation and immunity. Pharmacol Res. 2019;140:100–114. DOI: 10.1016/j.phrs.2018.06.015 |
| [6] |
Wu H., Denna T.H., Storkersen J.N., Gerriets V.A. Beyond a neurotransmitter: the role of serotonin in inflammation and immunity // Pharmacol. Res. 2019. Vol. 140. P. 100–114. DOI: 10.1016/j.phrs.2018.06.015 |
| [7] |
Yabut JM, Crane JD, Green AE, et al. Emerging roles for serotonin in regulating metabolism: new implications for an ancient molecule. Endocr Rev. 2019;40(4):1092–1107. DOI: 10.1210/er.2018-00283 |
| [8] |
Yabut J.M., Crane J.D., Green A.E., et al. Emerging roles for serotonin in regulating metabolism: new implications for an ancient molecule // Endocr. Rev. 2019. Vol. 40. No. 4. P. 1092–1107. DOI: 10.1210/er.2018-00283 |
| [9] |
Liu N, Sun S, Wang P, et al. The mechanism of secretion and metabolism of gut-derived 5-hydroxytryptamine. Int J Mol Sci. 2021;22(15). DOI: 10.3390/ijms22157931 |
| [10] |
Liu N., Sun S., Wang P., et al. The mechanism of secretion and metabolism of gut-derived 5-hydrixytryptamine // Int. J. Mol. Sci. 2021. Vol. 22. No. 15. DOI: 10.3390/ijms22157931 |
| [11] |
Eisinger F, Patzelt J, Langer HF. The platelet response to tissue injury. Front Med (Lausanne). 2018;5. DOI: 10.3389/fmed.2018.00317 |
| [12] |
Eisinger F., Patzelt J., Langer H.F. The platelet response to tissue injury // Front. Med. (Lausanne). 2018. Vol. 5. DOI: 10.3389/fmed.2018.00317 |
| [13] |
Guzel T, Mirowska-Guzel D. The role of serotonin neurotransmission in gastrointestinal tract and pharmacotherapy. Molecules. 2022;27(5). DOI: 10.3390/molecules27051680 |
| [14] |
Guzel T., Mirowska-Guzel D. The role of serotonin neurotransmission in gastrointestinal tract and pharmacotherapy // Molecules. 2022. Vol. 27. No. 5. DOI: 10.3390/molecules27051680 |
| [15] |
Shong KE, Oh CM, Namkung J, et al. Serotonin regulates de novo lipogenesis in adipose tissues through serotonin receptor 2A. Endocrinol Metab (Seoul). 2020;35(2):470–479. DOI: 10.3803/EnM.2020.35.2.470 |
| [16] |
Shong K.E., Oh C.M., Namkung J., et al. Serotonin regulates de novo lipogenesis in adipose tissues through serotonin receptor 2A // Endocrinol. Metab. (Seoul). 2020. Vol. 35. No. 2. P. 470–479. DOI: 10.3803/EnM.2020.35.2.470 |
| [17] |
Martin AM, Yabut JM, Choo JM, et al. The gut microbiome regulates host glucose homeostasis via peripheral serotonin. Proc Natl Acad Sci USA. 2019;116(40):19802–19804. DOI: 10.1073/pnas.1909311116 |
| [18] |
Martin A.M., Yabut J.M., Choo J.M., et al. The gut microbiome regulates host glucose homeostasis via peripheral serotonin // Proc. Natl. Acad. Sci. USA. 2019. Vol. 116. No. 40. P. 19802–19804. DOI: 10.1073/pnas.1909311116 |
| [19] |
Berger M, Gray JA, Roth BL. The expanded biology of serotonin. Annu Rev Med. 2009;60:355–366. DOI: 10.1146/annurev.med.60.042307.110802 |
| [20] |
Berger M., Gray J.A., Roth B.L. The expanded biology of serotonin // Annu. Rev. Med. 2009. Vol. 60. P. 355–366. DOI: 10.1146/annurev.med.60.042307.110802 |
| [21] |
Fanibunda SE, Deb S, Maniyadath B, et al. Serotonin regulates mitochondrial biogenesis and function in rodent cortical neurons via the 5-HT2A receptor and SIRT1-PGC-1α axis. Proc Natl Acad Sci USA. 2019;116(22):11028–11037. DOI: 10.1073/pnas.1821332116 |
| [22] |
Fanibunda S.E., Deb S., Maniyadath B., et al. Serotonin regulates mitochondrial biogenesis and function in rodent cortical neurons via the 5-HT2A receptor and SIRT1–PGC-1α axis // Proc. Natl. Acad. Sci. USA. 2019. Vol. 116. No. 22. P. 11028–11037. DOI: 10.1073/pnas.1821332116 |
| [23] |
Azouzi S, Santuz H, Morandat S, et al. Antioxidant and membrane binding properties of serotonin protect lipids from oxidation. Biophys J. 2017;112(9):1863–1873. DOI: 10.1016/j.bpj.2017.03.037 |
| [24] |
Azouzi S., Santuz H., Morandat S., et al. Antioxidant and membrane binding properties of serotonin protect lipids from oxidation // Biophys. J. 2017. Vol. 112. No. 9. P. 1863–1873. DOI: 10.1016/j.bpj.2017.03.037 |
| [25] |
Carrasco GA, Van de Kar LD. Neuroendocrine pharmacology of stress. Eur J Pharmacol. 2003;463(1–3):235–272. DOI: 10.1016/s0014-2999(03)01285-8 |
| [26] |
Carrasco G.A., Van de Kar L.D. Neuroendocrine pharmacology of stress // Eur. J. Pharmacol. 2003. Vol. 463. No. 1–3. P. 235–272. DOI: 10.1016/s0014-2999(03)01285-8 |
| [27] |
Kroeze WK, Kristiansen K, Roth BL. Molecular biology of serotonin receptors structure and function at the molecular level. Curr Top Med Chem. 2002;2(6):507–528. DOI: 10.2174/1568026023393796 |
| [28] |
Kroeze W.K., Kristiansen K., Roth B.L. Molecular biology of serotonin receptors: structure and function at the molecular level // Curr. Top. Med. Chem. 2002. Vol. 2. No. 6. P. 507–528. DOI: 10.2174/1568026023393796 |
| [29] |
Hodo TW, de Aquino MTP, Shimamoto A, et al. Critical neurotransmitters in the neuroimmune network. Front Immunol. 2020;11. DOI: 10.3389/fimmu.2020.01869 |
| [30] |
Hodo T.W., de Aquino M.T.P., Shimamoto A., et al. Critical neurotransmitters in the neuroimmune network // Front. Immunol. 2020. Vol. 11. DOI: 10.3389/fimmu.2020.01869 |
| [31] |
Shah R, Courtiol E, Castellanos FX, et al. Abnormal serotonin levels during perinatal development lead to behavioral deficits in adulthood. Front Behav Neurosci. 2018;12. DOI: 10.3389/fnbeh.2018.00114 |
| [32] |
Shah R., Courtiol E., Castellanos F.X., et al. Abnormal serotonin levels during perinatal development lead to behavioral deficits in adulthood // Front. Behav. Neurosci. 2018. Vol. 12. DOI: 10.3389/fnbeh.2018.00114 |
| [33] |
Brummelte S, Mc Glanaghy E, Bonnin A, et al. Developmental changes in serotonin signaling: Implications for early brain function, behavior and adaptation. Neuroscience. 2017;342:212–231. DOI: 10.1016/j.neuroscience.2016.02.037 |
| [34] |
Brummelte S., Mc Glanaghy E., Bonnin A., et al. Developmental changes in serotonin signaling: Implications for early brain function, behavior and adaptation // Neuroscience. 2017. Vol. 342. P. 212–231. DOI: 10.1016/j.neuroscience.2016.02.037 |
| [35] |
Kanova M, Kohout P. Tryptophan: a unique role in the critically Ill. Int J Mol Sci. 2021;22(21). DOI: 10.3390/ijms222111714 |
| [36] |
Kanova M., Kohout P. Tryptophan: a unique role in the critically Ill // Int. J. Mol. Sci. 2021. Vol. 22. No. 21. DOI: 10.3390/ijms222111714 |
| [37] |
Badawy AA. Tryptophan metabolism, disposition and utilization in pregnancy. Biosci Rep. 2015;35(5). DOI: 10.1042/BSR20150197 |
| [38] |
Badawy A.A. Tryptophan metabolism, disposition and utilization in pregnancy // Biosci. Rep. 2015. Vol. 35. No. 5. DOI: 10.1042/BSR20150197 |
| [39] |
Shallie PD, Naicker T. The placenta as a window to the brain: a review on the role of placental markers in prenatal programming of neurodevelopment. Int J Dev Neurosci. 2019;73:41–49. DOI: 10.1016/j.ijdevneu.2019.01.003 |
| [40] |
Shallie P.D., Naicker T. The placenta as a window to the brain: a review on the role of placental markers in prenatal programming of neurodevelopment // Int. J. Dev. Neurosci. 2019. Vol. 73. P. 41–49. DOI: 10.1016/j.ijdevneu.2019.01.003 |
| [41] |
Laurent L, Deroy K, St-Pierre J, et al. Human placenta expresses both peripheral and neuronal isoform of tryptophan hydroxylase. Biochimie. 2017;140:159–165. DOI: 10.1016/j.biochi.2017.07.008 |
| [42] |
Laurent L., Deroy K., St-Pierre J., et al. Human placenta express both peripheral and neuronal isoform of tryptophan hydroxylase // Biochimie. 2017. Vol. 140. P. 159–165. DOI: 10.1016/j.biochi.2017.07.008 |
| [43] |
Viau M, Lafond J, Vaillancourt C. Expression of placental serotonin transporter and 5-HT 2A receptor in normal and gestational diabetes mellitus pregnancies. Reprod Biomed Online. 2009;19(2):207–215. DOI: 10.1016/s1472-6483(10)60074-0 |
| [44] |
Viau M., Lafond J., Vaillancourt C. Expression of placental serotonin transporter and 5-HT 2A receptor in normal and gestational diabetes mellitus pregnancies // Reprod. Biomed. Online. 2009. Vol. 19. No. 2. P. 207–215. DOI: 10.1016/s1472-6483(10)60074-0 |
| [45] |
Hadden C, Fahmi T, Cooper A, et al. Serotonin transporter protects the placental cells against apoptosis in caspase 3-independent pathway. J Cell Physiol. 2017;232(12):3520–3529. DOI: 10.1002/jcp.25812 |
| [46] |
Hadden C., Fahmi T., Cooper A., et al. Serotonin transporter protects the placental cells against apoptosis in caspase 3-independent pathway // J. Cell Physiol. 2017. Vol. 232. No. 12. P. 3520–3529. DOI: 10.1002/jcp.25812 |
| [47] |
Rosenfeld CS. Placental serotonin signaling, pregnancy outcomes, and regulation of fetal brain development. Biol Reprod. 2020;102(3):532–538. DOI: 10.1093/biolre/ioz204 |
| [48] |
Rosenfeld C.S. Placental serotonin signaling, pregnancy outcomes, and regulation of fetal brain development // Biology Reprod. 2020. Vol. 102. No. 3. P. 532–538. DOI: 10.1093/biolre/ioz204 |
| [49] |
Kliman HJ, Quaratella SB, Setaro AC, et al. Pathway of maternal serotonin to the human embryo and fetus. Endocrinology. 2018;159(4):1609–1629. DOI: 10.1210/en.2017-03025 |
| [50] |
Kliman H.J., Quaratella S.B., Setaro A.C., et al. Pathway of maternal serotonin to the human embryo and fetus // Endocrinology. 2018. Vol. 159. No. 4. P. 1609–1629. DOI: 10.1210/en.2017-03025 |
| [51] |
Brenner B, Harney JT, Ahmed BA, et al. Plasma serotonin levels and the platelet serotonin transporter. J Neurochem. 2007;102(1):206–215. DOI: 10.1111/j.1471-4159.2007.04542.x |
| [52] |
Brenner B., Harney J.T., Ahmed B.A., et al. Plasma serotonin levels and the platelet serotonin transporter // J Neurochem. 2007. Vol. 102. No. 1. P. 206–215. DOI: 10.1111/j.1471-4159.2007.04542.x |
| [53] |
Baković P, Kesić M, Perić M, et al. Differential serotonin uptake mechanisms at the human maternal-fetal interface. Int J Mol Sci. 2021;22(15). DOI: 10.3390/ijms22157807 |
| [54] |
Bakovic P., Kesic M., Peric M., et al. Differential serotonin uptake mechanisms at the human maternal-fetal interface // Int. J. Mol. Sci. 2021. Vol. 22. No. 15. DOI: 10.3390/ijms22157807 |
| [55] |
Forstner D, Guettler J, Gauster M. Changes in maternal platelet physiology during gestation and their interaction with trophoblasts. Int J Mol Sci. 2021;22(19). DOI: 10.3390/ijms221910732 |
| [56] |
Forstner D., Guettler J., Gauster M. Changes in maternal platelet physiology during gestation and their interaction with trophoblasts // Int. J. Mol. Sci. 2021. Vol. 22. No. 19. DOI: 10.3390/ijms221910732 |
| [57] |
Romero-Reyes J, Molina-Hernández A, Díaz NF, et al. Role of serotonin in vertebrate embryo development. Reprod Biol. 2021;21(1). DOI: 10.1016/j.repbio.2020.100475 |
| [58] |
Romero-Reyes J., Molina-Hernández A., Díaz N.F., et al. Role of serotonin in vertebrate embryo development // Reprod. Biol 2021. Vol. 21. No. 1. DOI: 10.1016/j.repbio.2020.100475 |
| [59] |
Romero-Reyes J, Vázquez-Martínez ER, Bahena-Alvarez D, et al. Differential localization of serotoninergic system elements in human amniotic epithelial cells. Biol Reprod. 2021;105(2):439–448. DOI: 10.1093/biolre/ioab106 |
| [60] |
Romero-Reyes J., Vázquez-Martínez E.R., Bahena-Alvarez D., et al. Differential localization of serotoninergic system elements in human amniotic epithelial cells // Biol. Reprod. 2021. Vol. 105. No. 2. P. 439–448. DOI: 10.1093/biolre/ioab106 |
| [61] |
Xing L, Huttner WB. Neurotransmitters as modulators of neural progenitor cell proliferation during mammalian neocortex development. Front Cell Dev Biol. 2020;8. |
| [62] |
Xing L., Huttner W.B. Neurotransmitters as modulators of neural progenitor cell proliferation during mammalian neocortex development // Front. Cell Dev. Biol. 2020. Vol. 8. DOI: 10.3389/fcell.2020.00391 |
| [63] |
Ranzil S, Walker DW, Borg AJ, et al. The relationship between the placental serotonin pathway and fetal growth restriction. Biochimie. 2019;161:80–87. DOI: 10.1016/j.biochi.2018.12.016 |
| [64] |
Ranzil S., Walker D.W., Borg A.J., et al. The relationship between the placental serotonin pathway and fetal growth restriction // Biochimie. 2019. Vol. 161. P. 80–87. DOI: 10.1016/j.biochi.2018.12.016 |
| [65] |
Farrelly LA, Thompson RE, Zhao S, et al. Histone serotonylation is a permissive modification that enhances TFIID binding to H3K4me3. Nature. 2019;567(7749):535–539. DOI: 10.1038/s41586-019-1024-7 |
| [66] |
Farrelly L.A., Thompson R.E., Zhao S., et al. Histone serotonylation is a permissive modification that enhances TFIID binding to H3K4me3 // Nature. 2019. Vol. 567. No. 7749. P. 535–539. DOI: 10.1038/s41586-019-1024-7 |
| [67] |
Murthy S, Niquille M, Hurni N, et al. Serotonin receptor 3A controls interneuron migration into the neocortex. Nat Commun. 2014;5. DOI: 10.1038/ncomms6524 |
| [68] |
Murthy S., Niquille M., Hurni N., et al. // Nat. Commun. 2014. Vol. 5. DOI: 10.1038/ncomms6524 |
| [69] |
Holst SC, Landolt H-P. Sleep-wake neurochemistry. Sleep Med Clin. 2022;17(2):151–160. DOI: 10.1016/j.jsmc.2022.03.002 |
| [70] |
Holst S.C., Landolt H-P. Sleep-wake neurochemistry // Sleep Med. Clin. 2022. Vol. 17. No. 2. P. 151–160. DOI: 10.1016/j.jsmc.2022.03.002 |
| [71] |
Chen HL, Gao JX, Chen YN, et al. Rapid eye movement sleep during early life: a comprehensive narrative review. Int J Environ Res Public Health. 2022;19(20). DOI: 10.3390/ijerph192013101 |
| [72] |
Chen H.L., Gao J.X., Chen Y.N., et al. Rapid eye movement sleep during early life: a comprehensive narrative review // Int. J. Environ. Res. Public Health. 2022. Vol. 19. No. 20. DOI: 10.3390/ijerph192013101 |
| [73] |
Kolk SM, Rakic P. Development of prefrontal cortex. Neuropsychopharmacology. 2022;47(1):41–57. DOI: 10.1038/s41386-021-01137-9 |
| [74] |
Kolk S.M., Rakic P. Development of prefrontal cortex // Neuropsychopharmacology. 2022. Vol. 47. No. 1. P. 41–57. DOI: 10.1038/s41386-021-01137-9 |
| [75] |
Bonnin A, Levitt P. Fetal, maternal, and placental sources of serotonin and new implications for developmental programming of the brain. Neuroscience. 2011;197:1–7. DOI: 10.1016/j.neuroscience.2011.10.005 |
| [76] |
Bonnin А., Levitt Р. Fetal, maternal and placental sources of serotonin and new implications for developmental programming of the brain // Neuroscience. 2011. Vol. 197. P. 1–7. DOI: 10.1016/j.neuroscience.2011.10.005 |
| [77] |
Gaspar P, Cases O, Maroteaux L. The developmental role of serotonin: news from mouse molecular genetics. Nat Rev Neurosci. 2003;4(12):1002–1012. DOI: 10.1038/nrn1256 |
| [78] |
Gaspar P., Cases O., Maroteaux L. The developmental role of serotonin: news from mouse molecular genetics // Nat. Rev. Neurosci. 2003. Vol. 4. No. 12. P. 1002–1012. DOI: 10.1038/nrn1256 |
| [79] |
Herlenius E, Lagercrantz H. Development of neurotransmitter systems during critical periods. Exp Neurol. 2004;190:S8–S21. DOI: 10.1016/j.expneurol.2004.03.027 |
| [80] |
Herlenius E., Lagercrantz H. Development of neurotransmitter systems during critical periods // Exp. Neurol. 2004. Vol. 190. No. 1. P. S8–S21. DOI: 10.1016/j.expneurol.2004.03.027 |
| [81] |
Alhajeri MM, Alkhanjari RR, Hodeify R, et al. Neurotransmitters, neuropeptides and calcium in oocyte maturation and early development. Front Cell Dev Biol. 2022;10. DOI: 10.3389/fcell.2022.980219 |
| [82] |
Alhajeri M.M., Alkhanjari R.R., Hodeify R., et al. Neurotransmitters, neuropeptides and calcium in oocyte maturation and early development // Front. Cell Dev. Biol. 2022. Vol. 10. DOI: 10.3389/fcell.2022.980219 |
| [83] |
Soslau G. Cardiovascular serotonergic system: evolution, receptors, transporter, and function. J Exp Zool A Ecol Integr Physiol. 2022;337(2):115–127. DOI: 10.1002/jez.2554 |
| [84] |
Soslau G. Cardiovascular serotonergic system: evolution, receptors, transporter, and function // J. Exp. Zool. A. Ecol. Integr. Physiol. 2022. Vol. 337. No. 2. P. 115–127. DOI: 10.1002/jez.2554 |
| [85] |
Launay JM. Sérotonine et système cardio-vasculaire: rôle du récepteur sérotoninergique 5-HT2B [Serotonin and the cardiovascular system: role of the serotoninergic 5-HT 2B receptor]. Bull Acad Natl Med. 2003;187(1):117–127. (In Fr.) |
| [86] |
Launay J.M. Sérotonine et système cardio-vasculaire: rôle du récepteur sérotoninergique 5-HT2B [Serotonin and the cardiovascular system: role of the serotoninergic 5-HT 2B receptor] // Bull. Acad. Natl. Med. 2003. Vol. 187. No. 1. P. 117–127. |
| [87] |
Kent ME, Hu B, Eggleston TM, et al. Hypersensitivity of zebrafish htr2b mutant embryos to sertraline indicates a role for serotonin signaling in cardiac development. J Cardiovasc Pharmacol. 2022;80(2):261–269. DOI: 10.1097/FJC.0000000000001297 |
| [88] |
Kent M.E., Hu B., Eggleston T.M., et al. Hypersensitivity of zebrafish htr2b mutant embryos to sertraline indicates a role for serotonin signaling in cardiac development // J. Cardiovasc. Pharmacol. 2022. Vol. 80. No. 2. P. 261–269. DOI: 10.1097/FJC.0000000000001297 |
| [89] |
5-HT2B receptors: from molecular biology to clinical applications. Ed. by L. Maroteaux, L. Monassier. New York: Springer; 2021. DOI: 10.1007/978-3-030-55920-5 |
| [90] |
5-HT2B receptors: from molecular biology to clinical applications / Ed. by L. Maroteaux, L. Monassier. New York: Springer, 2021. DOI: 10.1007/978-3-030-55920-5 |
| [91] |
Mel’nikova VI, Isvol’skaya MS, Voronova SN, et al. The role of serotonin in the immune system development and functioning during ontogenesis. Biology Bulletin (Izvestiya RAN. Seriya biologicheskaya). 2012;(3):237–243. (In Russ.) |
| [92] |
Мельникова В.И., Извольская М.С., Воронова С.Н., и др. Роль серотонина в становлении и функционировании иммунной системы на разных этапах онтогенеза // Известия Российской академии наук. Серия биологическая. 2012. Т. 39. № 3. С. 288–295. |
| [93] |
Sunday ME. Pulmonary Neuroendocrine cells and lung development. Endocr Pathol. 1996;7(3):173–201. DOI: 10.1007/BF02739921 |
| [94] |
Sunday M.E. Pulmonary neuroendocrine cells and lung development // Endocr. Pathol. 1996. Vol. 7. No. 3. P. 173–201. DOI: 10.1007/BF02739921 |
| [95] |
Eenjes E, Tibboel D, Wijnen RMH, et al. Lung epithelium development and airway regeneration. Front Cell Dev Biol. 2022;10. DOI: 10.3389/fcell.2022.1022457 |
| [96] |
Eenjes E., Tibboel D., Wijnen R.M.H., et al. Lung epithelium development and airway regeneration // Front. Cell. Dev. Biol. 2022. Vol. 10. DOI: 10.3389/fcell.2022.1022457 |
| [97] |
Nikolić J, Vukojević K, Šoljić V, et al. Expression patterns of serotonin receptors 5-HT1A, 5-HT2A, and 5-HT3A during human fetal lung development. Int J Mol Sci. 2023;24(3). DOI: 10.3390/ijms24032965 |
| [98] |
Nikolic J., Vukojevic K., Šoljic V., et al. Expression patterns of serotonin receptors 5-HT1A, 5-HT2A, and 5-HT3A during human fetal lung development // Int. J. Mol. Sci. 2023. Vol. 24. No. 3. DOI: 10.3390/ijms24032965 |
| [99] |
Castro EC, Sen P, Parks WT, et al. The role of serotonin transporter in human lung development and in neonatal lung disorders. Can Respir J. 2017;2017. DOI: 10.1155/2017/9064046 |
| [100] |
Castro E.C., Sen P., Parks W.T., et al. The role of serotonin transporter in human lung development and in neonatal lung disorders // Can. Respir. J. 2017. Vol. 2017. DOI: 10.1155/2017/9064046 |
| [101] |
Cutz E, Yeger H, Pan J. Pulmonary neuroendocrine cell system in pediatric lung disease-recent advances. Pediatr Dev Pathol. 2007;10(6):419–435. DOI: 10.2350/07-04-0267.1 |
| [102] |
Cutz E., Yeger H., Pan J. Pulmonary neuroendocrine cell system in pediatric lung disease-recent advances // Pediatr. Dev. Pathol. 2007. Vol. 10. No. 6. P. 419–435. DOI: 10.2350/07-04-0267.1 |
| [103] |
Garg A, Sui P, Verheyden JM, et al. Consider the lung as a sensory organ: a tip from pulmonary neuroendocrine cells. Curr Top Dev Biol. 2019;132:67–89. DOI: 10.1016/bs.ctdb.2018.12.002 |
| [104] |
Garg A., Sui P., Verheyden J.M., et al. Consider the lung as a sensory organ: a tip from pulmonary neuroendocrine cells // Curr. Top. Dev. Biol. 2019. Vol. 132. P. 67–89. DOI: 10.1016/bs.ctdb.2018.12.002 |
| [105] |
Cummings KJ, Hodges MR. The serotonergic system and the control of breathing during development. Respir Physiol Neurobiol. 2019;270. DOI: 10.1016/j.resp.2019.103255 |
| [106] |
Cummings K.J., Hodges M.R. The serotonergic system and the control of breathing during development // Respir. Physiol. Neurobiol. 2019. Vol. 270. DOI: 10.1016/j.resp.2019.103255 |
| [107] |
Penkova N, Penkov R, Hrischev P, et al. Immunohistochemical study on the expression of serotonin and 5HTR3 in gastrointestinal tract of rat embryos and newborns. J Bio Sci Biotech. 2012;53–56. |
| [108] |
Penkova N., Penkov R., Hrischev P., et al. Immunohistochemical study on the expression of serotonin and 5HTR3 in gastrointestinal tract of rat embryos and newborns // J. Bio. Sci. Biotech. 2012. P. 53–56. |
| [109] |
Gershon MD. 5-Hydroxytryptamine (serotonin) in the gastrointestinal tract. Curr Opin Endocrinol Diabetes Obes. 2013;20(1):14–21. DOI: 10.1097/MED.0b013e32835bc703 |
| [110] |
Gershon M.D. 5-Hydroxytryptamine (serotonin) in the gastrointestinal tract // Curr. Opin. Endocrinol. Diabetes Obes. 2013. Vol. 20. No. 1. P. 14–21. DOI: 10.1097/MED.0b013e32835bc703 |
| [111] |
Indrio F, Neu J, Pettoello-Mantovani M, et al. Development of the gastrointestinal tract in newborns as a challenge for an appropriate nutrition: a narrative review. Nutrients. 2022;14(7). DOI: 10.3390/nu14071405 |
| [112] |
Indrio F., Neu J., Pettoello Mantovani M., et al. Development of the gastrointestinal tract in newborns as a challenge for an appropriate nutrition: a narrative review // Nutrients. 2022. Vol. 14. No. 7. DOI: 10.3390/nu14071405 |
| [113] |
Erikci A, Ucar G, Yabanoglu-Ciftci S. Role of serotonin in the regulation of renal proximal tubular epithelial cells. Ren Fail. 2016;38(7):1141–1150. DOI: 10.1080/0886022X.2016.1194165 |
| [114] |
Erikci A., Ucar G., Yabanoglu-Ciftci S. Role of serotonin in the regulation of renal proximal tubular epithelial cells // Ren. Fail. 2016. Vol. 38. No. 7. P. 1141–1150. DOI: 10.1080/0886022X.2016.1194165 |
| [115] |
Hanswijk SI, Spoelder M, Shan L, et al. Gestational factors throughout fetal neurodevelopment: the serotonin link. Int J Mol Sci. 2020;21(16). DOI: 10.3390/ijms21165850 |
| [116] |
Hanswijk S.I., Spoelder M., Shan L., et al. Gestational factors throughout fetal neurodevelopment: the serotonin link // Int. J. Mol. Sci. 2020. Vol. 21. No. 16. DOI: 10.3390/ijms21165850 |
| [117] |
Kratimenos P, Penn AA. Placental programming of neuropsychiatric disease. Pediatr Res. 2019;86(2):157–164. DOI: 10.1038/s41390-019-0405-9 |
| [118] |
Kratimenos P., Penn A.A. Placental programming of neuropsychiatric disease // Pediatr. Res. 2019. Vol. 86. No. 2. P. 157–164. DOI: 10.1038/s41390-019-0405-9 |
| [119] |
Huang X, Kuang S, Applegate TJ, et al. Prenatal serotonin fluctuation affects serotoninergic development and related neural circuits in chicken embryos. Neuroscience. 2021;473:66–80. DOI: 10.1016/j.neuroscience.2021.08.011 |
| [120] |
Huang X., Kuang S., Applegate T.J., et al. Prenatal serotonin fluctuation affects serotoninergic development and related neural circuits in chicken embryos // Neuroscience. 2021. Vol. 473. P. 66–80. DOI: 10.1016/j.neuroscience.2021.08.011 |
| [121] |
Abbott PW, Gumusoglu SB, Bittle J, et al. Prenatal stress and genetic risk: how prenatal stress interacts with genetics to alter risk for psychiatric illness. Psychoneuroendocrinology. 2018;90:9–21. DOI: 10.1016/j.psyneuen.2018.01.019 |
| [122] |
Abbott P.W., Gumusoglu S.B., Bittle J., et al. Prenatal stress and genetic risk: how prenatal stress interacts with genetics to alter risk for psychiatric illness // Psychoneuroendocrinology. 2018. Vol. 90. P. 9–21. DOI: 10.1016/j.psyneuen.2018.01.019 |
| [123] |
Anderson KN, Lind JN, Simeone RM, et al. Maternal use of specific antidepressant medications during early pregnancy and the risk of selected birth defects. JAMA Psychiatry. 2020;77(12):1246–1255. DOI: 10.1001/jamapsychiatry.2020.2453 |
| [124] |
Anderson K.N., Lind J.N., Simeone R.M., et al. Maternal use of specific antidepressant medications during early pregnancy and the risk of selected birth defects // JAMA Psychiatry. 2020. Vol. 77. No. 12. P. 1246–1255. DOI: 10.1001/jamapsychiatry.2020.2453 |
| [125] |
Domingues RR, Fricke HP, Sheftel CM, et al. Effect of low and high doses of two selective serotonin reuptake inhibitors on pregnancy outcomes and neonatal mortality. Toxics. 2022;10(1). DOI: 10.3390/toxics10010011 |
| [126] |
Domingues R.R., Fricke H.P., Sheftel C.M., et al. Effect of low and high doses of two selective serotonin reuptake inhibitors on pregnancy outcomes and neonatal mortality // Toxics. 2022. Vol. 10. No. 1. DOI: 10.3390/toxics10010011 |
| [127] |
Horackova H, Karahoda R, Cerveny L, et al. Effect of selected antidepressants on placental homeostasis of serotonin: maternal and fetal perspectives. Pharmaceutics. 2021;13(8). DOI: 10.3390/pharmaceutics13081306 |
| [128] |
Horackova H., Karahoda R., Cerveny L., et al. Effect of selected antidepressants on placental homeostasis of serotonin: maternal and fetal perspectives // Pharmaceutics. 2021. Vol. 13. No. 8. DOI: 10.3390/pharmaceutics13081306 |
| [129] |
Uguz F. Selective serotonin reuptake inhibitors and the risk of congenital anomalies: a systematic review of current meta-analyses. Expert Opin Drug Saf. 2020;19(12):1595–1604. DOI: 10.1080/14740338.2020.1832080 |
| [130] |
Uguz F. Selective serotonin reuptake inhibitors and the risk of congenital anomalies: a systematic review of current meta-analyses // Expert. Opin. Drug. Saf. 2020. Vol. 19. No. 12. P. 1595–1604. DOI: 10.1080/14740338.2020.1832080 |
| [131] |
Domingues RR, Wiltbank MC, Hernandez LL. Pregnancy complications and neonatal mortality in a serotonin transporter null mouse model: insight into the use of selective serotonin reuptake inhibitor during pregnancy. Front Med (Lausanne). 2022;9. DOI: 10.3389/fmed.2022.848581 |
| [132] |
Domingues R., Wiltbank M.C., Hernandez L.L. Pregnancy complications and neonatal mortality in a serotonin transporter null mouse model: insight into the use of selective serotonin reuptake inhibitor during pregnancy // Front. Med. (Lausanne). 2022. Vol. 9. DOI: 10.3389/fmed.2022.848581 |
| [133] |
Sun M, Zhang S, Li Y, et al. Effect of maternal antidepressant use during the pre-pregnancy/early pregnancy period on congenital heart disease: a prospective cohort study in Central China. Front Cardiovasc Med. 2022;9. DOI: 10.3389/fcvm.2022.916882 |
| [134] |
Sun M., Zhang S., Li Y. Effect of maternal antidepressant use during the pre-pregnancy/early pregnancy period on congenital heart disease: a prospective cohort study in Central China // Front. Cardiovasc. Med. 2022. Vol. 9. DOI: 10.3389/fcvm.2022.91688 |
| [135] |
Pei S, Liu L, Zhong Z, et al. Risk of prenatal depression and stress treatment: alteration on serotonin system of offspring through exposure to. Sci Rep. 2016;6. DOI: 10.1038/srep33822 |
| [136] |
Pei S., Liu L., Zhong Z., et al. Risk of prenatal depression and stress treatment: alteration on serotonin system of offspring through exposure to Fluoxetine // Sci. Rep. 2016. Vol. 6. DOI: 10.1038/srep33822 |
| [137] |
da Silva Junior CA, Marques DA, Patrone LGA, et al. Intra-uterine diazepam exposure decreases the number of catecholaminergic and serotoninergic neurons of neonate rats. Neurosci Lett. 2023;795. DOI: 10.1016/j.neulet.2022.137014 |
| [138] |
da Silva Junior C.A., Marques D.A., Patrone L.G.A., et al. Intra-uterine diazepam exposure decreases the number of catecholaminergic and serotoninergic neurons of neonate rats // Neurosci. Lett. 2023. Vol. 795. DOI: 10.1016/j.neulet.2022.137014 |
| [139] |
Williams M, Zhang Z, Nance E, et al. Maternal inflammation results in altered tryptophan metabolism in rabbit placenta and fetal brain. Dev Neurosci. 2017;39(5):399–412. DOI: 10.1159/000471509 |
| [140] |
Williams M., Zhang Z., Nance E., et al. Maternal inflammation results in altered tryptophan metabolism in rabbit placenta and fetal brain // Dev. Neurosci. 2017. Vol. 39, No. 5. P. 399–412. DOI: 10.1159/000471509 |
| [141] |
Huang X, Feng Z, Cheng H-W. Perspective: gestational tryptophan fluctuation altering neuroembryogenesis and psychosocial development. Cells. 2022;11(8). DOI: 10.3390/cells11081270 |
| [142] |
Huang X., Feng Z., Cheng H-W. Perspective: gestational tryptophan fluctuation altering neuroembryogenesis and psychosocial development // Cells. 2022. Vol. 11. No. 8. DOI: 10.3390/cells11081270 |
| [143] |
Vehmeijer FOL, Guxens M, Duijts L, et al. Maternal psychological distress during pregnancy and childhood health outcomes: a narrative review. J Dev Orig Health Dis. 2019;10(3):274–285. DOI: 10.1017/S2040174418000557 |
| [144] |
Vehmeijer F.O.L., Guxens M., Duijts L., et al. Maternal psychological distress during pregnancy and childhood health outcomes: a narrative review // J. Dev. Orig. Health Dis. 2019. Vol. 10. No. 3. P. 274–285. DOI: 10.1017/S2040174418000557 |
| [145] |
Rakers F, Rupprecht S, Dreiling M, et al. Transfer of maternal psychosocial stress to the fetus. Neurosci Biobehav Rev. 2017. DOI: 10.1016/j.neubiorev.2017.02.019 |
| [146] |
Rakers F., Rupprecht S., Dreiling M., et al. Transfer of maternal psychosocial stress to the fetus // Neurosci. Biobehav. Rev. 2017. DOI: 10.1016/j.neubiorev.2017.02.019 |
| [147] |
St-Pierre J, Laurent L, King S, et al. Effects of prenatal maternal stress on serotonin and fetal development. Placenta. 2016;48:S66–S71. DOI: 10.1016/j.placenta.2015.11.013 |
| [148] |
St-Pierre J., Laurent L., King S., et al. Effects of prenatal maternal stress on serotonin and fetal development // Placenta. 2016. Vol. 48. Suppl. 1. P. 66–71. DOI: 10.1016/j.placenta.2015.11.013 |
| [149] |
Van den Bergh BRH, van den Heuvel MI, Lahti M, et al. Prenatal developmental origins of behavior and mental health: The influence of maternal stress in pregnancy. Neurosci Biobehav Rev. 2020;117:26–64. DOI: 10.1016/j.neubiorev.2017.07.003 |
| [150] |
Van den Bergh B.R.H., van den Heuvel M.I., Lahti M., et al. Prenatal developmental origins of behavior and mental health: the influence of maternal stress in pregnancy // Neurosci. Biobehav. Rev. 2020. Vol. 117. P. 26–64. DOI: 10.1016/j.neubiorev.2017.07.003 |
| [151] |
Zvereva NA, Milyutina YP, Arutjunyan AV, et al. Serotonin and cyclic sleep organization in full-term newborn infants with intrauterine growth retardation. Journal of Obstetrics and Women’s Diseases. 2023;71(6):5–14. (In Russ.) DOI: 10.17816/JOWD112611 |
| [152] |
Зверева Н.А., Милютина Ю.П., Арутюнян А.В., и др. Серотонин и циклическая организация сна у доношенных новорожденных детей с задержкой внутриутробного развития // Журнал акушерства и женских болезней. 2022. Т. 71. № 6. C. 5–14. DOI: 10.17816/JOWD112611 |
Eсо-Vector
/
| 〈 |
|
〉 |