Clinical and immunological criteria for the use of intravenous immunoglobulins in women with reproductive failures
Alana O. Agnaeva , Olesya N. Bespalova , Dmitry I. Sokolov , Valentina A. Mikhailova , Sergey V. Chepanov , Sergey A. Selkov , Igor Yu. Kogan
Journal of obstetrics and women's diseases ›› 2023, Vol. 72 ›› Issue (4) : 37 -46.
Clinical and immunological criteria for the use of intravenous immunoglobulins in women with reproductive failures
BACKGROUND: In obstetrics and reproductive medicine, the use of intravenous immunoglobulin remains controversial. There are no clearly developed indications for immunoglobulins therapy. The search for immunological criteria for prescribing this therapy is an urgent task
AIM: The aim of this study was to evaluate the effectiveness of the use of intravenous immunoglobulins in the complex therapy of women with multiple reproductive losses associated with changes in the quantitative and functional parameters of natural killer cells.
MATERIALS AND METHODS: Group 1 consisted of 61 women with recurrent miscarriage; group 2 involved 40 women with two or more in vitro fertilization failures, while group 3 comprised 27 healthy fertile individuals. The activity of blood natural killer cells was assessed by CD107a expression before and after activation. Patients with altered natural killer cell activity received intravenous immunoglobulins therapy under the control of the dynamics of immunological parameters.
RESULTS: The number of natural killer cells that expressed CD107a before and after activation differed between the study groups. In patients receiving intravenous immunoglobulins, gestational complications were observed less frequently, with the incidence of biochemical pregnancy being higher.
CONCLUSIONS: In patients with early reproductive failures (such as recurrent miscarriage and in vitro fertilization failures) and immunological abnormalities in the form of altered Natural killer cell activity, the use of intravenous immunoglobulins has an immunomodulatory and clinical effect.
habitual miscarriage / in vitro fertilization failure / natural killer cells / CD107a / intravenous immunoglobulins
| [1] |
Recurrent pregnancy loss: causes, controversies and treatment. Ed. by H. Carp. New York: CRC Press; 2000. DOI: 10.1201/9780429450303 |
| [2] |
Recurrent pregnancy loss: causes, controversies and treatment / ed. by H. Carp. New York: CRC Press, 2000. DOI: 10.1201/9780429450303 |
| [3] |
Makrigiannakis A, Petsas G, Toth B, et al. Recent advances in understanding immunology of reproductive failure. J Reprod Immunol. 2011;90(1):96–104. DOI: 10.1016/j.jri.2011.03.006 |
| [4] |
Makrigiannakis A., Petsas G., Toth B., et al. Recent advances in understanding immunology of reproductive failure // J. Reprod. Immunol. 2011. Vol. 90. No. 1. P. 96–104. DOI: 10.1016/j.jri.2011.03.006 |
| [5] |
Bashiri A, Halper KI, Orvieto R. Recurrent implantation failure-update overview on etiology, diagnosis, treatment and future directions. Reprod Biol Endocrinol. 2018;16(1). DOI: 10.1186/s12958-018-0414-2 |
| [6] |
Bashiri A., Halper K.I., Orvieto R.. Recurrent Implantation failure-update overview on etiology, diagnosis, treatment and future directions // Reprod. Biol. Endocrinol. 2018. Vol. 16. No. 1. DOI: 10.1186/s12958-018-0414-2 |
| [7] |
Coughlan C, Ledger W, Wang Q, et al. Recurrent implantation failure: definition and management. Reprod Biomed Online. 2014;28(1):14–38. DOI: 10.1016/j.rbmo.2013.08.011 |
| [8] |
Coughlan C., Ledger W., Wang Q., et al. Recurrent implantation failure: definition and management // Reprod. Biomed. Online. 2014. Vol. 28. No. 1. P. 14–38. DOI: 10.1016/j.rbmo.2013.08.011 |
| [9] |
Brosens I, Puttemans P, Benagiano G. Placental bed research: I. The placental bed: from spiral arteries remodeling to the great obstetrical syndromes. Am J Obstet Gynecol. 2019;221(5):437–456. DOI: 10.1016/j.ajog.2019.05.044 |
| [10] |
Brosens I., Puttemans P., Benagiano G. Placental bed research: I. The placental bed: from spiral arteries remodeling to the great obstetrical syndromes // Am. J. Obstet. Gynecol. 2019. Vol. 221. No. 5. P. 437–456. DOI: 10.1016/j.ajog.2019.05.044 |
| [11] |
Kwak-Kim J, Sung N, Saab W, et al. Introduction of the special issue, “Clinical reproductive immunology”. Am J Reprod Immunol. 2021;85(4). DOI: 10.1111/aji.13415 |
| [12] |
Kwak-Kim J., Sung N., Saab W., et al. Introduction of the special issue, “Clinical reproductive immunology” // Am. J. Reprod. Immunol. 2021. Vol. 85. No. 4. DOI: 10.1111/aji.13415 |
| [13] |
Koopman LA, Kopcow HD, Rybalov B, et al. Human decidual natural killer cells are a unique NK cell subset with immunomodulatory potential. J Exp Med. 2003;198(8):1201–1212. DOI: 10.1084/jem.20030305 |
| [14] |
Koopman L.A., Kopcow H.D., Rybalov B., et al. Human decidual natural killer cells are a unique NK cell subset with immunomodulatory potential // J. Exp. Med. 2003. Vol. 198. No. 8. P. 1201–1212. DOI: 10.1084/jem.20030305 |
| [15] |
Beer AE, Kwak JY, Ruiz JE. Immunophenotypic profiles of peripheral blood lymphocytes in women with recurrent pregnancy losses and in infertile women with multiple failed in vitro fertilization cycles. Am J Reprod Immunol. 1996;35(4):376–382. DOI: 10.1111/j.1600-0897.1996.tb00497.x |
| [16] |
Beer A.E., Kwak J.Y., Ruiz J.E. Immunophenotypic profiles of peripheral blood lymphocytes in women with recurrent pregnancy losses and in infertile women with multiple failed in vitro fertilization cycles // Am. J. Reprod. Immunol. 1996. Vol. 35. No. 4. P. 376–382. DOI: 10.1111/j.1600-0897.1996.tb00497.x |
| [17] |
Sacks G, Yang Y, Gowen E, et al. Detailed analysis of peripheral blood natural killer cells in women with repeated IVF failure. Am J Reprod Immunol. 2012;67(5):434–442. DOI: 10.1111/j.1600-0897.2012.01105.x |
| [18] |
Sacks G., Yang Y., Gowen E., et al. Detailed analysis of peripheral blood natural killer cells in women with repeated IVF failure // Am. J. Reprod. Immunol. 2012. Vol. 67. No. 5. P. 434–442. DOI: 10.1111/j.1600-0897.2012.01105.x |
| [19] |
Perricone C, De Carolis C, Giacomelli R, et al. High levels of NK cells in the peripheral blood of patients affected with anti-phospholipid syndrome and recurrent spontaneous abortion: a potential new hypothesis. Rheumatology (Oxford). 2007;46(10):1574–1578. DOI: 10.1093/rheumatology/kem197 |
| [20] |
Perricone C., De Carolis C., Giacomelli R., et al. High levels of NK cells in the peripheral blood of patients affected with anti-phospholipid syndrome and recurrent spontaneous abortion: a potential new hypothesis // Rheumatology (Oxford). 2007. Vol. 46. No. 10. P. 1574–1578. DOI: 10.1093/rheumatology/kem197 |
| [21] |
Recurrent pregnancy loss evidence-based evaluation, diagnosis and treatment. Ed. by A. Bashiri, A. Harlev, A. Agarwal. New York: Springer International Publishing; 2016. DOI: 10.1007/978-3-319-27452-2 |
| [22] |
Recurrent pregnancy loss evidence-based evaluation, diagnosis and treatment / ed. by A. Bashiri, A. Harlev, A. Agarwal. New York: Springer International Publishing, 2016. DOI: 10.1007/978-3-319-27452-2 |
| [23] |
Tang AW, Alfirevic Z, Quenby S. Natural killer cells and pregnancy outcomes in women with recurrent miscarriage and infertility: a systematic review. Hum Reprod. 2011;26(8):1971–1980. DOI: 10.1093/humrep/der164 |
| [24] |
Tang A.W., Alfirevic Z., Quenby S. Natural killer cells and pregnancy outcomes in women with recurrent miscarriage and infertility: a systematic review // Hum. Reprod. 2011. Vol. 26. No. 8. P. 1971–1980. DOI: 10.1093/humrep/der164 |
| [25] |
Seshadri S, Sunkara SK. Natural killer cells in female infertility and recurrent miscarriage: a systematic review and meta-analysis. Hum Reprod Update. 2014;20(3):429–438. DOI: 10.1093/humupd/dmt056 |
| [26] |
Seshadri S., Sunkara S.K. Natural killer cells in female infertility and recurrent miscarriage: a systematic review and meta-analysis // Hum. Reprod. Update. 2014. Vol. 20. No. 3. P. 429–438. DOI: 10.1093/humupd/dmt056 |
| [27] |
Ushkalova EA, Shifman EM. A problem in the unregulated use of intravenous immunoglobulin in obstetrics. Obstetrics and Gynecology. 2011;(3):74–80. (In Russ.) |
| [28] |
Ушкалова Е.А. Шифман Е.М. Проблема нерегламентированного применения иммуноглобулина для внутривенного введения в акушерстве // Акушерство и Гинекология. 2011. № 3. C. 6–11. |
| [29] |
Stephenson MD, Fluker MR. Treatment of repeated unexplained in vitro fertilization failure with intravenous immunoglobulin: a randomized, placebo-controlled Canadian trial. Fertil Steril. 2000;74(6):1108–1113. DOI: 10.1016/s0015-0282(00)01622-8 |
| [30] |
Stephenson M.D., Fluker M.R. Treatment of repeated unexplained in vitro fertilization failure with intravenous immunoglobulin: a randomized, placebo-controlled Canadian trial // Fertil. Steril. 2000. Vol. 74. No. 6. P. 1108–1113. DOI: 10.1016/s0015-0282(00)01622-8 |
| [31] |
Porter TF, LaCoursiere Y, Scott JR. Immunotherapy for recurrent miscarriage. Cochrane Database Syst Rev. 2006;(2). DOI: 10.1002/14651858.CD000112.pub2 |
| [32] |
Porter T.F., LaCoursiere Y., Scott J.R. Immunotherapy for recurrent miscarriage // Cochrane Database Syst Rev. 2006. No. 2. DOI: 10.1002/14651858.CD000112.pub2 |
| [33] |
Wong LF, Porter TF, Scott JR. Immunotherapy for recurrent miscarriage. Cochrane Database Syst Rev. 2014;2014(10). DOI: 10.1002/14651858.CD000112.pub3 |
| [34] |
Wong L.F., Porter T.F., Scott J.R. Immunotherapy for recurrent miscarriage // Cochrane. Database Syst. Rev. 2014. Vol. 2014. No. 10. DOI: 10.1002/14651858.CD000112.pub3 |
| [35] |
Saab W, Seshadri S, Huang C, et al. A systemic review of intravenous immunoglobulin G treatment in women with recurrent implantation failures and recurrent pregnancy losses. Am J Reprod Immunol. 2021;85(4). DOI: 10.1111/aji.13395 |
| [36] |
Saab W., Seshadri S., Huang C., et al. A systemic review of intravenous immunoglobulin G treatment in women with recurrent implantation failures and recurrent pregnancy losses // Am. J. Reprod. Immunol. 2021. Vol. 85. No. 4. DOI: 10.1111/aji.13395 |
| [37] |
Hutton B, Sharma R, Fergusson D, et al. Use of intravenous immunoglobulin for treatment of recurrent miscarriage: a systematic review. BJOG. 2007;114(2):134–142. DOI: 10.1111/j.1471-0528.2006.01201.x |
| [38] |
Hutton B., Sharma R., Fergusson D., et al. Use of intravenous immunoglobulin for treatment of recurrent miscarriage: a systematic review // BJOG. 2007. Vol. 114. No. 2. P. 134–142. DOI: 10.1111/j.1471-0528.2006.01201.x |
| [39] |
Coulam CB, Acacio B. Does immunotherapy for treatment of reproductive failure enhance live births? Am J Reprod Immunol. 2012;67(4):296–304. DOI: 10.1111/j.1600-0897.2012.01111.x |
| [40] |
Coulam C.B., Acacio B. Does immunotherapy for treatment of reproductive failure enhance live births? // Am. J. Reprod. Immunol. 2012. Vol. 67. No. 4. P. 296–304. DOI: 10.1111/j.1600-0897.2012.01111.x |
| [41] |
Achilli C, Duran-Retamal M, Saab W, et al. The role of immunotherapy in in vitro fertilization and recurrent pregnancy loss: a systematic review and meta-analysis. Fertil Steril. 2018;110(6):1089–1100. DOI: 10.1016/j.fertnstert.2018.07.004 |
| [42] |
Achilli C., Duran-Retamal M., Saab W., et al. The role of immunotherapy in in vitro fertilization and recurrent pregnancy loss: a systematic review and meta-analysis // Fertil Steril. 2018. Vol. 110. No. 6. P. 1089–1100. DOI: 10.1016/j.fertnstert.2018.07.004 |
| [43] |
Graphou O, Chioti A, Pantazi A, et al. Effect of intravenous immunoglobulin treatment on the Th1/Th2 balance in women with recurrent spontaneous abortions. Am J Reprod Immunol. 2003;49(1):21–29. DOI: 10.1034/j.1600-0897.2003.01169.x |
| [44] |
Graphou O., Chioti A., Pantazi A., et al. Effect of intravenous immunoglobulin treatment on the Th1/Th2 balance in women with recurrent spontaneous abortions // Am. J. Reprod. Immunol. 2003. Vol. 49. No. 1. P. 21–29. DOI: 10.1034/j.1600-0897.2003.01169.x |
| [45] |
Chugunova AA, Zainulina MS, Selutin AV, et al. The influence of immunomodulating therapy on clinical and laboratory results in pregnant women with antiphopholipid syndrome and recurrent pregnancy loss. Journal of Obstetrics and Women’s Diseases. 2011;(3):152–160. (In Russ.) |
| [46] |
Чугунова А.А., Зайнулина М.С., Селютин А.В., и др. Влияние иммуномодулирующей терапии на клинико-лабораторные показатели беременных с невынашиванием и антифосфолипидным синдромом // Журнал акушерства и женских болезней. 2011. Т. 60. № 3. С. 152–160. |
| [47] |
Ahmadi M, Ghaebi M, Abdolmohammadi-Vahid S, et al. NK cell frequency and cytotoxicity in correlation to pregnancy outcome and response to IVIG therapy among women with recurrent pregnancy loss. J Cell Physiol. 2019;234(6):9428–9437. DOI: 10.1002/jcp.27627 |
| [48] |
Ahmadi M., Ghaebi M., Abdolmohammadi-Vahid S., et al. NK cell frequency and cytotoxicity in correlation to pregnancy outcome and response to IVIG therapy among women with recurrent pregnancy loss // J. Cell Physiol. 2019. Vol. 234. No. 6. P. 9428–9437. DOI: 10.1002/jcp.27627 |
| [49] |
Reed JL, Winger EE. IVIg therapy increases delivery birthweight in babies born to women with elevated preconception proportion of peripheral blood (CD56+/CD3–) natural killer cells. Clin Exp Obstet Gynecol. 2017;44(3):384–391. |
| [50] |
Reed J.L., Winger E.E. IVIg therapy increases delivery birthweight in babies born to women with elevated preconception proportion of peripheral blood (CD56+/CD3–) natural killer cells // Clin. Exp. Obstet. Gynecol. 2017. Vol. 44. No. 3. P. 384–391. |
| [51] |
Lash GE, Otun HA, Innes BA, et al. Interferon-gamma inhibits extravillous trophoblast cell invasion by a mechanism that involves both changes in apoptosis and protease levels. FASEB J. 2006;20(14):2512–2518. DOI: 10.1096/fj.06-6616com |
| [52] |
Lash G.E., Otun H.A., Innes B.A., et al. Interferon-gamma inhibits extravillous trophoblast cell invasion by a mechanism that involves both changes in apoptosis and protease levels // FASEB J. 2006. Vol. 20. No. 14. P. 2512–2518. DOI: 10.1096/fj.06-6616com |
| [53] |
Uterine endometrial function. Ed. by H. Kanzaki. Osaka: Springer Japan; 2016. DOI: 10.1007/978-4-431-55972-6 |
| [54] |
Uterine endometrial function / ed. by H. Kanzaki. Osaka: Springer Japan, 2016. DOI: 10.1007/978-4-431-55972-6 |
| [55] |
Srikrishna G, Freeze HH. Endogenous damage-associated molecular pattern molecules at the crossroads of inflammation and cancer. Neoplasia. 2009;11(7):615–628. DOI: 10.1593/neo.09284 |
| [56] |
Srikrishna G., Freeze H.H. Endogenous damage-associated molecular pattern molecules at the crossroads of inflammation and cancer // Neoplasia. 2009. Vol. 11. No. 7. P. 615–628. DOI: 10.1593/neo.09284 |
| [57] |
Horton NC, Mathew PA. NKp44 and natural cytotoxicity receptors as damage-associated molecular pattern recognition receptors. Front Immunol. 2015;6. DOI: 10.3389/fimmu.2015.00031 |
| [58] |
Horton N.C., Mathew P.A. NKp44 and natural cytotoxicity receptors as damage-associated molecular pattern recognition receptors // Front. Immunol. 2015. Vol. 6. P. 31. DOI: 10.3389/fimmu.2015.00031 |
| [59] |
Tao Y, Li YH, Piao HL, et al. CD56(bright)CD25+ NK cells are preferentially recruited to the maternal/fetal interface in early human pregnancy. Cell Mol Immunol. 2015;12(1):77–86. DOI: 10.1038/cmi.2014.26 |
| [60] |
Tao Y., Li Y.H., Piao H.L., et al. CD56(bright)CD25+ NK cells are preferentially recruited to the maternal/fetal interface in early human pregnancy // Cell. Mol. Immunol. 2015. Vol. 12. No. 1. P. 77–86. DOI: 10.1038/cmi.2014.26 |
Eсо-Vector
/
| 〈 |
|
〉 |