The role of polymorphisms in the genes of the hemostasis system and the folate-methionine cycle in the development of recurrent pregnancy loss

Larisa D. Belotserkovtseva , Lyudmila V. Kovalenko , Inna I. Mordovina , Maksim Yu. Donnikov , Aisel E. Babaeva

Journal of obstetrics and women's diseases ›› 2023, Vol. 72 ›› Issue (4) : 5 -14.

PDF
Journal of obstetrics and women's diseases ›› 2023, Vol. 72 ›› Issue (4) : 5 -14. DOI: 10.17816/JOWD112514
Original study articles
research-article

The role of polymorphisms in the genes of the hemostasis system and the folate-methionine cycle in the development of recurrent pregnancy loss

Author information +
History +
PDF

Abstract

BACKGROUND: Recurrent pregnancy loss is a serious clinical problem that complicates about 2% of pregnancies. There is evidence that thrombophilia and disorders of folate-methionine metabolism may cause recurrent pregnancy loss.

AIM: The aim of this study was to evaluate the contribution of polymorphic variants of the genes of the hemostasis system and the folate-methionine cycle in women with recurrent pregnancy loss.

MATERIALS AND METHODS: Clinical examination of 406 pregnant women divided into two study groups was carried out. The main study group consisted of 206 women with two or more pregnancy losses known up to 12 weeks of pregnancy; the control group included 200 apparently healthy women with a known history of two or more live births, no spontaneous or induced abortions, infertility, or endometriosis. All patients underwent a molecular genetic study of 12 single nucleotide polymorphisms in the genes of the hemostasis system and the folate-methionine cycle performed by real-time polymerase chain reaction.

RESULTS: We studied single nucleotide polymorphisms in eight genes involved in the hemostasis system and in four genes of the folate-methionine cycle. An association of presence of alternative variants such as 1565C (rs5918) of the ITGB3 integrin beta-3 gene and A66G (rs1801394) of the MTRR methionine synthase reductase gene with the development of recurrent pregnancy loss was found. The frequency of their occurrence was 29.1 and 77.7% in the recurrent pregnancy loss group vs. 12.0 and 49.0% in the control group, respectively (p < 0.01). The combined carriage of the alternative variants 1565C (rs5918) of the ITGB3 gene and A66G (rs1801394) of the MTRR gene in the recurrent pregnancy loss group was diagnosed more often than in the control group and amounted to 47 (22.8%) vs. 12 (6.0%) cases (φ = 5.047; p < 0.01; odds ratio 3.631; 95% confidence interval 2.374–9.034). We have thus developed a three-locus model of the synergetic action of allelic variants of the above genes in the development of recurrent pregnancy loss in early pregnancy [10976 G>A (rs6046) of the F7, −455 G>A (rs1800790) of the FGB, 1565 T>C (rs5918) of the ITGB3] with reproducibility of 8/10, sensitivity of 65.6%, and specificity of 68.8% (χ² = 15.7415, p < 0.0001; odds ratio 3.341, 95% confidence interval 1.824–6.118).

CONCLUSIONS: This study allows for confirming the hypothesis that the status of genetic variants of the ITGB3 and MTRR genes and the association of three single nucleotide polymorphisms: rs6046 of the F7, rs1800790 of the FGB, and rs5918 of the ITGB3 may be used as predictors of recurrent pregnancy loss development.

Keywords

recurrent pregnancy loss / single nucleotide polymorphism / integrin beta-3 gene / methionine synthase reductase gene

Cite this article

Download citation ▾
Larisa D. Belotserkovtseva, Lyudmila V. Kovalenko, Inna I. Mordovina, Maksim Yu. Donnikov, Aisel E. Babaeva. The role of polymorphisms in the genes of the hemostasis system and the folate-methionine cycle in the development of recurrent pregnancy loss. Journal of obstetrics and women's diseases, 2023, 72(4): 5-14 DOI:10.17816/JOWD112514

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Dimitriadis E, Menkhorst E, Saito S, et al. Recurrent pregnancy loss. Nat Rev Dis Primers. 2020;6(1):98. DOI: 10.1038/s41572-020-00228-z

[2]

Dimitriadis E., Menkhorst E., Saito S., et al. Recurrent pregnancy loss // Nat. Rev. Dis. Primers. 2020. Vol.6. No. 1. P. 98. DOI: 10.1038/s41572-020-00228-z

[3]

Downes K, Megy K, Duarte D, et al. Diagnostic high-throughput sequencing of 2396 patients with bleeding, thrombotic, and platelet disorders. Blood. 2019;134(23):2082–2091. DOI: 10.1182/blood.2018891192

[4]

Downes K., Megy K., Duarte D., et al. Diagnostic high-throughput sequencing of 2396 patients with bleeding, thrombotic, and platelet disorders // Blood. 2019. Vol. 134. No. 23. P. 2082–2091. DOI: 10.1182/blood.2018891192

[5]

Udumudi A, Lava C. Genetic markers for inherited thrombophilia related pregnancy loss and implantation failure in Indian population — implications for diagnosis and clinical management. J Matern Fetal Neonatal Med. 2022;35(25):9406–9414. DOI: 10.1080/14767058.2022.2038560

[6]

Udumudi A., Lava C. Genetic markers for inherited thrombophilia related pregnancy loss and implantation failure in Indian population — implications for diagnosis and clinical management // J. Matern. Fetal Neonatal. Med. 2022. Vol. 35. No. 25. P. 9406–9414. DOI: 10.1080/14767058.2022.2038560

[7]

Bespalova O, Bakleicheva M, Ivashchenko T, et al. Expression of HLA-G and KIR2DL4 receptor in chorionic villous in missed abortion. Gynecol Endocrinol. 2020;36(suppl):43–47. DOI: 10.1080/09513590.2020.1816716

[8]

Bespalova O., Bakleicheva M., Ivashchenko T., et al. Expression of HLA-G and KIR2DL4 receptor in chorionic villous in missed abortion // Gynecol. Endocrinol. 2020. Vol. 36 (suppl.). P. 43–47. DOI: 10.1080/09513590.2020.1816716

[9]

van Dijk MM, Kolte AM, Limpens J, et al. Recurrent pregnancy loss: diagnostic workup after two or three pregnancy losses? A systematic review of the literature and meta-analysis. Hum Reprod Update. 2020;26(3):356–367. DOI: 10.1093/humupd/dmz048

[10]

van Dijk M.M., Kolte A.M., Limpens J., et al. Recurrent pregnancy loss: diagnostic workup after two or three pregnancy losses? A systematic review of the literature and meta-analysis // Hum. Reprod. Update. 2020. Vol. 26. No. 3. P. 356–367. DOI: 10.1093/humupd/dmz048

[11]

Davenport WB, Kutteh WH. Inherited thrombophilias and adverse pregnancy outcomes: a review of screening patterns and recommendations. Obstet Gynecol Clin North Am. 2014;41(1):133–144. DOI: 10.1016/j.ogc.2013.10.005

[12]

Davenport W.B., Kutteh W.H. Inherited thrombophilias and adverse pregnancy outcomes: a review of screening patterns and recommendations // Obstet. Gynecol. Clin. North Am. 2014. Vol. 41. No. 1. P. 133–144. DOI: 10.1016/j.ogc.2013.10.005

[13]

Eslami MM, Khalili M, Soufizomorrod M, et al. Factor V Leiden 1691G > A mutation and the risk of recurrent pregnancy loss (RPL): systematic review and meta-analysis. Thromb J. 2020;18:11. DOI: 10.1186/s12959-020-00224-z

[14]

Eslami M.M., Khalili M., Soufizomorrod M., et al. Factor V Leiden 1691G > A mutation and the risk of recurrent pregnancy loss (RPL): systematic review and meta-analysis // Thromb. J. 2020. Vol. 18. P. 11. DOI: 10.1186/s12959-020-00224-z

[15]

Andreeva T, Komsa-Penkova R, Langari A, et al. Morphometric and nanomechanical features of platelets from women with early pregnancy loss provide new evidence of the impact of inherited thrombophilia. Int J Mol Sci. 2021;22(15). DOI: 10.3390/ijms22157778

[16]

Andreeva T., Komsa-Penkova R., Langari A., et al. Morphometric and nanomechanical features of platelets from women with early pregnancy loss provide new evidence of the impact of inherited thrombophilia // Int. J. Mol. Sci. 2021. Vol. 22. No. 15. DOI: 10.3390/ijms22157778

[17]

Zhao X, Zhao Y, Ping Y, et al. Association between gene polymorphism of folate metabolism and recurrent spontaneous abortion in Asia: a meta-analysis. Medicine (Baltimore). 2020;99(40). DOI: 10.1097/MD.0000000000021962

[18]

Zhao X., Zhao Y., Ping Y., et al. Association between gene polymorphism of folate metabolism and recurrent spontaneous abortion in Asia: a meta-analysis // Medicine (Baltimore). 2020. Vol. 99. No. 40. DOI: 10.1097/MD.0000000000021962

[19]

Talwar S, Prasad S, Kaur L, et al. MTR, MTRR and CBS Gene polymorphisms in recurrent miscarriages: a case control study from North India. J Hum Reprod Sci. 2022;15(2):191–196. DOI: 10.4103/jhrs.jhrs_186_21

[20]

Talwar S., Prasad S., Kaur L., et al. MTR, MTRR and CBS gene polymorphisms in recurrent miscarriages: a case control study from North India // J. Hum. Reprod. Sci. 2022. Vol. 15. No. 2. P. 191–196. DOI: 10.4103/jhrs.jhrs_186_21

[21]

Jivraj S, Rai R, Underwood J, et al. Genetic thrombophilic mutations among couples with recurrent miscarriage. Hum Reprod. 2006;21:1161–1165. DOI: 10.1093/humrep/dei466

[22]

Jivraj S., Rai R., Underwood J., et al. Genetic thrombophilic mutations among couples with recurrent miscarriage // Hum. Reprod. 2006. Vol. 21. P. 1161–1165. DOI: 10.1093/humrep/dei466

[23]

Deng Y-J, Liu S-J, Zhao M. Research trends and hotspots of recurrent pregnancy loss with thrombophilia: a bibliometric analysis. BMC Pregnancy Childbirth. 2022;22(1):944. DOI: 10.1186/s12884-022-05210-z

[24]

Deng Y-J., Liu S-J., Zhao M. Research trends and hotspots of recurrent pregnancy loss with thrombophilia: a bibliometric analysis // BMC Pregnancy Childbirth. 2022. Vol. 22. No. 1. P. 944. DOI: 10.1186/s12884-022-05210-z

[25]

Rey E, Kahn SR, David M, et al. Thrombophilic disorders and fetal loss: a meta-analysis. Lancet. 2003; 361:901–908. DOI: 10.1016/s0140-6736(03)12771-7

[26]

Rey E., Kahn S.R., David M., Shrier I. Thrombophilic disorders and fetal loss: a meta-analysis // Lancet. 2003. Vol. 361. P. 901–908. DOI: 10.1016/s0140-6736(03)12771-7

[27]

Colucci G, Tsakiris DA. Thrombophilia screening revisited: an issue of personalized medicine. Review J Thromb Thrombolysis. 2020;49(4):618–629. DOI: 10.1007/s11239-020-02090-y

[28]

Colucci G., Tsakiris D.A. Thrombophilia screening revisited: an issue of personalized medicine // Review J. Thromb. Thrombolysis. 2020. Vol. 49. No. 4. P. 618–629. DOI: 10.1007/s11239-020-02090-y

[29]

Barut MU, Bozhkurt M, Kahraman M, et al. Thrombophilia and recurrent pregnancy loss: the enigma continues. Med Sci Monit. 2018;24:4288–4294. DOI: 10.12659/MSM.908832

[30]

Barut M.U., Bozhkurt M., Kahraman M., et al. Thrombophilia and recurrent pregnancy loss: the enigma continues // Med. Sci. Monit. 2018. Vol. 24. P. 4288–4294. DOI: 10.12659/MSM.908832

[31]

Ahangari N, Doosti M, Mousavifar N, et al. Hereditary thrombophilia genetic variants in recurrent pregnancy loss. Arch Gynecol Obstet. 2019;300(3):777–782. DOI: 10.1007/s00404-019-05224-7

[32]

Ahangari N., Doosti M., Mousavifar N., et al. Hereditary thrombophilia genetic variants in recurrent pregnancy loss // Arch. Gynecol. Obstet. 2019. Vol. 300. No. 3. P. 777–782. DOI: 10.1007/s00404-019-05224-7

[33]

Turki RF, Assidi M, Banni HA, et al. Associations of recurrent miscarriages with chromosomal abnormalities, thrombophilia allelic polymorphisms and/or consanguinity in Saudi Arabia. BMC Med Genet. 2016;17(Suppl 1):69. DOI: 10.1186/s12881-016-0331-1

[34]

Turki R.F., Assidi M., Banni H.A., et al. Associations of recurrent miscarriages with chromosomal abnormalities, thrombophilia allelic polymorphisms and/or consanguinity in Saudi Arabia // BMC Med. Genet. 2016. Vol. 17(suppl. 1). P. 69. DOI: 10.1186/s12881-016-0331-1

[35]

Joksic I, Mikovic Z, Filimonovic D, et al. Combined presence of coagulation factor XIII V34L and plasminogen activator inhibitor 1 4G/5G gene polymorphisms significantly contribute to recurrent pregnancy loss in Serbian population. J Med Biochem. 2020;39(2):199–207. DOI: 10.2478/jomb-2019-0028

[36]

Joksic I., Mikovic Z., Filimonovic D., et al. Combined presence of coagulation factor XIII V34L and plasminogen activator inhibitor 1 4G/5G gene polymorphisms significantly contribute to recurrent pregnancy loss in Serbian population // J. Med. Biochem. 2020. Vol. 39. No. 2. P. 199–207. DOI: 10.2478/jomb-2019-0028

[37]

Khidri FF, Waryah YM, Ali FK, et al. MTHFR and F5 genetic variations have association with preeclampsia in Pakistani patients: a case control study. BMC Med Genet. 2019;20(1):163. DOI: 10.1186/s12881-019-0905-9

[38]

Khidri F.F., Waryah Y.M., Ali F.K., et al. MTHFR and F5 genetic variations have association with preeclampsia in Pakistani patients: a case control study // BMC Med. Genet. 2019. Vol. 20. No. 1. P. 163. DOI: 10.1186/s12881-019-0905-9

[39]

Zhang L, Fu H, Wei T. MTHFR gene polymorphism and homocysteine levels in spontaneous abortion of pregnant women. Am J Transl Res. 2021;13(6):7083–7088.

[40]

Zhang L., Fu H., Wei T., et al. MTHFR gene polymorphism and homocysteine levels in spontaneous abortion of pregnant women // Am. J. Transl. Res. 2021. Vol. 13. No. 6. P. 7083–7088.

[41]

Li WX, Cheng F, Zhang AJ, et al. Folate deficiency and gene polymorphisms of MTHFR, MTR and MTRR elevate the hyperhomocysteinemia risk. Clin Lab. 2017;63(3):523–533. DOI: 10.7754/Clin.Lab.2016.160917

[42]

Li W-X., Cheng F., Zhang A-J., et al. Folate deficiency and gene polymorphisms of MTHFR, MTR and MTRR elevate the hyperhomocysteinemia risk // Clin. Lab. 2017. Vol. 63. No. 3. P. 523–533. DOI: 10.7754/Clin.Lab.2016.160917

[43]

Bespalova ON, Zhernakova TS. Experience with Intralipid in early reproductive losses. Obstet and Gynecology. 2021;(11):194–201. (In Russ.) DOI: 10.18565/aig.2021.11.194-201

[44]

Беспалова О.Н., Жернакова Т.С. Опыт применения препарата Интралипид при ранних репродуктивных потерях // Акушерство и гинекология. 2021. № 11. С. 194–201. DOI: 10.18565/aig.2021.11.194-201

[45]

Makatsariya AD. Profilaktika povtornykh oslozhneniy beremennosti v usloviyakh trombofilii (sindrom poteri ploda, gestozy, prezhdevremennaya otsloyka normal’no raspolozhennoy platsenty, trombozy i tromboembolii). Rukovodstvo dlya vrachey. Moscow: Triada-X; 2011. (In Russ.)

[46]

Макацария А.Д. Профилактика повторных осложнений беременности в условиях тромбофилии (синдром потери плода, гестозы, преждевременная отслойка нормально расположенной плаценты, тромбозы и тромбоэмболии). Руководство для врачей. Москва: Триада-Х, 2011.

[47]

Carter AM, Catto AJ, Bamford JM, et al. Platelet GP IIIa PlA and GP Ib variable number tandem repeat polymorphisms and markers of platelet activation in acute stroke. Arterioscler Thromb Vasc Biol. 1998;18(7):1124–1131. DOI: 10.1161/01.atv.18.7.1124

[48]

Carter A.M., Catto A.J., Bamford J.M., et al. Platelet GP IIIaPlA and GP Ib variable number tandem repeat polymorphisms and markers of platelet activation in acute stroke // Arterioscler. Thromb. Vasc. Biol. 1998. Vol. 18. No. 7. P. 1124–1131. DOI: 10.1161/01.atv.18.7.1124

[49]

Larsen EC, Christiansen OB, Kolte AM, et al. New insights into mechanisms behind miscarriage. BMC Med. 2013;11:154. DOI: 10.1186/1741-7015-11-154

[50]

Larsen E.C., Christiansen O.B., Kolte A.M., et al. New insights into mechanisms behind miscarriage // BMC Med. 2013. Vol. 11. P. 154. DOI: 10.1186/1741-7015-11-154

[51]

Bitsadze VO, Samburova NV, Makatsariya NA, et al. Folate deficiency in obstetrics and the problem of its correction. Obstetrics, Gynecology and Reproduction. 2016;10(1):38–48. (In Russ.) DOI: 10.17749/2313-7347.2015.10.1.038-048

[52]

Бицадзе В.О., Самбурова Н.В., Макацария Н.А., и др. Фолатный дефицит в акушерстве и проблема его коррекции // Акушерство, гинекология и репродукция. 2016. Т. 10. № 1. С. 38–48. DOI: 10.17749/2313-7347.2015.10.1.038-048

[53]

Belotserkovtseva LD, Isaev TI, Kovalenko LV. Hereditary thrombophilia during complicated courseof pregnancy and adverse pregnancy outcomes. Vestnik SurGU. Medicina. 2019; 42(4):66–73. (In Russ.) DOI: 10.34822/2304-9448-2019-4-66-73

[54]

Белоцерковцева Л.Д., Исаев Т.И., Коваленко Л.В. Наследственные тромбофилии при осложненном течении и неблагоприятных исходах беременности // Вестник СурГУ. Медицина. 2019. Т. 42. № 4. C.67–70. DOI: 10.34822/2304-9448-2019-4-66-73

[55]

Zhang Y, Zhan W, Du Q, et al. Variants c.677 C>T, c.1298 A>C in MTHFR, and c.66 A>G in MTRR affect the occurrence of recurrent pregnancy loss in chinese women. Genet Test Mol Biomarkers. 2020;24(11):717–722. DOI: 10.1089/gtmb.2020.0106

[56]

Zhang Y., Zhan W., Du Q., et al. Variants c.677 C>T, c.1298A>C in MTHFR, and c.66A>G in MTRR affect the occurrence of recurrent pregnancy loss in chinese women // Genet. Test. Mol. Biomarkers. 2020. Vol. 24. No. 11. P. 717–722. DOI: 10.1089/gtmb.2020.0106

[57]

Bushtireva IO, Kuznetsova NB, Pelogeina EI. Genetic polymorphisms associated with impaired folate cycle and the risk of thrombophilia in patients with retrochorial hematoma in the first trimester of pregnancy. Sovremennye tehnologii v medicine. 2015;7(3):84–89. (In Russ.) DOI: 10.17691/stm2015.7.3.12

[58]

Буштырева И.О., Кузнецова Н.Б., Пелогеина Е.И. Роль генетических полиморфизмов, ассоциированных с нарушением фолатного цикла и риском развития тромбофилии в генезе ретрохориальной гематомы в I триместре беременности // Современные технологии в медицине. 2015. Т. 7. № 3. С. 84–89. DOI: 10.17691/stm2015.7.3.12

[59]

Abu-Heija A. Thrombophilia and recurrent pregnancy loss: is heparin still the drug of choice? Sultan Qaboos Univ Med J. 2014;14(1):e26–e36. DOI: 10.12816/0003333

[60]

Abu-Heija A. Thrombophilia and recurrent pregnancy loss: is heparin still the drug of choice? // Sultan Qaboos Univ. Med. J. 2014. Vol. 14. No. 1. P. e26–e36. DOI: 10.12816/0003333

[61]

Ruzzi L, Ciarafoni I, Silvestri L, et al. Association of PLA2 polymorphism of the ITGB3 gene with early fetal loss. Fertil Steril. 2005;83(2):511–512. DOI: 10.1016/j.fertnstert.2004.10.024

[62]

Ruzzi L., Ciarafoni I., Silvestri L., et al. Association of PLA2 polymorphism of the ITGB3 gene with early fetal loss // Fertil. Steril. 2005. Vol. 83. No. 2. P. 511–512. DOI: 10.1016/j.fertnstert.2004.10.024

[63]

Ivanov P, Komsa-Penkova R, Ivanov I, et al. High risk of recurrent spontaneous abortion during second trimester in women carriers of polymorphism A2 in platelet glycoprotein IIb/IIIa. Akush Ginekol (Sofia). 2008; 47(4):3–9. DOI: 10.1097/mbc.0b013e32832545f3

[64]

Ivanov P., Komsa-Penkova R., Ivanov I., et al. High risk of recurrent spontaneous abortion during second trimester in women carriers of polymorphism A2 in platelet glycoprotein IIb/IIIa // Akush. Ginekol. (Sofia). 2008. Vol. 47. No. 4. P. 3–9. DOI: 10.1097/mbc.0b013e32832545f3

[65]

Kasak L, Rull K, Sõber S, et al. Copy number variation profile in the placental and parental genomes of recurrent pregnancy loss families. Sci Rep. 2017;7. DOI: 10.1038/srep45327

[66]

Kasak L., Rull K., Sõber S., et al. Copy number variation profile in the placental and parental genomes of recurrent pregnancy loss families // Sci. Rep. 2017. Vol. 7. DOI: 10.1038/srep45327

[67]

Joo SJ. Mechanisms of platelet activation and integrin αIIβ3. Korean Circ J. 2012;42(5):295–301. DOI: 10.4070/kcj.2012.42.5.295

[68]

Joo S.J. Mechanisms of platelet activation and integrin αIIβ3 // Korean Circ. J. 2012. Vol. 42. No. 5. P. 295–301. DOI: 10.4070/kcj.2012.42.5.295

[69]

Zafar H, Shang Y, Li J, et al. αIIbβ3 binding to a fibrinogen fragment lacking the γ-chain dodecapeptide is activation dependent and EDTA inducible. Blood Adv. 2017;1(7):417–428. DOI: 10.1182/bloodadvances.2017004689

[70]

Zafar H., Shang Y., Li J., et al. αIIbβ3 binding to a fibrinogen fragment lacking the γ-chain dodecapeptide is activation dependent and EDTA inducible // Blood Adv. 2017. Vol. 1. No. 7. P. 417–428. DOI: 10.1182/bloodadvances.2017004689

[71]

Korte W, Poon MC, Iorio A, et al. Thrombosis in inherited fibrinogen disorders. Transfus Med Hemother. 2017;44(2):70–76. DOI: 10.1159/000452864

[72]

Korte W., Poon M.C., Iorio A., et al. Thrombosis in inherited fibrinogen disorders // Transfus. Med. Hemother. 2017. Vol. 44. No. 2. P. 70–76. DOI: 10.1159/000452864

RIGHTS & PERMISSIONS

Eсо-Vector

AI Summary AI Mindmap
PDF

52

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/