Carbohydrate metabolism and the species composition of the intestinal microbiota in women with gestational diabetes mellitus

Tatyana A. Zinina , Alena V. Tiselko , Maria I. Yarmolinskaya

Journal of obstetrics and women's diseases ›› 2023, Vol. 72 ›› Issue (3) : 27 -38.

PDF
Journal of obstetrics and women's diseases ›› 2023, Vol. 72 ›› Issue (3) : 27 -38. DOI: 10.17816/JOWD321748
Original study articles
research-article

Carbohydrate metabolism and the species composition of the intestinal microbiota in women with gestational diabetes mellitus

Author information +
History +
PDF

Abstract

BACKGROUND: The prevalence of gestational diabetes mellitus has increased significantly and has become a global health problem, affecting 9.3–25.5% of pregnant women worldwide. Violation of the interaction of various body systems with the intestinal microbiota can be the cause of the development of insulin resistance. The study of the state of the intestinal microbiota based on the results of the study of the species composition of microorganisms in feces by the polymerase chain reaction method is necessary to understand the mechanisms of gestational diabetes mellitus development.

AIM: The aim of this study was to evaluate the intestinal microbiota status in women with normal pregnancy and pregnancy complicated by gestational diabetes mellitus.

MATERIALS AND METHODS: We examined 51 pregnant women in the period 2020-2022. The average age of women with normal pregnancy (n = 20) and pregnancy complicated by gestational diabetes mellitus (n = 31) was 29 (27.0; 32.5) and 31 (27.0; 35.0) years, respectively. The intestinal microbiota status was assessed based on the microbial species composition in feces using real-time polymerase chain reaction. All women underwent a test for carbohydrate metabolism at various gestation periods.

RESULTS: We have established a positive relation between Bacteroides thetaiotaomicron and Body Mass Index before pregnancy (r = 0.42). The number of Bacteroides thetaiotaomicron in the 1st, 2nd and 3rd trimesters of gestation positively correlated with the initial weight of women before pregnancy (r = 0.60, r = 0.52, r = 0.47, respectively; p < 0.05). The Bacteroides spp. / Faecalibacterium prausnitzii ratio in women with gestational diabetes mellitus was negatively correlated with the average blood glucose level in the 3rd trimester of pregnancy (r = –0.81; p < 0.05). Parvimonas micra positively correlated with venous plasma glucose levels in the presence of gestational diabetes mellitus (r = 0.58; p < 0.05). A positive relationship was obtained between the number of Escherichia coli in pregnant women in the 1st trimester and the average glucose level in the 3rd trimester of pregnancy (r = 0.41; p < 0.05). It was demonstrated that the growth of Bacteroides fragilis in the large intestine of pregnant women with gestational diabetes mellitus in the 3rd trimester of pregnancy correlated with subnormal blood glucose levels (r = –0.77; p < 0.05), which may be due to a diet disorder (insufficient carbohydrate intake) or insulin overdose, which can lead to hypoglycemic conditions. In the group of women with gestational diabetes mellitus, a positive correlation was obtained between glycated hemoglobin level and the opportunistic pathogen Klebsiella pneumoniae representative amount in the 1st trimester of pregnancy (r = 0.46; p < 0.05). In addition, we have found positive relations between the Citrobacter spp. / Enterobacter spp. ratio and the maximum blood glucose level in women with gestational diabetes mellitus in the 1st, 2nd and 3rd trimesters of pregnancy (r = 0.49, r = 0.43, r = 0.47, respectively; p < 0.05). The difference in the intake of dietary fiber in the control group and in the group of pregnant women with gestational diabetes mellitus was obtained: 2 (1; 3) and 1 (1; 1), respectively (p < 0.05).

CONCLUSIONS: Data have been obtained confirming the relationship between disorders of the colon microbiocenosis and carbohydrate metabolism in pregnant women with gestational diabetes mellitus. A relationship has been found between insufficient intake of dietary fiber and the risk of developing gestational diabetes mellitus.

Keywords

gestational diabetes mellitus / intestinal microbiota / insulin resistance / hyperglycemia

Cite this article

Download citation ▾
Tatyana A. Zinina, Alena V. Tiselko, Maria I. Yarmolinskaya. Carbohydrate metabolism and the species composition of the intestinal microbiota in women with gestational diabetes mellitus. Journal of obstetrics and women's diseases, 2023, 72(3): 27-38 DOI:10.17816/JOWD321748

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Zhong H, Zhang J, Xia J, et al. Influence of gestational diabetes mellitus on lipid signatures in breast milk and association with fetal physical development. Front Nutr. 2022;9. DOI: 10.3389/fnut.2022.924301

[2]

Zhong H., Zhang J., Xia J., et al. Influence of gestational diabetes mellitus on lipid signatures in breast milk and association with fetal physical development // Front. Nutr. 2022. Vol. 9. DOI: 10.3389/fnut.2022.924301

[3]

Yang T, Santisteban MM, Rodriguez V, et al. Gut dysbiosis is linked to hypertension. Hypertension. 2015;65(6):1331–1340. DOI: 10.1161/HYPERTENSIONAHA.115.05315

[4]

Yang T., Santisteban M.M., Rodriguez V., et al. Gut dysbiosis is linked to hypertension // Hypertension. 2015. Vol. 65. No. 6. P. 1331–1340. DOI: 10.1161/HYPERTENSIONAHA.115.05315

[5]

Cortez RV, Taddei CR, Sparvoli LG, et al. Microbiome and its relation to gestational diabetes. Endocrine. 2019;64(2):254–264. DOI: 10.1007/s12020-018-1813-z

[6]

Cortez R.V., Taddei C.R., Sparvoli L.G., et al. Microbiome and its relation to gestational diabetes // Endocrine. 2019. Vol. 64. No. 2. P. 254–264. DOI: 10.1007/s12020-018-1813-z

[7]

Nirmalkar K, Murugesan S, Pizano-Zárate ML, et al. Gut microbiota and endothelial dysfunction markers in obese mexican children and adolescents. Nutrients. 2018;10(12). DOI: 10.3390/nu10122009

[8]

Nirmalkar K., Murugesan S., Pizano-Zárate M.L., et al. Gut microbiota and endothelial dysfunction markers in obese mexican children and adolescents // Nutrients. 2018. Vol. 10. No. 12. DOI: 10.3390/nu10122009

[9]

Wang B, Yao M, Lv L, et al. The human microbiota in health and disease. Engineering. 2017;3(1):71–82. DOI: 10.1016/J.ENG.2017.01.008

[10]

Wang B., Yao M., Lv L., et al. The human microbiota in health and disease // Engineering. 2017. Vol. 3. No. 1. P. 71–82. DOI: 10.1016/J.ENG.2017.01.008

[11]

Shestakova EA, Pokrovskaya EV, Samsonova MD. Different approaches to change gut microbiota and its influence on metabolic disorders. Consilium Medicum. 2021;23(12):905–909. (In Russ.) DOI: 10.26442/20751753.2021.12.201289

[12]

Шестакова Е.А., Покровская Е.В., Самсонова М.Д. Подходы к изучению влияния кишечной микробиоты на развитие метаболических нарушений // Consilium Medicum. 2021. Т. 23. № 12. С. 905–909. DOI: 10.26442/20751753.2021.12.201289

[13]

Kravchuk EN, Neimark AE, Grineva EN, et al. The role of gut microbiota in metabolic regulation. Diabetes Mellitus. 2016;19(4):280–285. (In Russ.) DOI: 10.14341/DM7704

[14]

Кравчук Е.Н., Неймарк А.Е., Гринева Е.Н., и др. Регуляция метаболических процессов, опосредованная кишечной микрофлорой // Сахарный диабет. 2016. Т. 19. № 4. С. 280–285. DOI: 10.14341/DM7704

[15]

Guinane CM, Cotter PD. Role of the gut microbiota in health and chronic gastrointestinal disease: understanding a hidden metabolic organ. Therap Adv Gastroenterol. 2013;6(4):295–308. DOI: 10.1177/1756283X13482996

[16]

Guinane C.M., Cotter P.D. Role of the gut microbiota in health and chronic gastrointestinal disease: understanding a hidden metabolic organ // Therap. Adv. Gastroenterol. 2013. Vol. 6. No. 4. P. 295–308. DOI: 10.1177/1756283X13482996

[17]

Rinninella E, Raoul P, Cintoni M, et al. What is the healthy gut microbiota composition? A changing ecosystem across age, environment, diet, and diseases. Microorganisms. 2019;7(1). DOI: 10.3390/microorganisms7010014

[18]

Rinninella E., Raoul P., Cintoni M., et al. What is the healthy gut microbiota composition? A changing ecosystem across age, environment, diet, and diseases // Microorganisms. 2019. Vol. 7. No. 1. P. 14. DOI: 10.3390/microorganisms7010014

[19]

Gasmi A, Mujawdiya PK, Pivina L, et al. Relationship between gut microbiota, gut hyperpermeability and obesity. Curr Med Chem. 2021;28(4):827–839. DOI: 10.2174/0929867327666200721160313

[20]

Gasmi A., Mujawdiya P.K., Pivina L., et al. Relationship between gut microbiota, gut hyperpermeability and obesity // Curr. Med. Chem. 2021. Vol. 28. No. 4. P. 827–839. DOI: 10.2174/0929867327666200721160313

[21]

Thursby E, Juge N. Introduction to the human gut microbiota. Biochem J. 2017;474(11):1823–1836. DOI: 10.1042/BCJ20160510

[22]

Thursby E., Juge N. Introduction to the human gut microbiota // Biochem. J. 2017. Vol. 474. No. 11. P. 1823–1836. DOI: 10.1042/BCJ20160510

[23]

Gilbert JA, Blaser MJ, Caporaso JG, et al. Current under standing of the human microbiome. Nat Med. 2018;24(4):392–400. DOI: 10.1038/nm.4517

[24]

Gilbert J.A., Blaser M.J., Caporaso J.G., et al. Current understanding of the human microbiome // Nat. Med. 2018. Vol. 24. No. 4. P. 392–400. DOI: 10.1038/nm.4517

[25]

Koren O, Goodrich JK, Cullender TC, et al. Host remodeling of the gut microbiome and metabolic changes during pregnancy. Cell. 2012;150(3):470–480. DOI: 10.1016/j.cell.2012.07.008

[26]

Koren O., Goodrich J.K., Cullender T.C., et al. Host remodeling of the gut microbiome and metabolic changes during pregnancy // Cell. 2012. Vol. 150. No. 3. P. 470–480. DOI: 10.1016/j.cell.2012.07.008

[27]

Medici Dualib P, Ogassavara J, Mattar R, et al. Gut microbiota and gestational diabetes mellitus: a systematic review. Diabetes Res Clin Pract. 2021;180. DOI: 10.1016/j.diabres.2021.109078

[28]

Medici Dualib P., Ogassavara J., Mattar R., et al. Gut microbiota and gestational diabetes mellitus: a systematic review // Diabetes Res. Clin. Pract. 2021. Vol. 180. DOI: 10.1016/j.diabres.2021.109078

[29]

Ibragimova LI, Kolpakova EA, Dzagakhova AV, et al. The role of the gut microbiota in the development of type 1 diabetes mellitus. Diabetes mellitus. 2021;24(1):62–69. (In Russ.) DOI: 10.14341/DM10326

[30]

Ибрагимова Л.И., Колпакова Е.А., Дзагахова А.В., и др. Роль микробиоты кишечника в развитии сахарного диабета 1 типа // Сахарный диабет. 2021. Т. 24. № 1. С. 62–69. DOI: 10.14341/DM10326

[31]

Dzgoeva FH, Egshatyan LV. The gut microbiota and type 2 diabetes mellitus. Endocrinologiya: novosti, mneniya, obuchenie. 2018;3(24):55–63. (In Russ.) DOI: 10.24411/2304-9529-2018-13005

[32]

Дзгоева Ф.Х., Егшатян Л.В. Кишечная микробиота и сахарный диабет типа 2 // Эндокринология: новости, мнения, обучение. 2018. Т. 3. № 24. С. 55–63. DOI: 10.24411/2304-9529-2018-13005

[33]

Huang L, Thonusin C, Chattipakorn N, et al. Impacts of gut microbiota on gestational diabetes mellitus: a comprehensive review. Eur J Nutr. 2021;60(5):2343–2360. DOI: 10.1007/s00394-021-02483-6

[34]

Huang L., Thonusin C., Chattipakorn N., et al. Impacts of gut microbiota on gestational diabetes mellitus: a comprehensive review // Eur. J. Nutr. 2021. Vol. 60. No. 5. P. 2343–2360. DOI: 10.1007/s00394-021-02483-6

[35]

Vetrani C, Di Nisio A, Paschou SA, et al. From gut microbiota through low-grade inflammation to obesity: key players and potential targets. Nutrients. 2022;14(10). DOI: 10.3390/nu14102103

[36]

Vetrani C., Di Nisio A., Paschou S.A., et al. From gut microbiota through low-grade inflammation to obesity: key players and potential targets // Nutrients. 2022. Vol. 14. No. 10. DOI: 10.3390/nu14102103

[37]

Youm YH, Nguyen KY, Grant RW, et al. The ketone metabolite β-hydroxybutyrate blocks NLRP3 inflammasome-mediated inflammatory disease. Nat Med. 2015;21(3):263–269. DOI: 10.1038/nm.3804

[38]

Youm Y.H., Nguyen K.Y., Grant R.W., et al. The ketone metabolite β-hydroxybutyrate blocks NLRP3 inflammasome-mediated inflammatory disease // Nat. Med. 2015. Vol. 21. No. 3. P. 263–269. DOI: 10.1038/nm.3804

[39]

Macia L, Tan J, Vieira A, et al. Metabolite-sensing receptors GPR43 and GPR109A facilitate dietary fibre-induced gut homeostasis through regulation of the inflammasome. Nat Commun. 2015;6. DOI: 10.1038/ncomms7734

[40]

Macia L., Tan J., Vieira A., et al. Metabolite-sensing receptors GPR43 and GPR109A facilitate dietary fibre-induced gut homeostasis through regulation of the inflammasome. // Nat. Commun. 2015. Vol. 6. DOI: 10.1038/ncomms7734

[41]

Saltzman ET, Palacios T, Thomsen M, et al. Intestinal microbiome shifts, dysbiosis, inflammation, and non-alcoholic fatty liver disease. Front Microbiol. 2018;9. DOI: 10.3389/fmicb.2018.00061

[42]

Saltzman E.T., Palacios T., Thomsen M., et al. Intestinal microbiome shifts, dysbiosis, inflammation, and non-alcoholic fatty liver disease // Front. Microbiol. 2018. Vol. 9. DOI: 10.3389/fmicb.2018.00061

[43]

Zhu LB, Zhang YC, Huang HH, et al. Prospects for clinical applications of butyrate-producing bacteria. World J Clin Pediatr. 2021;10(5):84–92. DOI: 10.5409/wjcp.v10.i5.84

[44]

Zhu L.B., Zhang Y.C., Huang H.H., et al. Prospects for clinical applications of butyrate-producing bacteria // World J. Clin. Pediatr. 2021. Vol. 10. No. 5. P. 84–92. DOI: 10.5409/wjcp.v10.i5.84

[45]

Sugawara T, Iwamoto N, Akashi M, et al. Tight junction dysfunction in the stratum granulosum leads to aberrant stratum corneum barrier function in claudin-1-deficient mice. J Dermatol Sci. 2013;70(1):12–18. DOI: 10.1016/j.jdermsci.2013.01.002

[46]

Sugawara T., Iwamoto N., Akashi M., et al. Tight junction dysfunction in the stratum granulosum leads to aberrant stratum corneum barrier function in claudin-1-deficient mice // J. Dermatol. Sci. 2013. Vol. 70. No. 1. P. 12–18. DOI: 10.1016/j.jdermsci.2013.01.002

[47]

Mokkala K, Röytiö H, Munukka E, et al. Gut microbiota richness and composition and dietary intake of overweight pregnant women are related to serum zonulin concentration, a marker for intestinal permeability. J Nutr. 2016;146(9):1694–1700. DOI: 10.3945/jn.116.235358

[48]

Mokkala K., Röytiö H., Munukka E., et al. Gut microbiota richness and composition and dietary intake of overweight pregnant women are related to serum zonulin concentration, a marker for intestinal permeability // J. Nutr. 2016. Vol. 146. No. 9. P. 1694–1700. DOI: 10.3945/jn.116.235358

[49]

Egshatyan L, Kashtanova D, Popenko A, et al. Gut microbiota and diet in patients with different glucose tolerance. Endocr Connect. 2016;5(1):1–9. DOI: 10.1530/EC-15-0094

[50]

Egshatyan L., Kashtanova D., Popenko A., et al. Gut microbiota and diet in patients with different glucose tolerance // Endocr. Connect. 2016. Vol. 5. No. 1. P. 1–9. DOI: 10.1530/EC-15-0094

[51]

Sharon I, Quijada NM, Pasolli E, et al. The core human microbiome: does it exist and how can we find it? A critical review of the concept. Nutrients. 2022;14(14). DOI: 10.3390/nu14142872

[52]

Sharon I., Quijada N.M., Pasolli E., et al. The core human microbiome: does it exist and how can we find it? A critical review of the concept // Nutrients. 2022. Vol. 14. No. 14. DOI: 10.3390/nu14142872

[53]

Qasim A, Turcotte M, de Souza RJ, et al. On the origin of obesity: identifying the biological, environmental and cultural drivers of genetic risk among human populations. Obes Rev. 2018;19(2):121–149. DOI: 10.1111/obr.12625

[54]

Qasim A., Turcotte M., de Souza R.J., et al. On the origin of obesity: identifying the biological, environmental and cultural drivers of genetic risk among human populations // Obes. Rev. 2018. Vol. 19. No. 2. P. 121–149. DOI: 10.1111/obr.12625

[55]

Rossiiskaya assotsiatsiya endokrinologov, Rossiiskoe obshchest vo akusherov-ginekologov. Gestatsionnyi sakharnyi diabet. Diagnostika, lechenie, akusherskaya taktika, poslerodovoe nablyudenie: klinicheskie rekomendatsii. 2020. (In Russ.) [cited 2022 Jul 15]. Availaible from: https://rae-org.ru/system/files/documents/pdf/kr_gsd_2020.pdf

[56]

Российская ассоциация эндокринологов, Российское общество акушеров-гинекологов. Гестационный сахарный диабет. Диагностика, лечение, акушерская тактика, послеродовое наблюдение: клинические рекомендации. 2020 [дата обращения: 15.07.2022]. Доступно по ссылке: https://rae-org.ru/system/files/documents/pdf/kr_gsd_2020.pdf

[57]

Neuman H, Koren O. The pregnancy microbiome. Nestle Nutr Inst Workshop Ser. 2017;88:1–9. DOI: 10.1159/000455207

[58]

Neuman H., Koren O. The pregnancy microbiome // Nestle Nutr. Inst. Workshop Ser. 2017. Vol. 88. P. 1–9. DOI: 10.1159/000455207

[59]

Nuriel-Ohayon M, Neuman H, Ziv O, et al. Progesterone increases bifidobacterium relative abundance during late pregnancy. Cell Rep. 2019;27(3):730–736. DOI: 10.1016/j.celrep.2019.03.075

[60]

Nuriel-Ohayon M., Neuman H., Ziv O., et al. Progesterone increases bifidobacterium relative abundance during late pregnancy // Cell Rep. 2019. Vol. 27. No. 3. P. 730–736. DOI: 10.1016/j.celrep.2019.03.075

[61]

Ferrarese R, Ceresola ER, Preti A, et al. Probiotics, prebiotics and synbiotics for weight loss and metabolic syndrome in the microbiome era. Eur Rev Med Pharmacol Sci. 2018;22(21):7588–7605. DOI: 10.26355/eurrev_201811_16301

[62]

Ferrarese R., Ceresola E.R., Preti A., et al. Probiotics, prebiotics and synbiotics for weight loss and metabolic syndrome in the microbiome era // Eur. Rev. Med. Pharmacol. Sci. 2018. Vol. 22. No. 21. P. 7588–7605. DOI: 10.26355/eurrev_201811_16301

[63]

Farhat S, Hemmatabadi M, Ejtahed HS, et al. Microbiome alterations in women with gestational diabetes mellitus and their offspring: a systematic review. Front Endocrinol (Lausanne). 2022;13. DOI: 10.3389/fendo.2022.1060488

[64]

Farhat S., Hemmatabadi M., Ejtahed H.S., et al. Microbiome alterations in women with gestational diabetes mellitus and their offspring: a systematic review // Front. Endocrinol. (Lausanne). 2022. Vol. 13. DOI: 10.3389/fendo.2022.1060488

[65]

Zhang X, Wang P, Ma L, et al. Differences in the oral and intestinal microbiotas in pregnant women varying in periodontitis and gestational diabetes mellitus conditions. J Oral Microbiol. 2021;13(1). DOI: 10.1080/20002297.2021.1883382

[66]

Zhang X., Wang P., Ma L., et al. Differences in the oral and intestinal microbiotas in pregnant women varying in periodontitis and gestational diabetes mellitus conditions // J. Oral Microbiol. 2021. Vol. 13. No. 1. DOI: 10.1080/20002297.2021.1883382

[67]

Cui MJ, Qi C, Yang LP, et al. A pregnancy complication-dependent change in SIgA-targeted microbiota during third trimester. Food Funct. 2020;11(2):1513–1524. DOI: 10.1039/C9FO02919B

[68]

Cui M.J., Qi C., Yang L.P., et al. A pregnancy complication-dependent change in SIgA-targeted microbiota during third trimester // Food Funct. 2020. Vol. 11. No. 2. P. 1513–24. DOI: 10.1039/C9FO02919B

[69]

Sitkin SI, Vahitov TY, Demyanova EV. Microbiome, colon dysbiosis and inflammatory bowel disease: when function affects taxo nomy. Almanac of clinical medicine. 2018;46(5):396–425. (In Russ.) DOI: 10.18786/2072-0505-2018-46-5-396-425

[70]

Ситкин С.И., Вахитов Т.Я., Демьянова Е.В. Микробиом, дисбиоз толстой кишки и воспалительные заболевания кишечника: когда функция важнее таксономии // Альманах клинической медицины. 2018. Т. 46. № 5. С. 396–425. DOI: 10.18786/2072-0505-2018-46-5-396-425

[71]

Wei J, Qing Y, Zhou H, et al. 16S rRNA gene amplicon sequencing of gut microbiota in gestational diabetes mellitus and their correlation with disease risk factors. J Endocrinol Invest. 2022;45(2):279–289. DOI: 10.1007/s40618-021-01595-4

[72]

Wei J., Qing Y., Zhou H., et al. 16S rRNA gene amplicon sequencing of gut microbiota in gestational diabetes mellitus and their correlation with disease risk factors // J. Endocrinol. Invest. 2022. Vol. 45. No. 2. P. 279–289. DOI: 10.1007/s40618-021-01595-4

[73]

Sililas P, Huang L, Thonusin C, et al. Association between gut microbiota and development of gestational diabetes mellitus. Microorganisms. 2021;9(8). DOI: 10.3390/microorganisms9081686

[74]

Sililas P., Huang L., Thonusin C., et al. Association between gut microbiota and development of gestational diabetes mellitus // Microorganisms. 2021. Vol. 9. No. 8. DOI: 10.3390/microorganisms9081686

[75]

Mokkala K, Paulin N, Houttu N, et al. Metagenomics analysis of gut microbiota in response to diet intervention and gestational diabetes in overweight and obese women: a randomised, double-blind, placebo-controlled clinical trial. Gut. 2021;70(2):309–318. DOI: 10.1136/gutjnl-2020-321643

[76]

Mokkala K., Paulin N., Houttu N., et al. Metagenomics analysis of gut microbiota in response to diet intervention and gestational diabetes in overweight and obese women: a randomised, double-blind, placebo-controlled clinical trial // Gut. 2021. Vol. 70. No. 2. P. 309–318. DOI: 10.1136/gutjnl-2020-321643

[77]

Hou M, Li F. Changes of intestinal flora, cellular immune function and inflammatory factors in Chinese advanced maternal age with gestational diabetes mellitus. Acta Med Mediterr. 2020;36(2):1137–1142. DOI: 10.19193/0393-6384_2020_2_178

[78]

Hou M., Li F. Changes of intestinal flora, cellular immune function and inflammatory factors in Chinese advanced maternal age with gestational diabetes mellitus // Acta Med. Mediterr. 2020. Vol. 36. No. 2. P. 1137–1142. DOI: 10.19193/0393-6384_2020_2_178

[79]

Chen T, Zhang Y, Zhang Y, et al. Relationships between gut microbiota, plasma glucose and gestational diabetes mellitus. J Diabetes Investig. 2021;12(4):641–650. DOI: 10.1111/jdi.13373

[80]

Chen T., Zhang Y., Zhang Y., et al. Relationships between gut microbiota, plasma glucose and gestational diabetes mellitus // J. Diabetes Investig. 2021. Vol. 12. No. 4. P. 641–650. DOI: 10.1111/jdi.13373

[81]

Wen H, Gris D, Lei Y, et al. Fatty acid-induced NLRP3-ASC inflammasome activation interferes with insulin signaling. Nat Immunol. 2011;12(5):408–415. DOI: 10.1038/ni.2022

[82]

Wen H., Gris D., Lei Y., et al. Fatty acid-induced NLRP3-ASC inflammasome activation interferes with insulin signaling // Nat. Immunol. 2011. Vol. 12. No. 5. P. 408–415. DOI: 10.1038/ni.2022

[83]

Progatzky F, Sangha NJ, Yoshida N, et al. Dietary cholesterol directly induces acute inflammasome-dependent intestinal inflammation. Nat Commun. 2014;5. DOI: 10.1038/ncomms6864

[84]

Progatzky F., Sangha N.J., Yoshida N., et al. Dietary cholesterol directly induces acute inflammasome-dependent intestinal inflammation // Nat. Commun. 2014. Vol. 5. DOI: 10.1038/ncomms6864

[85]

Volkova NI, Naboka YL, Ganenko LA, et al. A feature of the microbiota of the colon in patients with different phenotypes of obesity (pilot study). Medical Herald of the South of Russia. 2020;11(2):38–45. (In Russ.) DOI: 10.21886/2219-8075-2020-11-2-38-45

[86]

Волкова Н.И., Набока Ю.Л., Ганенко Л.А., и др. Особенность микробиоты толстой кишки у пациентов с разными фенотипами ожирения (пилотное исследование) // Медицинский вестник Юга России. 2020. Т. 11. № 2. С. 38–45. DOI: 10.21886/2219-8075-2020-11-2-38-45

RIGHTS & PERMISSIONS

Eсо-Vector

AI Summary AI Mindmap
PDF

70

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/