Maternal circadian rhythm and its implications for offspring health

Inna I. Evsyukova

Journal of obstetrics and women's diseases ›› 2022, Vol. 71 ›› Issue (4) : 95 -105.

PDF
Journal of obstetrics and women's diseases ›› 2022, Vol. 71 ›› Issue (4) : 95 -105. DOI: 10.17816/JOWD108049
Reviews
review-article

Maternal circadian rhythm and its implications for offspring health

Author information +
History +
PDF

Abstract

This review presents data on the circadian system hierarchy and its unique reorganization at the onset of pregnancy, which plays a fundamental role in maintaining maternal homeostasis and creating optimal conditions for the implementation of the genetic program of fetal development. A particular emphasis is made on the protective mechanisms of the circadian rhythm of maternal melatonin, which is the primary messenger of biorhythms. This paper thoroughly discusses the mechanisms and consequences of maternal chronodisruption in pregnant women exposed to adverse environmental conditions (shift work, stress, irregular nutrition, etc.), as well as in those with chronodestruction-related diseases (obesity, diabetes mellitus, etc.). Elucidating the circadian system status in the patients and, in particular, whether they have a daily rhythm of melatonin production will determine a new approach to risk assessment and timely prevention of cardiovascular, metabolic, neuroendocrine and mental disorders in the offspring in later life.

Keywords

circadian rhythm / pregnancy / fetus / melatonin / chronodestruction / effects

Cite this article

Download citation ▾
Inna I. Evsyukova. Maternal circadian rhythm and its implications for offspring health. Journal of obstetrics and women's diseases, 2022, 71(4): 95-105 DOI:10.17816/JOWD108049

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Menaker M, Murphy ZC, Sellix MT. Central control of peripheral oscillators. Curr Opin Neurobiol. 2013;23(5):741−746. DOI: 10.1016/j.conb.2013.03.003

[2]

Menaker M., Murphy Z.C., Sellix M.T. Central control of peripheral oscilators // Curr. Opin. Neurobiol. 2013. Vol. 23. No. 5. P. 741−746. DOI: 10.1016/j.conb.2013.03.003

[3]

Kvetnoy I, Ivanov D, Mironova E, et al. Melatonin as the cornerstone of neuroimmunoendocrinology. Int J Mol Sci. 2022;23(3):1835. DOI: 10.3390/ ijms23031835

[4]

Kvetnoy I., Ivanov D., Mironova E., et al. Melatonin as the cornerstone of neuroimmunoendocrinology // Int. J. Mol. Sci. 2022. Vol. 23. No. 3. P. 1835. DOI: 10.3390/ ijms23031835.

[5]

Green CB. Circadian posttranscriptional regulatory mechanisms in mammals. Cold Spring Harb Perspect Biol. 2018;10(6):a030692. DOI: 10.1101/cshperspect.a030692

[6]

Green C.B. Circadian posttranscriptional regulatory mechanisms in mammals // Cold Spring Harb. Perspect. Biol. 2018. Vol. 10. No. 6. P. a030692. DOI: 10.1101/cshperspect.a030692

[7]

Dibner C, Schibler U, Albrecht U. The mammalian circadian timing system. Annu Rev Physiol. 2010;72:517−549. DOI: 10.1146/annurev-physiol-021909-135821

[8]

Dibner C., Schibler U., Albrecht U. The mammalian circadian timing system // Annu Rev. Physiol. 2010. Vol. 72. P. 517−549. DOI: 10.1146/annurev-physiol-021909-135821

[9]

von Gall C. The effects of light and the circadian system on rhythmic brain function. Int J Mol Sci. 2022;23(5):2778. DOI: 10.3390/ijms23052778

[10]

von Gall C. The effects of light and the circadian system on rhythmic brain function // Int. J. Mol. Sci. 2022. Vol. 23. No. 5. P. 2778. DOI: 10.3390/ijms23052778

[11]

Albrecht U. Timing to perfection: The biology of central and peripheral circadian clocks. Neuron. 2012;74(2):246−260. DOI: 10.1016/j.neuron.2012.04.006

[12]

Albrecht U. Timing to perfection: The biology of central and peripheral circadian clocks // Neuron. 2012. Vol. 74. No. 2. P. 246–260. DOI: 10.1016/j.neuron.2012.04.006

[13]

Takahashi JS. Molecular architecture of the circadian clock in mammals. In: Sassone-Corsi P, Christen Y, editors. A time for metabolism and hormones. Berlin: Springer, 2016:13–24. DOI: 10.1007/978-3-319-27069-2_2

[14]

Takahashi J.S. Molecular architecture of the circadian clock in mammals. In: A time for metabolism and hormones. Eds. P. Sassone-Corsi, Y. Christen. Berlin: Springer, 2016. P. 13–24. DOI: 10.1007/978-3-319-27069-2_2

[15]

Bass J. Circadian mechanisms in bioenergetics and cell metabolism. In: Sassone-Corsi P, Christen Y, editors. A time for metabolism and hormones. Berlin: Springer, 2016: 25−32. DOI: 10.1007/978-3-319-27069-2_3

[16]

Bass J. Circadian mechanisms in bioenergetics and cell metabolism // A Time for Metabolism and Hormones. Eds. P. Sassone-Corsi, Y. Christen. Berlin: Springer, 2016. P. 25−32. DOI: 10.1007/978-3-319-27069-2_3

[17]

Schrader JA, Nunez AA, Smale L. Changes in and dorsal to the rat suprachiasmatic nucleus during early pregnancy. Neuroscience. 2010;171(2):513−523. DOI: 10.1016/j.neuroscience.2010.08.057

[18]

Schrader J.A., Nunez A.A., Smale L. Changes in and dorsal to the rat suprachiasmatic nucleus during early pregnancy // Neuroscience. 2010. Vol. 171. No. 2. P. 513−523. DOI: 10.1016/j.neuroscience.2010.08.057

[19]

Torres-Farfan C, Mendez N, Ehrenfeld P, Seron-Ferre M. In utero circadian changes; facing light pollution. Current Opinion in Physiology. 2020;13:128–134. DOI: 10.1016/j.cophys.2019.11.005

[20]

Torres-Farfan C., Mendez N., Ehrenfeld P., Seron-Ferre M. In utero circadian changes; facing light pollution // Current Opinion in Physiology. 2020. Vol. 13. P. 128–134. DOI: 10.1016/j.cophys.2019.11.005

[21]

Martin-Fairey CA, Zhao P, Wan L, et al. Pregnancy induces an earlier chronotype in both mice and women. J Biol Rhythm. 2019;34(3):323–331. DOI: 10.1177/0748730419844650

[22]

Martin-Fairey C.A., Zhao P., Wan L., et al. Pregnancy induces an earlier chronotype in both mice and women // J. Biol. Rhythm. 2019. Vol. 34. No. 3. P. 323–331. DOI: 10.1177/0748730419844650

[23]

Wharfe MD, Mark PJ, Waddell BJ. Circadian variation in placental and hepatic clock genes in rat pregnancy. Endocrinology. 2011;152(9):3552−3560. DOI: 10.1210/en.2011-0081

[24]

Wharfe M.D., Mark P.J., Waddell B.J. Circadian variation in placental and hepatic clock genes in rat pregnancy // Endocrinology. 2011. Vol. 152. No. 9. P. 3552−3560. DOI: 10.1210/en.2011-0081

[25]

Lain KY, Catalano PM. Metabolic changes in pregnancy. Clin Obstet Gynecol. 2007;50(4):938−948. DOI: 10.1097/GRF.0b013e31815a5494

[26]

Lain K.Y., Catalano P.M. Metabolic changes in pregnancy // Clin. Obstet. Gynecol. 2007. Vol. 50. No. 4. P. 938−948. DOI: 10.1097/GRF.0b013e31815a5494

[27]

Wharfe MD, Mark PJ, Wyrwoll CS, et al. Pregnancy-induced adaptations of the central circadian clock and maternal glucocorticoids. J Endocrinology. 2016;228(3):135–147. DOI: 10.1530/JOE-15-0405

[28]

Wharfe M.D., Mark P.J., Wyrwoll C.S., et al. Pregnancy-induced adaptations of the central circadian clock and maternal glucocorticoids // J. Endocrinology. 2016. Vol. 228. No. 3. P. 135–147. DOI: 10.1530/JOE-15-0405

[29]

Pan X, Taylor MJ, Cohen E, et al. Circadian clock, time-restricted feeding and reproduction. Int J Mol Sci. 2020;21(3):831. DOI: 10.3390/ijms21030831

[30]

Pan X., Taylor M.J., Cohen E., et al. Circadian clock, time-restricted feeding and reproduction // Int. J. Mol. Sci. 2020. Vol. 21. No. 3. P. 831. DOI: 10.3390/ijms21030831

[31]

Kaur S, Teoh AN, Shukri NHM, et al. Circadian rhythm and its association with birth and infant outcomes: research protocol of a prospective cohort study. BMC Pregnancy and Childbirth. 2020;20(1):96. DOI: 10.1186/s12884-020-2797-2

[32]

Kaur S., Teoh A.N., Shukri N.H.M., et al. Circadian rhythm and its association with birth and infant outcomes: research protocol of a prospective cohort study // BMC Pregnancy and Childbirth. 2020. Vol. 20. No. 1. P. 96. DOI: 10.1186/s12884-020-2797-2

[33]

Hsu C-N, Tain Y-L. Light and circadian signaling pathway in pregnancy: Programming of adult health and disease. Int J Mol Sci. 2020;21(6):2232. DOI: 10.3390/ijms21062232

[34]

Hsu C.-N., Tain Y.-L. Light and circadian signaling pathway in pregnancy: Programming of adult health and disease // Int. J. Mol. Sci. 2020. Vol. 21. No. 6. P. 2232. DOI: 10.3390/ijms21062232

[35]

Serón-Ferré M, Richter HG, Valenzuela GJ, Torres-Farfan C. Circadian rhythms in the fetus and newborn: Significance of interactions with maternal physiology and the environment. In: Walker D, ed. Prenatal and Postnatal Determinants of Development. Neuromethods. New York: Humana Press; 20161;9:147−165. DOI: 10.1007/978-1-4939-3014-2_7

[36]

Serón-Ferré M., Richter H.G., Valenzuela G.J., Torres-Farfan C. Circadian rhythms in the fetus and newborn: Significance of interactions with maternal physiology and the environment // Prenatal and Postnatal Determinants of Development. Neuromethods. Vol. 109. New York: Humana Press, 2016. P. 147−165. DOI: 10.1007/978-1-4939-3014-2_7

[37]

Waddell BJ, Wharfe MD, Crew RC, Mark PJ. A rhythmic placenta? Circadian variation Clock genes and placental function. Placenta. 2012;33(7):533−539. DOI: 10.1016/j.placenta.2012.03.008

[38]

Waddell B.J., Wharfe M.D., Crew R.C., Mark P.J. A rhythmic placenta? Circadian variation Clock genes and placental function // Placenta. 2012. Vol. 33. No. 7. P. 533−539. DOI: 10.1016/j.placenta.2012.03.008

[39]

Valenzuela FJ, Vera J, Venegas C, et al. Circadian system and melatonin hormone: Risk factors for complications during pregnancy. Obstet Gynecol Int. 2015;2015:825802. DOI: 10.1155/2015/825802

[40]

Valenzuela F.J., Vera J., Venegas C., et al. Circadian system and melatonin hormone: Risk factors for complications during pregnancy // Obstet. Gynecol. Int. 2015. Vol. 2015. P. 825802. DOI: 10.1155/2015/825802

[41]

Nakamura Y, Tamura H, Kashida S, et al. Changes of serum melatonin level and its relationship to feto-placental unit during pregnancy. J Pineal Res. 2001;30(1):29−33. DOI: 10.1034/j.1600-079x.2001.300104.x

[42]

Nakamura N.Y., Tamura H., Kashida S., et al. Changes of serum melatonin level and its relationship to feto-placental unit during pregnancy // J. Pineal Res. 2001. Vol. 30. No. 1. P. 29−33. DOI: 10.1034/j.1600-079x.2001.300104.x

[43]

Erren TS, Reiter RJ. Melatonin: a universal time messenger. Neuro Endocrinol Lett. 2015;36(3):187−192.

[44]

Erren T.S., Reiter R.J. Melatonin: a universal time messenger // Neuro. Endocrinol. Lett. 2015. Vol. 36. No. 3. P. 187−192.

[45]

Mark PJ, Crew RC, Wharfe MD, Waddell BJ. Rhythmic three-part harmony: the complex interaction of maternal, placental and fetal circadian systems. J Biol Rhythms. 2017;32(6):534−549. DOI: 10.1177/0748730417728671

[46]

Mark P.J., Crew R.C., Wharfe M.D., Waddell B.J. Rhythmic three-part harmony: the complex interaction of maternal, placental and fetal circadian systems // J. Biol. Rhythms. 2017. Vol. 32. No. 6. P. 534−549. DOI: 10.1177/0748730417728671

[47]

Astiz M, Oster H. Feto-maternal crosstalk in the development of the circadian clock System. Front Neurosci. 2021;14:631687. DOI: 10.3389/fnins.2020.631687

[48]

Astiz M., Oster H. Feto-maternal crosstalk in the development of the circadian clock System // Front. Neurosci. 2021. Vol. 14. P. 631687. DOI: 10.3389/fnins.2020.631687

[49]

Cipolla-Neto J, do Amaral FG. Melatonin as a hormone: New physiological and clinical insights. Endocrine Reviews. 2018;39:990−1028. DOI: 10.1210/er.2018-00084

[50]

Cipolla-Neto J., do Amaral F.G. Melatonin as a hormone: New physiological and clinical insights // Endocrine Reviews. 2018. Vol. 39. P. 990−1028. DOI: 10.1210/er.2018-00084

[51]

Edwards SM, Solveig A, Dunlop AL, Corwin EJ. The maternal gut microbiome during pregnancy. MCN Am J Matern Child Nurs. 2017;42(6):310−317. DOI: 10.1097/NMC.0000000000000372

[52]

Edwards S.M., Solveig A., Dunlop A.L., Corwin E.J. The maternal gut microbiome during pregnancy // MCN Am. J. Matern. Child. Nurs. 2017. Vol. 42. No. 6. P. 310−317. DOI: 10.1097/NMC.0000000000000372

[53]

Polidarova L, Olejnikova L, Pauslyova L, et al. Development and entrainment of the colonic circadian clock during ontogenesis. Am J Physiol Gastrointest Liver Physiol. 2014;306(4):346−356. DOI: 10.1152/ajpgi.00340.2013

[54]

Polidarova L., Olejnikova L., Pauslyova L., et al. Development and entrainment of the colonic circadian clock during ontogenesis // Am. J. Physiol. Gastrointest. Liver Physiol. 2014. Vol. 306. No. 4. P. 346−356. DOI: 10.1152/ajpgi.00340.2013

[55]

Thomas L, Drew JE, Abramovich DR, Williams LM. The role of melatonin in the human fetus (review). Int J Mol Med. 1998;1(3):539−543.

[56]

Thomas L., Drew J.E., Abramovich D.R., Williams L.M. The role of melatonin in the human fetus (review) // Int. J. Mol. Med. 1998. Vol. 1. No. 3. P. 539−543. DOI: 10.3892/ijmm.1.3.539

[57]

Mirmiran M, Maas YG, Ariagno RL. Development of fetal and neonatal sleep and circadian rhythms. Sleep Med Rev. 2003;7(4):321−334.

[58]

Mirmiran M., Maas Y.G., Ariagno R.L. Development of fetal and neonatal sleep and circadian rhythms // Sleep. Med. Rev. 2003. Vol. 7. No. 4. P. 321−334. DOI: 10.1053/smrv.2002.0243

[59]

Arendt J, Skene DJ. Melatonin as chronobiotic. Sleep Med Rev. 2005;9(1):25−39. DOI: 10.1016/j.smrv.2004.05.002

[60]

Arendt J., Skene D.J. Melatonin as chronobiotic // Sleep Med. Rev. 2005. Vol. 9. No. 1. P. 25−39. DOI: 10.1016/j.smrv.2004.05.002

[61]

Seron-Ferre M, Mendez M, Abarzua-Catalan L, et al. Circadian rhythms in the fetus. Mol Cell Endocrinology. 2012;349(1):68−75. DOI: 10.1016/j.mce.2011.07.039

[62]

Seron-Ferre M., Mendez M., Abarzua-Catalan L. et al. Circadian rhythms in the fetus // Mol. Cell. Endocrinology. 2012. Vol. 349. No. 1. P. 68−75. DOI: 10.1016/j.mce.2011.07.039

[63]

Oster H, Challet E, Ott V, et al. The functional and clinical significance of the 24-hour rhythm of circulating glucocorticoids. Endocr Rev. 2017;38:3–45. DOI: 10.1210/er.2015-1080

[64]

Oster H., Challet E., Ott V., et al. The functional and clinical significance of the 24-hour rhythm of circulating glucocorticoids // Endocr. Rev. 2017. Vol. 38. P. 3–45. DOI: 10.1210/er.2015-1080

[65]

Lužná V, Houdek P, Liška K, Sumová A. Challenging the integrity of rhythmic maternal signals revealed gene-specific responses in the fetal suprachiasmatic nuclei. Front Neurosci. 2021;14:613531. DOI: 10.3389/fnins.2020.613531

[66]

Lužná V., Houdek P., Liška K. Sumová A. Challenging the integrity of rhythmic maternal signals revealed gene-specific responses in the fetal suprachiasmatic nuclei // Front. Neurosci. 2021. Vol. 14. P. 613531. DOI: 10.3389/fnins.2020.613531

[67]

Nehme PA, Amaral FG, Middleton B, et al. Melatonin profiles during the third trimester of pregnancy and health status in the offspring among day and night workers: A case series. Neurobiol Sleep Circadian Rhythm. 2019;6:70–76. DOI: 10.1016/j.nbscr.2019.04.001

[68]

Nehme P.A., Amaral F.G., Middleton B., et al. Melatonin profiles during the third trimester of pregnancy and health status in the offspring among day and night workers: A case series // Neurobiol. Sleep Circadian Rhythm. 2019. Vol. 6. P. 70–76. DOI: 10.1016/j.nbscr.2019.04.001

[69]

Forrestel AC, Miedlich SU, Yurcheshen M, et al. Chronomedicine and type 2 diabetes: shining some light on melatonin. Diabetologia. 2017;60(5):808−822. DOI: 10.1007/s00125-016-4175-1

[70]

Forrestel A.C., Miedlich S.U., Yurcheshen M., et al. Chronomedicine and type 2 diabetes: shining some light on melatonin // Diabetologia. 2017. Vol. 60. No. 5. P. 808−822. DOI: 10.1007/s00125-016-4175-1

[71]

Nduhirabandi F, du Toit EF, Lochner A. Melatonin and the metabolic syndrome: a tool for effective therapy in obesity-associated abnormalities? Acta Physiol. 2012;205:209−223. DOI: 10.1111/j.1748-1716/2012.0410.x

[72]

Nduhirabandi F., du Toit E.F., Lochner A. Melatonin and the metabolic syndrome: a tool for effective therapy in obesity-associated abnormalities? // Acta Physiol. 2012. Vol. 205. P. 209−223. DOI: 10.1111/j.1748-1716/2012.0410.x.

[73]

Tranquilli AL, Turi A, Giannubilo SR, Garbati E. Circadian melatonin concentration rhythm is lost in pregnant women with altered blood pressure rhythm. Gynecol Endocrinol. 2004;18(3):124−129. DOI: 10.1080/09513590410001667841

[74]

Tranquilli A.L., Turi A., Giannubilo S.R., Garbati E. Circadian melatonin concentration rhythm is lost in pregnant women with altered blood pressure // Gynecol. Endocrinol. 2004. Vol. 18. No. 3. P. 124−129. DOI: 10.1080/09513590410001667841

[75]

Guan Q, Wang Z, Cao J, et al. Mechanisms of melatonin in obesity: A review. Int J Mol Sci. 2022;23(1):218. DOI: 10.3390/ijms23010218

[76]

Guan Q., Wang Z., Cao J., et al. Mechanisms of melatonin in obesity: A review // Int. J. Mol. Sci. 2022. Vol. 23. No. 1. P. 218. DOI: 10.3390/ijms23010218

[77]

Begtrup LM, Specht IO, Hammer PEC, et al. Night work and miscarriage: A Danish nationwide register-based cohort study. Occup Environ Med. 2019;76(5):302−308. DOI: 10.1136/oemed-2018-105592

[78]

Begtrup L.M., Specht I.O., Hammer P.E.C., et al. Night work and miscarriage: A Danish nationwide register-based cohort study // Occup. Environ. Med. 2019. Vol. 76. No. 5. P. 302–308. DOI: 10.1136/oemed-2018-105592

[79]

Suzumori N, Ebara T, Matsuki T, et al. Effects of long working hours and shift work during pregnancy on obstetric and perinatal outcomes: A large prospective cohort study-Japan environment and children’s study. Birth. 2020;47(1):67–79. DOI: 10.1111/birt.12463

[80]

Suzumori N., Ebara T., Matsuki T., et al. Effects of long working hours and shift work during pregnancy on obstetric and perinatal outcomes: A large prospective cohort study-Japan Environment and Children’s Study // Birth. 2020. Vol. 47. No. 1. P. 67–79. DOI: 10.1111/birt.12463

[81]

Davari MH, Naghshineh E, Mostaghaci M, et al. Shift work effects and pregnancy outcome: A historical cohort study. J Family Reprod Health. 2018;12(2):84−88.

[82]

Davari M.H., Naghshineh E., Mostaghaci M., et al. ShiftWork effects and pregnancy outcome: A historical cohort study // J. Family Reprod. Health. 2018. Vol. 12. No. 2. P. 84–88.

[83]

Plano SA, Casiraghi LP, Moro PG, et al. Circadian and metabolic effects of light: implications in weight homeostasis and health. Front Neurol. 2017;8:558. DOI: 10.3389/fneur.2017. 00558

[84]

Plano S.A., Casiraghi L.P., Moro P., et al. Circadian and metabolic effects of light: implications in weight homeostasis and health // Front. Neurol. 2017. Vol. 8. P. 558. DOI: 10.3389/fneur.2017.00558

[85]

Fishbein AB, Knutson KL, Zee PC. Circadian disruption and human health. J Clin Invest. 2021;131(19):e148286. DOI: 10.1172/JCI148286

[86]

Fishbein A.B., Knutson K.L., Zee P.C. Circadian disruption and human health // J. Clin. Invest. 2021. Vol. 131. No. 19. P. e148286. DOI: 10.1172/JCI148286

[87]

Halabi D, Richter HG, Mendez N, et al. Maternal chronodisruption throughout Pregnancy impairs glucose homeostasis and adipose tissue physiology in the male rat offspring. Front Endocrinol. 2021;12:678468. DOI: 10.3389/fendo.2021.678468

[88]

Halabi D., Richter H.G., Mendez N., et al. Maternal chronodisruption throughout pregnancy impairs glucose homeostasis and adipose tissue physiology in the male rat offspring // Front. Endocrinol. 2021. Vol. 12. P. 678468. DOI: 10.3389/fendo.2021.678468

[89]

Strohmaier S, Devore EE, Vetter C, et al. Night shift work before and during pregnancy in relation to depression and anxiety in adolescent and young adult offspring. Eur J Epidemiol. 2019;34(7):625−635. DOI: 10.1007/s10654-019-00525-2

[90]

Strohmaier S., Devore E.E., Vetter C., et al. Night shift work before and during pregnancy in relation to depression and anxiety in adolescent and young adult offspring // Eur. J. Epidemiol. 2019. Vol. 34. No. 7. P. 625–635. DOI: 10.1007/s10654-019-00525-2

[91]

Peng X, Fan R, Xie L, et al. A growing link between circadian rhythms, type 2 diabetes mellitus and alzheimer’s disease. Int J Mol Sci. 2022;23(1):504. DOI: 10.3390/ijms23010504

[92]

Peng X., Fan R., Xie L., et al. A growing link between circadian rhythms, type 2 diabetes mellitus and alzheimer’s disease // Int. J. Mol. Sci. 2022. Vol. 23. No. 1. P. 504. DOI: 10.3390/ijms23010504

[93]

Suarez-Trujillo A, Hoang N, Robinson L, et al. Effect of circadian system disruption on the concentration and daily oscillations of cortisol, progesterone, melatonin, serotonin, growth hormone, and core body temperature in periparturient dairy cattle. J Dairy Sci. 2022;105(3):2651−2668. DOI: 10.3168/jds.2021-20691

[94]

Suarez-Trujillo A., Hoang N., Robinson L., et al. Effect of circadian system disruption on the concentration and daily oscillations of cortisol, progesterone, melatonin, serotonin, growth hormone, and core body temperature in periparturient dairy cattle // J. Dairy Sci. 2022. Vol. 105. No. 3. P. 2651−2668. DOI: 10.3168/jds.2021-20691

[95]

Hemmeryckx B, Frederix L, Lijnen HR. Deficiency of Вmal1 disrupts the diurnal rhythm of haemostasis. Exp Gerontol. 2019;118:1–8. DOI: 10.1016/j.exger.2018.12.017

[96]

Hemmeryckx B., Frederix L., Lijnen H.R. Deficiency of Вmal1 disrupts the diurnal rhythm of haemostasis // Exp. Gerontol. 2019. Vol. 118. P. 1–8. DOI: 10.1016/j.exger.2018.12.017

[97]

Voiculescu SE, Zygouropoulos N, Zahiu CD, Zagrean AM. Role of melatonin in embryo fetal development. J Med Life. 2014;7(4):488−492.

[98]

Voiculescu S.E., Zygouropoulos N., Zahiu C.D., Zagrean A.M. Role of melatonin in embryo fetal development // J. Med. Life. 2014. Vol. 7. No. 4. P. 488−492.

[99]

Nagai R, Watanabe K, Wakatsuki A, et al. Melatonin preserves fetal growth in rats by protecting against ischemia-reperfusion-induced oxidative-nitrosative mitochondrial damage in placenta. J Pineal Res. 2008;45(3):271−276. DOI: 10.1111/j.1600-079X.2008.00586x

[100]

Nagai R., Watanabe K., Wakatsuki A., et al. Melatonin preserves fetal growth in rats by protecting against ischemia-reperfusion-induced oxidative-nitrosative mitochondrial damage in placenta // J. Pineal Res. 2008. Vol. 45. No. 3. P. 271−276. DOI: 10.1111/j.1600-079X.2008.00586x

[101]

Berbets A, Koval H, Barbe A, et al. Melatonin decreases and cytokines increase in women with placental insufficiency. J Matern Fetal Neonatal Med. 2021;34(3):373−378. DOI: 10.1080/1476058.2019.1608432

[102]

Berbets A., Koval H., Barbe A., et al. Melatonin decreases and cytokines increase in women with placental insufficiency // J. Matern. Fetal Neonatal. Med. 2021. Vol. 34. No. 3. P. 373−378. DOI: 10.1080/1476058.2019.1608432

[103]

Varcoe TJ, Gatford KL, Kennaway DJ. Maternal circadian rhythms and the programming of adult health and disease. Am J Physiol Regul Integr Comp Physiol. 2017;314(2):231−241. DOI: 10.1152/ajpregu.00248.2017

[104]

Varcoe T.J., Gatford K.L., Kennaway D.J. Maternal circadian rhythms and the programming of adult health and disease // Am. J. Physiol. Regul. Integr. Comp. Physiol. 2017. Vol. 314. No. 2. P. 231–241. DOI: 10.1152/ajpregu.00248.2017

[105]

Torres-Farfan C, Cipolla Neto J, Herzog ED. Editorial: Decoding the fetal circadian system and its role in adult sickness and health: Melatonin, a dark history. Front Endocrinol (Lausanne). 2020;11:380. DOI: 10.3389/fendo.2020

[106]

Torres-Farfan C., Cipolla Neto J., Herzog E.D. Editorial: Decoding the fetal circadian system and its role in adult sickness and health: Melatonin, a dark history // Front. Endocrinol (Lausanne). 2020. Vol. 11. P. 380. DOI: 10.3389/fendo.2020

[107]

Reiter RJ, Tan DX, Korkmaz A, Rosales-Corral SA. Melatonin and stabile circadian rhythms optimize maternal, placental and fetal physiology. Hum Reprod Update. 2014;20(2):293−307. DOI: 10.1093/humupd/dmt054

[108]

Reiter R.J., Tan D.X., Korkmaz A., Rosales-Corral S.A. Melatonin and stabile circadian rhythms optimize maternal, placental and fetal physiology // Hum. Reprod. Update. 2014. Vol. 20. No. 2. P. 293−307. DOI. 10.1093/humupd/dmt054

[109]

Mendez N, Halabi D, Spichiger C, et al. Gestational chronodisruption impairs circadian physiology in rat male offspring, increasing the risk of chronic disease. Endocrinology. 2016;157(12):4654–4668. DOI: 10.1210/en.2016-1282

[110]

Mendez N., Halabi D., Spichiger C., et al. Gestational chronodisruption impairs circadian physiology in rat male offspring, increasing the risk of chronic disease // Endocrinology. 2016. Vol. 157. No. 12. P. 4654–4668. DOI: 10.1210/en.2016-1282

[111]

Carmona P, Pérez B, Trujillo C, et al. Long-term effects of altered photoperiod during pregnancy on liver gene expression of the progeny. Front Physiol. 2019;10:1377. DOI: 10.3389/fphys.2019.0137

[112]

Carmona P., Pérez B., Trujillo C., et al. Long-term effects of altered photoperiod during pregnancy on liver gene expression of the progeny // Front. Physiol. 2019. Vol. 10. P. 1377. DOI: 10.3389/fphys.2019.0137

[113]

Salazar ER, Richter HG, Spichiger C, et al. Gestational chronodisruption leads to persistent changes in the rat fetal and adult adrenal clock and function. J Physiol. 2018;596:5839–5857. DOI: 10.1113/JP276083

[114]

Salazar E.R., Richter H.G., Spichiger C., et al. Gestational chronodisruption leads to persistent changes in the rat fetal and adult adrenal clock and function // J. Physiol. 2018. Vol. 596. P. 5839−5857. DOI: 10.1113/JP276083

[115]

Lamadé EK, Hendlmeier F, Wudy SA, et al. Rhythm of fetoplacental 11β-hydroxysteroid dehydrogenase type 2-fetal protection from morning maternal glucocorticoids. J Clin Endocrinol Metab. 2021;106(6):1630−1636. DOI: 10.1210/clinem/dgab113

[116]

Lamadé E.K., Hendlmeier F., Wudy S.A., et al. Rhythm of fetoplacental 11β-hydroxysteroid dehydrogenase type 2-fetal protection from morning maternal glucocorticoids // J. Clin. Endocrinol. Metab. 2021. Vol. 106. No. 6. P. 1630–1636. DOI: 10.1210/clinem/dgab113

[117]

Ryan J, Mansell T, Fransquet P, Saffery R. Does maternal mental well-being in pregnancy impact the early human epigenome? Epigenomics. 2017;9(3):313–332. DOI: 10.2217/epi-2016-0118

[118]

Ryan J., Mansell T., Fransquet P., Saffery R. Does maternal mental well-being in pregnancy impact the early human epigenome? // Epigenomics. 2017. Vol. 9. No. 3. P. 313−332. DOI: 10.2217/epi-2016-0118

[119]

Sacchi C, Marino C, Nosarti C, et al. Association of intrauterine growth restriction and small for gestational age status with childhood cognitive outcomes: A systematic. Review and meta-analysis. JAMA Pediatr. 2020;174(8):772−781. DOI: 10.1001/jamapediatrics.2020.1097

[120]

Sacchi C., Marino C., Nosarti C., et al. Association of intrauterine growth restriction and small for gestational age status with childhood cognitive outcomes: A systematic. Review and meta-analysis // JAMA Pediatr. 2020. Vol. 174. No. 8. Р. 772−781. DOI: 10.1001/jamapediatrics.2020.1097

[121]

Vollmer B, Edmonds CJ. School age neurological and cognitive outcomes of fetal growth retardation or small for gestational age birth weight. Front Endocrin. 2019;10:186. DOI: 10.3389/fendo. 2019.00186

[122]

Vollmer B., Edmonds C.J. School age neurological and cognitive outcomes of fetal growth retardation or small for gestational age birth weight // Front. Endocrin. 2019. Vol. 10. P. 186. DOI: 10.3389/fendo.2019.00186

[123]

Bhunu B, Intapad IRS. Insights into the mechanisms of fetal growth restriction-induced programming of hypertension. Integr Blood Pressure Control. 2021;14:141−152. DOI: 10.2147/IBPC.S312868

[124]

Bhunu B., Intapad I.R.S. Insights into the mechanisms of fetal growth restriction-induced programming of hypertension // Integr. Blood Pressure Control. 2021. Vol. 14. P. 141−152. DOI: 10.2147/IBPC.S312868

[125]

Amaral FGD, Andrade-Silva J, Kuwabara WMT, Cipolla-Neto J. New insights into the function of melatonin and its role in metabolic disturbances. Expert Rev Endocrinol Metab. 2019;14(4):293−300. DOI: 10.1080/17446651.2019.1631158

[126]

Amaral F.G.D., Andrade-Silva J., Kuwabara W.M.T., Cipolla-Neto J. New insights into the function of melatonin and its role in metabolic disturbances // Expert. Rev. Endocrinol. Metab. 2019. Vol. 14. No. 4. P. 293−300. DOI: 10.1080/17446651.2019.1631158

[127]

Ivanov DO, Evsyukova II, Mironova ES, et al. Maternal melatonin deficiency leads to endocrine pathologies in children in early ontogenesis. Int J Mol Sci. 2021;22:2058. DOI: 10.3390/ijms22042058

[128]

Ivanov D.O., Evsyukova I.I., Mironova E.S., et al. Maternal melatonin deficiency leads to endocrine pathologies in children in early ontogenesis // Int. J. Mol. Sci. 2021.Vol. 22. P. 2058. DOI: 10.3390/ijms22042058

[129]

Korkmaz A, Rosales-Corral S, Reiter RJ. Gene regulation by melatonin linked to epigenetic phenomena. Gene. 2012;503(1):1−11. DOI: 10.1016/j.gene.2012.04.040

[130]

Korkmaz A., Rosales-Corral S., Reiter R.J. Gene regulation by melatonin linked to epigenetic phenomena // Gene. 2012. Vol. 503. No. 1. P. 1−11. DOI: 10.1016/j.gene.2012.04.040

[131]

Perez-Gonzalez A, Castaneda-Arriaga R, Alvarez-Idaboy JR, et al. Melatonin and its metabolites as chemical agents capable of directly repairing oxidized DNA. J Pineal Res. 2019;66(2):e12539. DOI: 10.1111/jpi.12539

[132]

Perez-Gonzalez A., Castaneda-Arriaga R., Alvarez-Idaboy J.R., et al. Melatonin and its metabolites as chemical agents capable of directly repairing oxidized DNA // J. Pineal. Res. 2019. Vol. 66. No. 2. P. e12539. DOI: 10.1111/jpi.12539

[133]

Ireland KE, Maloyan A, Myatt L. Melatonin improves mitochondrial respiration in syncytiotrophoblasts from placentas of obese women. Reprod Sci. 2018;25(1):120−130. DOI: 101177/1933719117704908

[134]

Ireland K.E., Maloyan, A., Myatt L. Melatonin improves mitochondrial respiration in syncytiotrophoblasts from placentas of obese women // Reprod. Sci. 2018. Vol. 25. No. 1. P. 120−130. DOI: 101177/1933719117704908

[135]

Xu D-X, Wang H, Ning H, et al. Maternally administered melatonin differentially regulates lipopolysaccharide-induced proinflammatory and anti-infammatory cytokines in maternal serum, amniotic fluid, fetal live, and fetal brain. J Pineal Res. 2007;43(1):74−79. DOI: 10.1111.j.1600-079X.2007.004445.x

[136]

Xu D.-X., Wang H., Ning H., et al. Maternally administered melatonin differentially regulates lipopolysaccharide-induced proinflammatory and anti-infammatory cytokines in maternal serum, amniotic fluid, fetal live, and fetal brain // J. Pineal Res. 2007. Vol. 43. No 1. P. 74−79. DOI: 10.1111.j.1600-079X.2007.004445.x

[137]

Chitimus DM, Popescu MR, Voiculescu SE, et al. Melatonin’s impact on antioxidative and anti-inflamatory reprogramming in homeostasis and disease. Biomolecules. 2020;10(9):1211. DOI: 10.3390/biom1009211

[138]

Chitimus D.M., Popescu M.R., Voiculescu S.E., et al. Melatonin’s impact on antioxidative and anti-Inflamatory reprogramming in homeostasis and disease // Biomolecules. 2020. Vol. 10. No. 9. P. 1211. DOI: 10.3390/biom1009211

[139]

Tan DX, Manchester LC, Qin L, Reiter RJ. Melatonin: A mitochondrial targeting molecule involving mitochondrial protection and dynamics. Int J Mol Sci. 2016;17(12):2124. DOI: 10.3390/ijms17122124

[140]

Tan D.X., Manchester L.C., Qin L., Reiter R.J. Melatonin: A mitochondrial targeting molecule involving mitochondrial protection and dynamics // Int. J. Mol. Sci. 2016. Vol. 17. No. 12. P. 2124. DOI: 10.3390/ijms17122124

[141]

Kopustinskiene DM, Bernatoniene J. Molecular mechanisms of melatonin-mediated cell protection and signaling in health and disease. Pharmaceutics. 2021;13(2):129. DOI: 10.3390/pharmaceutics13020129

[142]

Kopustinskiene D.M., Bernatoniene J. Molecular mechanisms of melatonin-mediated cell protection and signaling in health and disease // Pharmaceutics. 2021. Vol. 13. No. 2. P. 129. DOI:10.3390/pharmaceutics13020129

[143]

Mendez N, Abarzua-Catalan L, Vilches N, et al. Timed maternal melatonin treatment reverses circadian disruption of the fetal adrenal clock imposed by exposure to constant light. PloS One. 2012;7(8):e42713. DOI: 10.1371/journal.pone0042713

[144]

Mendez N., Abarzua-Catalan L., Vilches N., et al. Timed maternal melatonin treatment reverses circadian disruption of the fetal adrenal clock imposed by exposure to constant light // PloS ONE. 2012. Vol. 7. No. 8. P. e42713. DOI: 10.1371/journal.pone0042713

[145]

Hansell JA, Richter HJ, Camm EJ, et al. Matrenal melatonin: Effective intervention against developmental programming of cardiovascular dysfunction in adult offspring of complicated pregnancy. J Pineal Res. 2021;72(1):e12766. DOI: 10.1111/jpi.12766

[146]

Hansell J.A., Richter H.J., Camm E.J., et al. Matrenal melatonin: Effective intervention against developmental programming of cardiovascular dysfunction in adult offspring of complicated pregnancy // J. Pineal. Res. 2021. Vol. 72. No. 1. P. e12766. DOI: 10.1111/jpi.12766

RIGHTS & PERMISSIONS

Eсо-Vector

AI Summary AI Mindmap
PDF

113

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/