Serotonin and cyclic sleep organization in full-term newborn infants with intrauterine growth retardation

Natalia A. Zvereva , Yuliya P. Milyutina , Alexander V. Arutjunyan , Inna I. Evsyukova

Journal of obstetrics and women's diseases ›› 2022, Vol. 71 ›› Issue (6) : 5 -14.

PDF
Journal of obstetrics and women's diseases ›› 2022, Vol. 71 ›› Issue (6) : 5 -14. DOI: 10.17816/JOWD112611
Original study articles
research-article

Serotonin and cyclic sleep organization in full-term newborn infants with intrauterine growth retardation

Author information +
History +
PDF

Abstract

BACKGROUND: The high frequency of neurological and mental diseases in children who had intrauterine retardatiojn development indicates the need to study specific markers of disorders of fetal brain functional development, in particular, the state of the serotonergic system, which plays a key role in the morpho-functional development of the brain in early ontogenesis.

AIM: To study the content of serotonin in full-term newborns with intrauterine development delay in comparison with quantitative and qualitative characteristics of sleep.

MATERIALS AND MЕTHODS: The main group consisted of 26 newborns, whose intrauterine development took place in conditions of chronic placental insufficiency, which led to the formation of an asymmetric form of intrauterine retardatiojn development. The control group consisted of 72 healthy newborns from healthy mothers without pregnancy complications. Children of each group are divided into three subgroups depending on gestational age: I — 37, II — 38, III — 39–40 weeks. In all children, 7–12 hours after birth, an electropoligram of sleep was recorded (an electroencephalograph of the company “Mizar”, Russia) and its quantitative and qualitative analyses were carried out, highlighting the orthodox, paradoxical phase and undifferentiated state. The serotonin content was determined in platelet-rich plasma of blood from the umbilical cord vein after birth, as well as in a platelet suspension prepared from venous blood taken on the first day of life. The content of serotonin in platelets was judged by the indicator obtained by dividing the amount of serotonin in the platelet suspension by the platelet level. The amount of serotonin was determined by high-performance liquid chromatography with electrochemical detection. Statistical analysis was performed using the Statistica 6 program (Statsoft Inc, USA).

RESULTS: We report here a low content of serotonin in platelet-rich plasma and platelets of newborns with intrauterine growth retardation and the absence of its normal increase in weeks 37–39 of intrauterine development, as well as a violation of the genetic programming for the sleep-wake cycle organization.

CONCLUSIONS: Assessment of the serotonin-producing system of the brain in comparison with the newborn sleep pattern can serve as a diagnostic marker of brain damage and substantiate the need for timely application of neuroprotection.

Keywords

newborns / intrauterine growth retardation / serotonin / platelets / electropolygram sleep

Cite this article

Download citation ▾
Natalia A. Zvereva, Yuliya P. Milyutina, Alexander V. Arutjunyan, Inna I. Evsyukova. Serotonin and cyclic sleep organization in full-term newborn infants with intrauterine growth retardation. Journal of obstetrics and women's diseases, 2022, 71(6): 5-14 DOI:10.17816/JOWD112611

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Öztürk HNO, Türker PF. Fetal programming: could intrauterin life affect health status in adulthood? Obstet Gynecol Sci. 2021;64(6):473–483. DOI: 10.5468/ogs.21154

[2]

Öztürk H.N.O., Türker P.F. Fetal programming: could intrauterin life affect health status in adulthood? // Obstet. Gynecol. Sci. 2021. Vol. 64. No. 6. P. 473–483. DOI: 10.5468/ogs.21154

[3]

Olfson M, Blanco C, Wang S, et al. National trends in the mental health care of children, adolescents, and adults by office-based physicians. JAMA Psychiatry. 2014;71(1):81–90. DOI: 10.1001/jamapsychiatry.2013.3074

[4]

Olfson M., Blanco C., Wang S., et al. National trends in the mental health care of children, adolescents, and adults by office-based physicians // JAMA Psychiatry. 2014. Vol. 71. No. 1. P. 81–90. DOI: 10.1001/jamapsychiatry.2013.3074

[5]

Gumusoglu SB, Chilukuri ASS, Santillan DA, et al. Neurodevelopmental outcomes of prenatal preeclampsia exposure. Trends Neurosci. 2020;43(4):253–268. DOI: 10.1016/j.tins.2020.02.003

[6]

Gumusoglu S.B., Chilukuri A.S.S., Santillan D.A., et al. Neurodevelopmental outcomes of prenatal preeclampsia exposure // Trends Neurosci. 2020. Vol. 43. No. 4. P. 253–268. DOI: 10.1016/j.tins.2020.02.003

[7]

Evsyukova II. Cerebral disorders and consequences of delayed intrauterine development of a full-term baby: the role of oxidative stress and melatonin. Human Physiology. 2022;48(3):340–345. (In Russ.). DOI: 10.31857/S0131164622030055

[8]

Евсюкова И.И. Церебральные нарушения и последствия при задержке внутриутробного развития доношенного ребенка: роль окислительного стресса и мелатонина // Физиология человека. 2022. Т. 48. № 3. С. 1–7. DOI: 10.31857/S0131164622030055

[9]

Morris G, Fernandes BS, Puri BK, et al. Leaky brain in neurological and psychiatric disorders: drivers and consequences. Aust N Z J Psychiatry. 2018;52(10):924–948. DOI: 10.1177/0004867418796955

[10]

Morris G., Fernandes B.S., Puri B.K., et al. Leaky brain in neurological and psychiatric disorders: drivers and consequences // Aust. N. Z. J. Psyhiatry. 2018. Vol. 52. No. 10. P. 924–948. DOI: 10.1177/0004867418796955

[11]

Wang Y, Fu W, Liu J. Neurodevelopment in children with intrauterine growth restriction: adverse effects and interventions. J Matern Fetal Neonatal Med. 2016;29(4):660–668. DOI: 10.3109/14767058.2015.1015417

[12]

Wang Y., Fu W., Liu J. Neurodevelopment in children with intrauterine growth restriction: adverse effects and interventions // J. Matern. Fetal. Neonatal. Med. 2016. Vol. 29. No. 4. P. 660–668. DOI: 10.3109/14767058.2015.1015417

[13]

Nardozza LM, Caetano AC, Zamarian AC, et al. Fetal growth restriction: current knowledge. Arch Gynecol Obstet. 2017;295(5):1061–1077. DOI: 10.1007/s00404-017-4341-9

[14]

Nardozza L.M., Caetano A.C., Zamarian A.C., et al. Fetal growth restriction: current knowledge // Arch. Gynecol. Obstet. 2017. Vol. 295. No. 5. P. 1061–1077. DOI: 10.1007/s00404-017-4341-9

[15]

Hartkopf J, Schleger F, Keune J, et al. Impact of intrauterine growth restriction on cognitive and motor development at 2 years of age. Front Physiol. 2018;9. DOI: 10.3389/fphys.2018.01278

[16]

Hartkopf J., Schleger F., Keune J., et al. Impact of intrauterine growth restriction on cognitive and motor development at 2 years of age // Front. Physiol. 2018. Vol. 9. DOI: 10.3389/fphys.2018.01278

[17]

Sacchi C, Marino C, Nosarti C, et al. Association of intrauterine growth restriction and small for gestational age status with childhood cognitive outcomes: a systematic review and meta-analysis. JAMA Pediatr. 2020;174(8):772–781. DOI: 10.1001/jamapediatrics.2020.1097

[18]

Sacchi C., Marino C., Nosarti C., et al. Association of intrauterine growth restriction and small for gestational age status with childhood cognitive outcomes: a systematic review and meta-analysis // JAMA Pediatr. 2020. Vol. 174. No. 8. P. 772–781. DOI: 10.1001/jamapediatrics.2020.1097

[19]

Korkalainen N, Partanen L, Räsänen J, et al. Fetal hemodynamics and language skills in primary school-aged children with fetal growth restriction: a longitudinal study. Early Hum Dev. 2019;134:34–40. DOI: 10.1016/j.earlhumdev.2019.05.019

[20]

Korkalainen N., Partanen L., Rasanen L., et al. Fetal hemodynamics and language skills in primary schoolaged children with fetal growth restriction: a longitudinal study // Early Hum. Dev. 2019. Vol. 134. P. 34–40. DOI: 10.1016/j.earlhumdev.2019.05.019

[21]

Baschat AA. Neurodevelopment after fetal growth restriction. Fetal Diagn Ther. 2014;36(2):136–142. DOI: 10.1159/000353631

[22]

Baschat A.A. Neurodevelopment after fetal growth restriction // Fetal Diagn. Ther. 2014. Vol. 36. No. 2. P. 136–142. DOI: 10.1159/000353631

[23]

Armengaud JB, Yzydorczyk C, Siddeek B, et al. Intrauterine growth restriction: clinical consequences on health and disease at adulthood. Reprod Toxicol. 2021;99:168–176. DOI: 10.1016/j.reprotox.2020.10.005

[24]

Armengaud J.B., Yzydorczyk. C., Siddeek B., et al. Intrauterine growth restriction: Clinical consequences on health and disease at adulthood // Reprod. Toxicol. 2021. Vol. 99. P. 168–176. DOI: 10.1016/j.reproto.2020.10.005

[25]

Kepser LJ, Homberg JR. The neurodevelopmental effects of serotonin: a behavioural perspective. Behav Brain Res. 2015;277:3–13. DOI: 10.1016/j.bbr.2014.05.022

[26]

Kepser L.J., Homberg J.R. The neurodevelopmental effects of serotonin: a behavioural perspective // Behav. Brain Res. 2015. Vol. 277. P. 3–13. DOI: 10.1016/j.bbr.2014.05.022

[27]

Sidorova IS, Nikitina NA, Unanyan AL, et al. Development of the human fetal brain and the influence of prenatal damaging factors on the main stages of neurogenesis. Russian Bulletin of Obstetrician-Gynecologist. 2022;22(1):35-44. (In Russ.). DOI: 10.17116/rosakush20222201135

[28]

Сидорова И.С., Никитина Н.А., Унанян А.Л., и др. Развитие головного мозга плода и влияние пренатальных повреждающих фкторов на основные этапы нейрогенеза // Российский вестник акушера-гинеколога. 2022. Т. 22. № 1. С. 35–44. DOI: 10.17116/rosakush20222201135

[29]

Jenkins TA, Nguyen JC, Polglaze KE, et al. Influence of tryptophan and serotonin on mood and cognition with a possible role of the gut-brain axis. Nutrients. 2016;8(1). DOI: 10.3390/nu8010056

[30]

Jenkins T.A., Nguyen J.C., Polglaze K.E., et al. Influence of tryptophan and serotonin on mood and cognition with a possible role of the gut-brain axis // Nutrients. 2016. Vol. 8. No. 1. DOI: 10.3390/nu8010056

[31]

Evsyukova II. The cyclic organization of sleep in early ontogenesis in different conditions of intrauterine fetus development. Russian Journal of Physiology. 2013;99(2):166–174.

[32]

Евсюкова И.И. Фoрмирование циклической организации сна в раннем онтогенезе при различных условиях внутриутробного развития ребенка // Российский физиологический журнал им. И.М. Сеченова. 2013. Т. 99. № 2. С. 166–174.

[33]

Oreland L, Hallman J. Blood platelets as a peripheral marker for the central serotonin system. Nord J Psychiatry. 1989;43(20):43–51. DOI: 10.3109/08039488909100833

[34]

Oreland L., Hallman J. Blood platelets as a peripheral marker for the central serotonin system // Nordisk Psykiatrisk Tidsskrift. 1989. Vol. 43. Suppl. 20. P. 43–51. DOI: 10.3109/08039488909100833

[35]

Anderson GM, Czarkowski K, Ravski N, et al. Platelet serotonin in newborns and infants: ontogeny, heritability, and effect of in utero exposure to selective serotonin reuptake inhibitors. Pediatr Res. 2004;56(3):418–422. DOI: 10.1203/01.PDR.0000136278.23672.A0

[36]

Anderson G.M., Czarkowski K., Ravski N., et al. Platelet serotonin in newborns and infants: ontogeny, heritability, and effect of in utero // Ped. Res. 2004. Vol. 56. No. 3. P. 418–422. DOI: 10.1203/01.PDR.0000136278.23672.A0

[37]

Hazra M, Benson S, Sandler M. Blood 5-hydroxytryptamine levels in the newborn. Arch Dis Child. 1965;40(213):513–515. DOI:10.1136/adc.40.213.513

[38]

Hazra M., Benson S., Sandler M. Blood 5-hydroxytryptamine levels in the newborn // Arch. Dis. Child. 1965. Vol. 40. No. 213. P. 513–515. DOI: 10.1136/adc.40.213.513

[39]

Evsyukova II, Koval’chuk-Kovalevskaya OV, Maslyanyuk NA, et al. Osobennosti tsiklicheskoi organizatsii sna i produktsii melatonina u donoshennykh novorozhdennykh detei s zaderzhkoi vnutriutrobnogo razvitiya. Fiziologiya cheloveka. 2013;39(6):617–624. DOI: 10.7868/S0131164613060040

[40]

Евсюкова И.И., Ковальчук-Ковалевская О.В., Маслянюк Н.А., и др. Особенности циклической организации сна и продукции мелатонина у доношенных новорожденных детей с задержкой внутриутробного развития // Физиология человека. 2013. T. 39. № 6. C. 63–71. DOI: 10.7868/S0131164613060040

[41]

Ryukert EN. Osobennosti funktsionirovaniya serotoninergicheskoy i opiodnoy sistem u detey pervykh mesyatsev zhizni s gipoksicheski ishemicheskim porazheniem TsNS, vzaimosvyaz’ s temperamentom. [dissertation abstract]. Moscow; 2007. [cited 2022 Nov 12]. Available from: https://www.dissercat.com/content/osobennosti-funktsionirovaniya-serotoninergicheskoi-i-opiodnoi-sistem-u-detei-pervykh-mesyat

[42]

Рюкерт Е.Н. Особенности функционирования серотонинергической и опиодной систем у детей первых месяцев жизни с гипоксически ишемическим поражением ЦНС, взаимосвязь с темпераментом: автореф. дис. ... канд. мед. наук. Москва, 2007. [дата обращения 12.11.2022]. Доступно по ссылке: https://www.dissercat.com/content/osobennosti-funktsionirovaniya-serotoninergicheskoi-i-opiodnoi-sistem-u-detei-pervykh-mesyat

[43]

Berezhanskaya SB, Luk’yanova EA. Level of serum biogenous amines in children with perinatal hypoxic-ishemic and traumatic central nervous system lesion. Pediatriya. 2002;81(1):23–26.

[44]

Бережанская С.Б., Лукьянова Е.А. Уровень биогенных аминов в крови детей с перинатальным гипоксически-ишемическим и травматическим поражением ЦНС // Педиатрия. 2002. Т. 81. № 1. С. 23–26.

[45]

Miheeva IG, Ryukert EN, Brusov OS, et al. Serum serotonin level in neonates with hypoxic ischemic CNS. Pediatriya. Zhurnal im. G.N. Speranskogo. 2008;87(1):40–44.

[46]

Михеева И.Г., Рюкерт Е.Н., Брусов О.С., и др. Содержание серотонина в сыворотке крови новорожденных детей с гипоксически-ишемическим поражением ЦНС // Педиатрия. Журнал им. Г.Н. Сперанского. 2008. Т. 87. № 1. C. 40–44.

[47]

Gall V, Kosec V, Vranes HS, et al. Platelet serotonin concentration at term pregnancy and after birth: physiologic values for Croatian population. Coll Antropol. 2011;35(3):715–718.

[48]

Gall V., Košec V., Vraneš H.S., et al. Platelet serotonin concentration at term pregnancy and after birth: physiologic values for Croatian population // Coll. Antropol. 2011. Vol. 35. No. 3. P. 715–718.

[49]

Furs VV, Doroshenko EM. Nekotorye pokazateli obmena triptofana pri fiziologicheski protekayushchei beremennosti. Zhurnal Grodnenskogo gosudarstvennogo meditsinskogo universiteta. 2011;(4):36–38. (In Russ.)

[50]

Фурс В.В., Дорошенко Е.М. Некоторые показатели обмена триптофана при физиологически протекающей беременности // Журнал Гродненского государственного медицинского университета. 2011. № 4. C. 36–38.

[51]

Field T, Diego M, Hernandez-Reif M, et al. Prenatal serotonin and neonatal outcome: brief report. Infant Behav Dev. 2008;31(2):316–320. DOI: 10.1016/j.infbeh.2007.12.009

[52]

Field T., Diego M., Hernandez-Reif M., et al. Prenatal serotonin and neonatal outcome: brief report // Infant. Behav. Dev. 2008. Vol. 31. No. 2. P. 316–320. DOI: 10.1016/j.infbeh.2007.12.009

[53]

Rosenfeld CS. Placental serotonin signaling, pregnancy outcomes, and regulation of fetal brain development. Biol Reprod. 2020;102(3):532–538. DOI: 10.1093/biolre/ioz204

[54]

Rosenfeld C.S. Placental serotonin signaling, pregnancy outcomes, and regulation of fetal brain development† // Biol. Reprod. 2020. Vol. 102. No. 3. P. 532–538. DOI: 10.1093/biolre/ioz204

[55]

Kliman HJ, Quaratella SB, Setaro AC, et al. Pathway of maternal serotonin to the human embryo and fetus. Endocrinology. 2018;159(4):1609–1629. DOI: 10.1210/en.2017-03025

[56]

Kliman H.J., Quaratella S.B., Setaro A.C., et al. Pathway of maternal serotonin to the human embryo and fetus // Endocrinology. 2018. Vol. 159. No. 4. P. 1609–1629. DOI: 10.1210/en.2017-03025

[57]

Balija M, Bordukalo-Niksic T, Mokrovic G, et al. Serotonin level and serotonin uptake in human platelets: a variable interrelation under marked physiological influences. Clin Chim Acta. 2011;412(3–4):299–304. DOI: 10.1016/j.cca.2010.10.024

[58]

Balija M., Bordukalo-Niksic T., Mokrovic G., et al. Serotonin level and serotonin uptake in human platelets: a variable interrelation under marked physiological influences // Clin. Chim. Acta. 2011. Vol. 412. No. 3–4. P. 299–304. DOI: 10.1016/j.cca.2010.10.024

[59]

Brenner B, Harney JT, Ahmed BA, et al. Plasma serotonin levels and the platelet serotonin transporter. J Neurochem. 2007;102(1):206–215. DOI: 10.1111/j.1471-4159.2007.04542.x

[60]

Brenner В., Harney J.T., Ahmed B.A., et al. Plasma serotonin levels and the platelet serotonin transporter // J. Neurochem. 2007. Vol. 102. No. 1. P. 206–215. DOI: 10.1111/j.1471-4159.2007.04542.x

[61]

Baković P, Kesić M, Perić M, et al. Differential serotonin uptake mechanisms at the human maternal-fetal interface. Int J Mol Sci. 2021;22(15). DOI: 10.3390/ijms22157807

[62]

Bakovic P., Kesic M., Peric M., et al. Differential serotonin uptake mechanisms at the human maternal-fetal interface // Int. J. Mol. Sci. 2021. Vol. 22. No. 15. DOI: 10.3390/ijms22157807

[63]

Forstner D, Guettler J, Gauster M. Changes in maternal platelet physiology during gestation and their interaction with trophoblasts. Int J Mol Sci. 2021;22(19). DOI: 10.3390/ijms221910732

[64]

Forstner D., Guettler J., Gauster M. Changes in maternal platelet physiology during gestation and their interaction with trophoblasts // Int. J. Mol. Sci. 2021. Vol. 22. No. 19. DOI: 10.3390/ijms221910732

[65]

Mercado CP, Kilic F. Molecular mechanisms of SERT in platelets: regulation of plasma serotonin levels. Mol Interv. 2010;10(4):231–241. DOI: 10.1124/mi.10.4.6

[66]

Mercado C.P., Kilic F. Molecular mechanisms of SERT in platelets: regulation of plasma serotonin levels // Mol. Interv. 2010. Vol. 10. No. 4. P. 231–241. DOI: 10.1124/mi.10.4.6

[67]

Ye W, Xie L, Li C, et al. Impaired development of fetal serotonergic neurons in intrauterine growth restricted baboons. J Med Primatol. 2014;43(4):284–287. DOI: 10.1111/jmp.12116

[68]

Ye W., Xie L., Li C., et al. Impaired development of fetal serotonergic neurons in intrauterine growth restricted baboons // J. Med. Primatol. 2014. Vol. 43. No. 4. P. 284–287. DOI: 10.1111/jmp.12116

[69]

Laurent L, Deroy K, St-Pierre J, et al C. Human placenta expresses both peripheral and neuronal isoform of tryptophan hydroxylase. Biochimie. 2017;140:159–165. DOI: 10.1016/j.biochi.2017.07.008

[70]

Laurent L., Deroy K., St-Pierre J., et al. Human placenta express both peripheral and neuronal isoform of tryptophan hydroxylase // Biochime. 2017. Vol. 140. P. 159–165. DOI: 10.1016/j.biochi.2017.07.008

[71]

Bonnin A, Goeden N, Chen K, et al. A transient placental source of serotonin for the fetal forebrain. Nature. 2011;472(7343):347–350. DOI: 10.1038/nature09972

[72]

Bonnin A., Goeden N., Chen K., et al. A transient placental source of serotonin for the fetal forebrain // Nature. 2011. Vol. 472. No. 7343. P. 347–350. DOI: 10.1038/nature09972

[73]

Sundström E, Kölare S, Souverbie F, et al. Neurochemical differentiation of human bulbospinal monoaminergic neurons during the first trimester. Brain Res Dev Brain Res. 1993;75(1):1–12. DOI: 10.1016/0165-3806(93)90059-j

[74]

Sundström E., Kölare S., Souverbie F., et al. Neurochemical differentiation of human bulbospinal monoaminergic neurons during the first trimester // Brain Res. Dev. Brain. Res. 1993. Vol. 75. No. 1. P. 1–12. DOI: 10.1016/0165-3806(93)90059-36

[75]

Verney C, Lebrand C, Gaspar P. Changing distribution of monoaminergic markers in the developing human cerebral cortex with special emphasis on the serotonin transporter. Anat Rec. 2002;267(2):87–93. DOI: 10.1002/ar.10089

[76]

Verney C., Lebrand C., Gaspar P. Changing distribution of monoaminergic markers in the developing human cerebral cortex with special emphasis on the serotonin transporter // Anat. Rec. 2002. Vol. 267. No. 2. P. 87–93. DOI: 10.1002/ar.10089

[77]

Ranzil S, Walker DW, Borg AJ, et al. The relationship between the placental serotonin pathway and fetal growth restriction. Biochimie. 2019;161:80–87. DOI: 10.1016/j.biochi.2018.12.016

[78]

Ranzil S., Walker D.W., Borg A.J., et al. The relationship between the placental serotonin pathway and fetal growth restriction // Biochimie. 2019. Vol. 161. P. 80–87. DOI: 10.1016/j.biochi.2018.12.016

[79]

Yang CJ, Tan HP, Du YJ. The developmental disruptions of serotonin signaling may involved in autism during early brain development. Neuroscience. 2014;267:1–10. DOI: 10.1016/j.neuroscience.2014.02.021

[80]

Yang C.J., Tan H.P., Du Y.J. The developmental disruptions of serotonin signaling may involved in autism during early brain development // Neuroscience. 2014. Vol. 267. P. 1–10. DOI: 10.1016/j.neuroscience.2014.02.021

[81]

Brummelte S, Mc Glanaghy E, Bonnin A, et al. Developmental changes in serotonin signaling: Implications for early brain function, behavior and adaptation. Neuroscience. 2017;342:212–231. DOI: 10.1016/j.neuroscience.2016.02.037

[82]

Brummelte S., Mc Glanaghy E., Bonnin A., et al. Developmental changes in serotonin signaling: implications for early brain function, behavior and adaptation // Neuroscience. 2017. Vol. 342. P. 212–231. DOI: 10.1016/j.neuroscience.2016.02.037

[83]

Nasyrova DI, Sapronova AYa, Balbashev AV, et al. Razvitie tsentral’noi i perifericheskoi serotonin-produtsiruyushchikh sistem u krys v ontogeneze. Zhurnal evolyutsionnoi biokhimii i fiziologii. 2009;45(1):68–74. (In Russ.)

[84]

Насырова Д.И., Сапронова А.Я., Балбашев А.В., и др. Развитие центральной и периферической серотонин-продуцирующих систем у крыс в онтогенезе // Журнал эволюционной биохимии и физиологии. 2009. Т. 45. № 1. С. 68–74.

[85]

Roland CS, Hu J, Ren CE, et al. Morphological changes of placental syncytium and their implications for the pathogenesis of preeclampsia. Cell Mol Life Sci. 2016;73(2):365–376. DOI: 10.1007/s00018-015-2069-x

[86]

Roland C.S., Hu J., Ren C.E., et al. Morphological changes of placental syncytium and their implications for the pathogenesis of preeclampsia // Cell. Mol. Life Sci. 2016. Vol. 73. No. 2. P. 365–376. DOI: 10.1007/s00018-015-2069-x

[87]

Gumusoglu S, Scroggins S, Vignato J, et al. The serotonin-immune axis in preeclampsia. Curr Hypertens Rep. 2021;23(7):37. DOI: 10.1007/s11906-021-01155-4

[88]

Gumusoglu S., Scroggins S., Vignato J., et al. The serotonin-immune axis in preeclampsia // Curr Hypertens Rep. 2022. Vol. 23. No. 7. P. 37.DOI: 10.1007/s11906-021-01155-4

[89]

Liu D, Gao Q, Wang Y, et al. Placental dysfunction: the core mechanism for poor neurodevelopmental outcomes in the offspring of preeclampsia pregnancies. Placenta. 2022;126:224–232. DOI: 10.1016/j.placenta.2022.07.014

[90]

Liu D., Gao Q., Wang Y., et al. Placental dysfunction: the core mechanism for poor neurodevelopmental outcomes in the offspring of preeclampsia pregnancies // Placenta. 2022. Vol. 126. P. 224–232. DOI: 10.1016/j.placenta.2022.07.014

[91]

Rosenfeld CS. The placenta-brain-axis. J Neurosci Res. 2021;99(1):271–283. DOI: 10.1002/jnr.24603

[92]

Rosenfeld C.S. The placenta-brain-axis // J. Neurosci. Res. 2021. Vol. 99. No. 1. P. 271–283. DOI: 10.1002/jnr.24603

[93]

Shallie PD, Naicker T. The placenta as a window to the brain: a review on the role of placental markers in prenatal programming of neurodevelopment. Int J Dev Neurosci. 2019;73:41–49. DOI: 10.1016/j.ijdevneu.2019.01.003

[94]

Shallie P.D., Naicker T. The placenta as a window to the brain: a review on the role of placental markers in prenatal programming of neurodevelopment // Int. J. Dev. Neurosci. 2019. Vol. 73. No. 1. P. 41–49. DOI: 10.1016/j.ijdevneu.2019.01.003

[95]

Chrzanowska B, Wańkowicz B, Prokopczyk J. Serotonin concentration in the rat fetal brain in experimental intrauterine dystrophy. Probl Med Wieku Rozwoj. 1984;13:193–197.

[96]

Chrzanowska B., Wańkowicz B., Prokopczyk J. Serotonin concentration in the rat fetal brain in experimental intrauterine dystrophy // Probl. Med. Wieku Rozwoj. 1984. Vol. 13. P. 193–197.

[97]

Ye X, Shin BC, Baldauf C, et al. Developing brain glucose transporters, serotonin, serotonin transporter, and oxytocin receptor expression in response to early-life hypocaloric and hypercaloric dietary, and air pollutant exposures. Dev Neurosci. 2021;43(1):27–42. DOI: 10.1159/000514709

[98]

Ye X., Shin B.C., Baldauf C., et al. Developing brain glucose transporters, serotonin, serotonin transporter and oxytocin receptor expressionin response to early life hypocaloric, hypercaloric dietary and air pollutant exposures // Dev. Neurosci. 2021. Vol. 43. No. 1. P. 27–42. DOI: 10.1159/000514709

[99]

Homberg J, Mudde J, Braam B, et al. Blood pressure in mutant rats lacking the 5-hydroxytryptamine transporter. Hypertension. 2006;48(6):e115–e117. DOI: 10.1161/01.HYP.0000246306.61289.d8

[100]

Homberg J., Mudde J., Braam B., et al. Blood pressure in mutant rats lacking the 5-hydroxytryptamine transporter // Hypertension. 2006. Vol. 48. No. 6. P. 115–116. DOI: 10.1161/01.HYP.0000246306.61289.d8

[101]

Alenina N, Kikic D, Todiras M, et al. Growth retardation and altered autonomic control in mice lacking brain serotonin. Proc Natl Acad Sci USA. 2009;106(25):10332–10337. DOI: 10.1073/pnas.0810793106

[102]

Alenina N., Kikic D., Todiras M., et al. Growth retardation and altered autonomic control in mice lacking brain serotonin // Proc. Natl. Acad. Sci. USA. 2009. Vol. 106. No. 25. P. 10332–10337. DOI: 10.1073/pnas.0810793106

[103]

Hanswijk SI, Spoelder M, Shan L, et al. Gestational factors throughout fetal neurodevelopment: the serotonin link. Int J Mol Sci. 2020;21(16). DOI: 10.3390/ijms21165850

[104]

Hanswijk S.I., Spoelder M., Shan L., et al. Gestational factors throughout fetal neurodevelopment: the serotonin link // Int. J. Mol. Sci. 2020. Vol. 21. No. 16. DOI: 10.3390/ijms21165850

[105]

Sato K. Placenta-derived hypo-serotonin situations in the developing forebrain cause autism. Med Hypotheses. 2013;80(4):368–372. DOI: 10.1016/j.mehy.2013.01.002

[106]

Sato K. Placenta-derived hypo-serotonin situations in the developing forebrain cause autism // Med. Hypotheses. 2013. Vol. 80. No. 4. P. 368–372. DOI: 10.1016/j.mehy.2013.01.002

[107]

Sodhi MS, Sanders-Bush E. Serotonin and brain development. Int Rev Neurobiol. 2004;59:111–174. DOI: 10.1016/S0074-7742(04)59006-2

[108]

Sodhi M.S., Sanders-Bush E. Serotonin and brain development // Int. Rev. Neurobiol. 2004. Vol. 59. P. 111–174. DOI: 10.1016/S0074-7742(04)59006-2

[109]

Peirano P, Algarín C, Uauy R. Sleep-wake states and their regulatory mechanisms throughout early human development. J Pediatr. 2003;143(4):S70–S79. DOI: 10.1067/s0022-3476(03)00404-9

[110]

Peirano P., Algarín C., Uauy R. Sleep-wake states and their regulatory mechanisms throughout early human development // J. Pediatr. 2003. Vol. 143. No. 4. P. 70–79. DOI: 10.1067/s0022-3476(03)00404-9

[111]

Uchitel J, Vanhatalo S, Austin T. Early development of sleep and brain functional connectivity in term-born and preterm infants. Pediatr Res. 2022;91(4):771–786. DOI: 10.1038/s41390-021-01497-4

[112]

Uchitel J., Vanhatalo S., Austin T. Early development of sleep and brain functional connectivity in term-born and preterm infants // Pediatr. Res. 2022. Vol. 91. No. 4. P. 771–786. DOI: 10.1038/s41390-021-01497-4

RIGHTS & PERMISSIONS

Zvereva N.A., Milyutina Y.P., Arutjunyan A.V., Evsyukova I.I.

AI Summary AI Mindmap
PDF

113

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/