Expression of the serotonergic system components in the placenta in various types of preeclampsia

Ofelia A. Bettikher , Olga A. Belyaeva , Albina I. Dukovich , Olga M. Vorobeva , Tatiana G. Tral , Gulrukhsor Kh. Tolibova , Viktor A. Bart , Igor Yu. Kogan , Irina E. Zazerskaya

Journal of obstetrics and women's diseases ›› 2023, Vol. 72 ›› Issue (1) : 5 -16.

PDF
Journal of obstetrics and women's diseases ›› 2023, Vol. 72 ›› Issue (1) : 5 -16. DOI: 10.17816/JOWD110890
Original study articles
research-article

Expression of the serotonergic system components in the placenta in various types of preeclampsia

Author information +
History +
PDF

Abstract

BACKGROUND: The serotonergic system plays an important role in the formation and development of the feto-placental complex. The study of the expression of the serotonin system components, including placental 5-HT2A (serotonin receptor) and SERT (serotonin transporter), in preeclampsia will create prerequisites for discovering new ways to correct hypertensive pregnancy complications and methods of influencing pregnancy outcomes.

AIM: The aim of this study was to compare the expressions of 5-HT2A and SERT in placental tissue in pure preeclampsia and its combinations with other complications of pregnancy.

MATERIALS AND METHODS: A comparative cohort study was conducted among patients with different preeclampsia phenotypes: preeclampsia (n = 6), preeclampsia and gestational diabetes mellitus (n = 6), gestational diabetes mellitus and superimposed preeclampsia (preeclampsia + chronic arterial hypertension) (n = 6), and normal pregnancy without pregnancy complications (n = 6). The expression of 5-HT2A (Abcam, USA) and SERT (BiossAntibodies, USA) was studied in placenta samples from all study groups by immunohistochemical method. Morphometric analysis was performed using the VideoTest-Morphology 5.2 program (Videotest Ltd., Russia). The database was constructed and statistical processing was performed using Microsoft Excel 2007 (Microsoft Corporation, USA) and the StatTech program v. 2.6.4 (Stattech Ltd., Russia).

RESULTS: The expression of SERT and 5-HT2A is higher in the studied pregnancy complications when compared to the normal one. The relative 5-HT2A expression area in the placenta among the studied nosologies is higher in preeclampsia without gestational diabetes mellitus or in superimposed preeclampsia in combination with chronic arterial hypertension compared to expression in placentas in preeclampsia in combination with gestational diabetes mellitus or in preeclampsia in combination with gestational diabetes mellitus and chronic arterial hypertension (p = 0.02 and p = 0.017, respectively). The relative area of SERT expression is higher in preeclampsia without gestational diabetes mellitus or chronic arterial hypertension and in preeclampsia in combination with gestational diabetes mellitus compared to preeclampsia in combination with gestational diabetes mellitus and chronic arterial hypertension (p = 0.002 and p = 0.012, respectively).

CONCLUSIONS: The highest expressions of 5-HT2A and SERT among the studied preeclampsia phenotypes were found in placentas in preeclampsia without gestational diabetes mellitus or chronic arterial hypertension.

Keywords

preeclampsia / gestational diabetes / placenta / serotonin / 5-HT2A / SERT

Cite this article

Download citation ▾
Ofelia A. Bettikher, Olga A. Belyaeva, Albina I. Dukovich, Olga M. Vorobeva, Tatiana G. Tral, Gulrukhsor Kh. Tolibova, Viktor A. Bart, Igor Yu. Kogan, Irina E. Zazerskaya. Expression of the serotonergic system components in the placenta in various types of preeclampsia. Journal of obstetrics and women's diseases, 2023, 72(1): 5-16 DOI:10.17816/JOWD110890

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Valencia-Ortega J, Saucedo R, Sánchez-Rodríguez MA, et al. Epigenetic alterations related to gestational diabetes mellitus. Int J Mol Sci. 2021;22(17). DOI: 10.3390/ijms22179462

[2]

Valencia-Ortega J., Saucedo R., Sánchez-Rodríguez M.A., et al. Epigenetic alterations related to gestational diabetes mellitus // Int. J. Mol. Sci. 2021. Vol. 22, No. 17. DOI: 10.3390/ijms22179462

[3]

Watts SW. 5-HT in systemic hypertension: foe, friend or fantasy? Clinical Science. 2005;108(5):399–412. DOI: 10.1042/cs20040364

[4]

Watts S.W. 5-HT in systemic hypertension: foe, friend or fantasy? // Clinical Science. 2005. Vol. 108. No. 5. P. 399–412. DOI: 10.1042/cs20040364

[5]

Hadden C, Fahmi T, Cooper A, et al. Serotonin transporter protects the placental cells against apoptosis in caspase 3-independent pathway. J Cell Physiol. 2017;232(12):3520–3529. DOI: 10.1002/jcp.25812

[6]

Hadden C., Fahmi T., Cooper A., et al. Serotonin transporter protects the placental cells against apoptosis in caspase 3-independent pathway // J. Cell Physiol. 2017. Vol. 232. No. 12. P. 3520–3529. DOI: 10.1002/jcp.25812

[7]

Bönisch H, Fink KB, Malinowska B, et al. Serotonin and beyond — a tribute to Manfred Göthert (1939-2019). Naunyn-Schmiedeberg’s Arch Pharmacol. 2021;394(9):1829–1867. DOI: 10.1007/s00210-021-02083-5

[8]

Bönisch H., Fink K.B., Malinowska B., et al. Serotonin and beyond — a tribute to Manfred Göthert (1939–2019) // Naunyn-Schmiedeberg’s Arch. Pharmacol. 2021. Vol. 394. No. 9. P. 1829–1867. DOI: 10.1007/s00210-021-02083-5

[9]

Athar S. Serotonin and tryptophan. In: Encyclopedia of movement disorders. Ed. by K. Kompoliti, L. Verhagen Metman. Amsterdam: Elsevier; 2010. P. 104–108. DOI: 10.1016/b978-0-12-374105-9.00001-0

[10]

Athar S. Serotonin and tryptophan // Encyclopedia of Movement Disorders / Ed. by K. Kompoliti, L. Verhagen Metman. Amsterdam: Elsevier; 2010. P. 104–108. DOI: 10.1016/b978-0-12-374105-9.00001-0

[11]

Gumusoglu S, Scroggins S, Vignato J, et al. The serotonin-immune axis in preeclampsia. Curr Hypertens Rep. 2021;23(7):37. DOI: 10.1007/s11906-021-01155-4

[12]

Gumusoglu S., Scroggins S., Vignato J., et al. The serotonin-immune axis in preeclampsia // Curr. Hypertens. Rep. 2021. Vol. 23. No. 7. P. 37. DOI: 10.1007/s11906-021-01155-4

[13]

Mercado CP, Kilic F. Molecular mechanisms of SERT in platelets: regulation of plasma serotonin levels. Molecular Interventions. 2010;10(4):231–241. DOI: 10.1124/mi.10.4.6

[14]

Mercado C.P., Kilic F. Molecular mechanisms of SERT in platelets: regulation of plasma serotonin levels // Molecular Interventions. 2010. Vol. 10. No. 4. P. 231–241. DOI: 10.1124/mi.10.4.6

[15]

Ni W, Watts SW. 5-hydroxytryptamine in the cardiovascular system: focus on the serotonin transporter (SERT). Clin Exp Pharmacol Physiol. 2006;33(7):575–583. DOI: 10.1111/j.1440-1681.2006.04410.x

[16]

Ni W., Watts S.W. 5-hydroxytryptamine in the cardiovascular system: focus on the serotonin transporter (SERT) // Clin. Exp. Pharmacol. Physiol. 2006. Vol. 33. No. 7. P. 575–583. DOI: 10.1111/j.1440-1681.2006.04410.x

[17]

Fraer M, Kilic F. Serotonin: a different player in hypertension-associated thrombosis. Hypertension. 2015;65(5):942–948. DOI: 10.1161/hypertensionaha.114.05061

[18]

Fraer M., Kilic F. Serotonin: a different player in hypertension-associated thrombosis // Hypertension. 2015. Vol. 65. No. 5. P. 942–948. DOI: 10.1161/hypertensionaha.114.05061

[19]

Iwabayashi M, Taniyama Y, Sanada F, et al. Role of serotonin in angiogenesis: Induction of angiogenesis by sarpogrelate via endothelial 5-HT1B/Akt/eNOS pathway in diabetic mice. Atherosclerosis. 2012;220(2):337–342. DOI: 10.1016/j.atherosclerosis.2011.10.042

[20]

Iwabayashi M., Taniyama Y., Sanada F., et al. Role of serotonin in angiogenesis: Induction of angiogenesis by sarpogrelate via endothelial 5-HT1B/Akt/eNOS pathway in diabetic mice // Atherosclerosis. 2012. Vol. 220. No. 2. P. 337–342. DOI: 10.1016/j.atherosclerosis.2011.10.042

[21]

Deroy K, Côté F, Fournier T, et al. Serotonin production by human and mouse trophoblast: involvement in placental development and function. Placenta. 2013;34(9). DOI: 10.1016/j.placenta.2013.06.214

[22]

Deroy K., Côté F., Fournier T., et al. Serotonin production by human and mouse trophoblast: involvement in placental development and function // Placenta. 2013. Vol. 34. No. 9. DOI: 10.1016/j.placenta.2013.06.214

[23]

Balsells M, García-Patterson A, Gich I, et al. Major congenital malformations in women with gestational diabetes mellitus: a systematic review and meta-analysis. Diabetes Metab Res Rev. 2012;28(3):252–257. DOI: 10.1002/dmrr.1304

[24]

Balsells M., García-Patterson A., Gich I., et al. Major congenital malformations in women with gestational diabetes mellitus: a systematic review and meta-analysis // Diabetes Metab. Res. Rev. 2012. Vol. 28. No. 3. P. 252–257. DOI: 10.1002/dmrr.1304

[25]

Murthi P, Vaillancourt C. Placental serotonin systems in pregnancy metabolic complications associated with maternal obesity and gestational diabetes mellitus. Biochim Biophys Acta Mol Basis Dis. 2019;1866(2). DOI: 10.1016/j.bbadis.2019.01.017

[26]

Murthi P., Vaillancourt C. Placental serotonin systems in pregnancy metabolic complications associated with maternal obesity and gestational diabetes mellitus // Biochim. Biophys. Acta Mol. Basis. Dis. 2019. Vol. 1866. No. 2. DOI: 10.1016/j.bbadis.2019.01.017

[27]

Goeden N, Velasquez J, Arnold KA, et al. Maternal inflammation disrupts fetal neurodevelopment via increased placental output of serotonin to the fetal brain. J Neurosci. 2016;36(22):6041–6049. DOI: 10.1523/JNEUROSCI.2534-15.2016

[28]

Goeden N., Velasquez J., Arnold K.A., et al. A. maternal inflammation disrupts fetal neurodevelopment via increased placental output of serotonin to the fetal brain // J. Neurosci. 2016. Vol. 36. No. 22. P. 6041–6049. DOI: 10.1523/JNEUROSCI.2534-15.2016

[29]

Baković P, Kesić M, Perić M, et al. Differential serotonin uptake mechanisms at the human maternal-fetal interface. In J Mol Sci. 2021;22(15). DOI: 10.3390/ijms22157807

[30]

Baković P., Kesić M., Perić M., et al. Differential serotonin uptake mechanisms at the human maternal-fetal interface // In. J. Mol. Sci. 2021. Vol. 22. No. 15. DOI: 10.3390/ijms22157807

[31]

Ayme-Dietrich E, Aubertin-Kirch G, Maroteaux L, et al. Cardiovascular remodeling and the peripheral serotonergic system. Arch Cardiovasc Dis. 2017;110(1):51–59. DOI: 10.1016/j.acvd.2016.08.002

[32]

Ayme-Dietrich E., Aubertin-Kirch G., Maroteaux L., et al. Cardiovascular remodeling and the peripheral serotonergic system // Arch. Cardiovasc. Dis. 2017. Vol. 110. No. 1. P. 51–59. DOI: 10.1016/j.acvd.2016.08.002

[33]

Staff AC, Johnsen GM, Dechend R, et al. Preeclampsia and uteroplacental acute atherosis: immune and inflammatory factors. J Reprod Immunol. 2014;101–102:120–126. DOI: 10.1016/j.jri.2013.09.001

[34]

Staff A.C., Johnsen G.M., Dechend R., et al. Preeclampsia and uteroplacental acute atherosis: immune and inflammatory factors // J. Reprod. Immunol. 2014. Vol. 101–102. P. 120–126. DOI: 10.1016/j.jri.2013.09.001

[35]

Blazevic S, Horvaticek M, Kesic M, et al. Epigenetic adaptation of the placental serotonin transporter gene (SLC6A4) to gestational diabetes mellitus. Plos One. 2017;12(6). DOI: 10.1371/journal.pone.0179934

[36]

Blazevic S., Horvaticek M., Kesic M., et al. Epigenetic adaptation of the placental serotonin transporter gene (SLC6A4) to gestational diabetes mellitus // Plos One. 2017. Vol. 12. No. 6. DOI: 10.1371/journal.pone.0179934

[37]

Bettikher OA, Zazerskaya IE, Popova PV, et al. Preeclampsia features in pregnancy with gestational diabetes mellitus. Journal of Obstetrics and Women’s Diseases. 2019;68(5):19–36. (In Russ.). DOI: 10.17816/JOWD68519-36

[38]

Беттихер О.А., Зазерская И.Е., Попова П.В., и др. Характеристика преэклампсии у беременных с гестационным диабетом // Журнал акушерства и женских болезней. 2019. Т. 68. № 5. С. 19–36. DOI: 10.17816/JOWD68519-36

[39]

El-Tarhouny SA, Almasry SM, Elfayomy AK, et al. Placental growth factor and soluble Fms-like tyrosine kinase 1 in diabetic pregnancy: a possible relation to distal villous immaturity. Histol Histopathol. 2014;29(2):259–272. DOI: 10.14670/HH-29.259

[40]

El-Tarhouny S.A., Almasry S.M., Elfayomy A.K., et al. Placental growth factor and soluble Fms-like tyrosine kinase 1 in diabetic pregnancy: a possible relation to distal villous immaturity // Histol. Histopathol. 2014. Vol. 29. No. 2. P. 259–272. DOI: 10.14670/HH-29.259

[41]

Troncoso F, Acurio J, Herlitz K, et al. Gestational diabetes mellitus is associated with increased pro-migratory activation of vascular endothelial growth factor receptor 2 and reduced expression of vascular endothelial growth factor receptor 1. Plos One. 2017;12(8). DOI: 10.1371/journal.pone.0182509

[42]

Troncoso F., Acurio J., Herlitz K., et al. Gestational diabetes mellitus is associated with increased pro-migratory activation of vascular endothelial growth factor receptor 2 and reduced expression of vascular endothelial growth factor receptor 1 // Plos One. 2017. Vol. 12. No. 8. DOI: 10.1371/journal.pone.0182509

[43]

Kapustin RV. Possibilities for prediction and prevention of preeclampsia in women with diabetes mellitus. Journal of Obstetrics and Women’s Diseases. 2018;67(3):20–29. (In Russ.). DOI: 10.17816/JOWD67320-29

[44]

Капустин Р.В. Возможности прогнозирования и профилактики преэклампсии у беременных с сахарным диабетом // Журнал акушерства и женских болезней. 2018. Т. 67. № 3. С. 20–29. DOI: 10.17816/JOWD67320-29

[45]

Kapustin RV, Arzhanova ON, Polyakova VO. Vascular tropic signaling molecules expression in the placental tissue samples from puerperae with gestational diabetes mellitus. Molecular Medicine. 2012;(5):45–49. (In Russ.)

[46]

Капустин Р.В., Аржанова О.Н., Полякова В.О. Экспрессия сосудистотропных сигнальных молекул в ткани плацент при гестационном сахарном диабeте // Молекулярная медицина. 2012. № 5. C. 45–49.

[47]

Rosenfeld CS. Placental serotonin signaling, pregnancy outcomes, and regulation of fetal brain development. Biol Reprod. 2020;102(3):532–538. DOI: 10.1093/biolre/ioz204

[48]

Rosenfeld C.S. Placental serotonin signaling, pregnancy outcomes, and regulation of fetal brain development // Biol. Reprod. 2020. Vol. 102. No. 3. P. 532–538. DOI: 10.1093/biolre/ioz204

[49]

Chanrion B, Mannoury la Cour C, Bertaso F, et al. Physical interaction between the serotonin transporter and neuronal nitric oxide synthase underlies reciprocal modulation of their activity. Proc Natl Acad Sci USA. 2007; 104(19):8119–8124. DOI: 10.1073/pnas.0610964104

[50]

Chanrion B., Mannoury la Cour C., Bertaso F., et al. Physical interaction between the serotonin transporter and neuronal nitric oxide synthase underlies reciprocal modulation of their activity// Proc. Natl. Acad. Sci. USA. 2007. Vol. 104. No. 19. P. 8119–8124. DOI: 10.1073/pnas.0610964104

[51]

Patrick Davis R, Linder AE, Watts SW. Lack of the serotonin transporter (SERT) reduces the ability of 5-hydroxytryptamine to lower blood pressure. Naunyn Schmiedebergs Arch Pharmacol. 2011;383(5):543–546. DOI: 10.1007/s00210-011-0622-1

[52]

Patrick Davis R., Linder A.E., Watts S.W. Lack of the serotonin transporter (SERT) reduces the ability of 5-hydroxytryptamine to lower blood pressure// Naunyn. Schmiedebergs Arch. Pharmacol. 2011. Vol. 383. No. 5. P. 543–546. DOI: 10.1007/s00210-011-0622-1

[53]

Monassier L, Maroteaux L. Serotonin and cardiovascular diseases. In: Serotonin: The Mediator That Spans Evolution. Ed. by P.M. Pilowsky. Amsterdam: Elsevier; 2019. P. 203–238. DOI: 10.1016/b978-0-12-800050-2.00012-7

[54]

Monassier L., Maroteaux L. Serotonin and cardiovascular diseases // Serotonin: The Mediator That Spans Evolution / Ed. by P.M. Pilowsky. Amsterdam: Elsevier, 2019. P. 203–238. DOI: 10.1016/b978-0-12-800050-2.00012-7

[55]

Aflyatumova GN, Nigmatullina RR, Sadykova DI, et al. Endothelin-1, nitric oxide, serotonin and high blood pressure in male adolescents. Vasc Health Risk Manag. 2018;14:213–223. DOI: 10.2147/VHRM.S170317

[56]

Aflyatumova G.N., Nigmatullina R.R., Sadykova D.I., et al. Endothelin-1, nitric oxide, serotonin and high blood pressure in male adolescents // Vasc. Health Risk Manag. 2018. Vol. 14. P. 213–223. DOI: 10.2147/VHRM.S170317

[57]

Iqbal M, Audette MC, Petropoulos S, et al. Placental drug transporters and their role in fetal protection. Placenta. 2012;33(3):137–142. DOI: 10.1016/j.placenta.2012.01.008

[58]

Iqbal M., Audette M.C., Petropoulos S., et al. Placental drug transporters and their role in fetal protection // Placenta. 2012. Vol. 33. No. 3. P. 137–142. DOI: 10.1016/j.placenta.2012.01.008

RIGHTS & PERMISSIONS

Eсо-Vector

AI Summary AI Mindmap
PDF

113

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/