Anatomical and pathophysiological features of fetal circulation in the umbilical-portal venous system

Elizaveta V. Shelayeva , Elizaveta M. Tsybuk , Ekaterina V. Kopteyeva , Roman V. Kapustin , Igor Yu. Kogan

Journal of obstetrics and women's diseases ›› 2022, Vol. 71 ›› Issue (4) : 107 -119.

PDF
Journal of obstetrics and women's diseases ›› 2022, Vol. 71 ›› Issue (4) : 107 -119. DOI: 10.17816/JOWD106526
Reviews
review-article

Anatomical and pathophysiological features of fetal circulation in the umbilical-portal venous system

Author information +
History +
PDF

Abstract

Being facilitated in recent years by the advent of high-resolution gray-scale, color Doppler and three-dimensional ultrasound, prenatal visualization of venous vessels has improved much and well contributed to a better understanding of the value of fetal venous circulation. The fetal liver plays an important role in ensuring normal fetal blood circulation, receiving up to 70–80% of venous return from the placenta. Of particular importance is its role in the regulation of intrauterine growth. Venous inflow to the fetal liver is significantly influenced by maternal factors. Ultrasound evaluation of the fetal venous system remains to be not an easy task. This article discusses the significance and features of the anatomical and functional development of the fetal intrahepatic venous system.

Keywords

Doppler ultrasound / fetal circulation / fetal liver / ductus venosus / umbilical vein / portal vein

Cite this article

Download citation ▾
Elizaveta V. Shelayeva, Elizaveta M. Tsybuk, Ekaterina V. Kopteyeva, Roman V. Kapustin, Igor Yu. Kogan. Anatomical and pathophysiological features of fetal circulation in the umbilical-portal venous system. Journal of obstetrics and women's diseases, 2022, 71(4): 107-119 DOI:10.17816/JOWD106526

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Kiserud T. The ductus venosus. Semin Perinatol. 2001;25(1):11−20. DOI: 10.1053/sper.2001.22896

[2]

Kiserud T. The ductus venosus // Semin Perinatol. 2001. Vol. 25. No. 1. P. 11−20. DOI: 10.1053/sper.2001.22896

[3]

Huisman TW, Stewart PA, Wladimiroff JW. Ductus venosus blood flow velocity waveforms in the human fetus — A doppler study. Ultrasound Med Biol. 1992;18(1):33−37. DOI: 10.1016/0301-5629(92)90005-u

[4]

Huisman T.W., Stewart P.A., Wladimiroff J.W. Ductus venosus blood flow velocity waveforms in the human fetus — A doppler study // Ultrasound Med Biol. 1992. Vol. 18. No. 1. P. 33−37. DOI: 10.1016/0301-5629(92)90005-u

[5]

Ailamazyan EK, Konstantinova NN, Polyanin AA, Kogan IYu. Modern representation about venous circulation in fetoplacental system. Journal of obstetrics and women’s diseases. 1999;48(3):10−14. (In Russ.). DOI: 10.17816/JOWD88700

[6]

Айламазян Э.К., Константинова Н.Н., Полянин А.А., Коган И.Ю. Современное представление о венозной циркуляции в фетоплацентарной системе // Журнал акушерства и женских болезней. 1999. Т. 48. № 3. C. 10−14. DOI: 10.17816/JOWD88700

[7]

Polyanin AA, Kogan IYu. Venoznoye krovoobrashcheniye ploda pri normal’no protekayushchey i oslozhnennoy beremennosti. Saint Petersburg: Petrovskiy fond; 2002. (In Russ.)

[8]

Полянин А.А., Коган И.Ю. Венозное кровообращение плода при нормально протекающей и осложненной беременности. Санкт-Петербург: Петровский фонд, 2002.

[9]

Finnemore A, Groves A. Physiology of the fetal and transitional circulation. Semin Fetal Neonatal Med. 2015;20(4):210−216. DOI: 10.1016/j.siny.2015.04.003

[10]

Finnemore A., Groves A. Physiology of the fetal and transitional circulation // Semin. Fetal Neonatal. Med. 2015. Vol. 20. No. 4. P. 210−216. DOI: 10.1016/j.siny.2015.04.003

[11]

Morton SU, Brodsky D. Fetal physiology and the transition to extrauterine life. Clin Perinatol. 2016;43(3):395−407. DOI: 10.1016/j.clp.2016.04.001

[12]

Morton S.U., Brodsky D. Fetal physiology and the transition to extrauterine life // Clin. Perinatol. 2016. Vol. 43. No. 3. P. 395−407. DOI: 10.1016/j.clp.2016.04.001

[13]

Gayvoronskiy IV. Normal’naya anatomiya cheloveka. Vol. 2. Saint Petersburg: SpetsLit; 2020. (In Russ.)

[14]

Гайворонский И.В. Нормальная анатомия человека. Т. 2. Санкт-Петербург: СпецЛит, 2020.

[15]

Meler E, Martínez J, Boada D, et al. Doppler studies of placental function. Placenta. 2021;108:91−96. DOI: 10.1016/j.placenta.2021.03.014

[16]

Meler E., Martínez J., Boada D., et al. Doppler studies of placental function // Placenta. 2021. Vol. 108. P. 91−96. DOI: 10.1016/j.placenta.2021.03.014

[17]

Polyanin AA, Kogan IYu. Plodovo-platsentarnoe venoznoe krovoobrashchenie. Regional blood circulation and microcirculation. 2003;2(2):5−9. (In Russ.)

[18]

Полянин А.А., Коган И.Ю. Плодово-плацентарное венозное кровообращение // Регионарное кровообращение и микроциркуляция. 2003. Т. 2. № 2 (8). С. 5−9.

[19]

Murphy PJ. The fetal circulation. Continuing Education in Anaesthesia Critical Care & Pain. 2005;5(4):107–112. DOI: 10.1093/BJACEACCP/MKI030

[20]

Murphy P.J. The fetal circulation // Continuing Education in Anaesthesia Critical Care & Pain. 2005. Vol. 5. No. 4. P. 107–112. DOI: 10.1093/BJACEACCP/MKI030

[21]

Yagel S, Cohen SM, Valsky DV, et al. Systematic examination of the fetal abdominal precordial veins: a cohort study. Ultrasound Obstet Gynecol. 2015;45(5):578−583. DOI: 10.1002/uog.13444

[22]

Yagel S., Cohen S.M., Valsky D.V., et al. Systematic examination of the fetal abdominal precordial veins: a cohort study // Ultrasound Obstet. Gynecol. 2015. Vol. 45. No. 5. P. 578−583. DOI: 10.1002/uog.13444

[23]

Ahmed B, Abushama M, Khraisheh M, Dudenhausen J. Role of ultrasound in the management of diabetes in pregnancy. J Matern Fetal Neonatal Med. 2015;28(15):1856−1863. DOI: 10.3109/14767058.2014.971745

[24]

Ahmed B., Abushama M., Khraisheh M., Dudenhausen J. Role of ultrasound in the management of diabetes in pregnancy // J. Matern. Fetal. Neonatal. Med. 2015. Vol. 28. No. 15. P. 1856−1863. DOI: 10.3109/14767058.2014.971745

[25]

Kivilevitch Z, Gindes L, Deutsch H, Achiron R. In-utero evaluation of the fetal umbilical-portal venous system: two- and three-dimensional ultrasonic study. Ultrasound Obstet Gynecol. 2009;34(6):634−642. DOI: 10.1002/uog.7459

[26]

Kivilevitch Z., Gindes L., Deutsch H., Achiron R. In-utero evaluation of the fetal umbilical-portal venous system: two- and three-dimensional ultrasonic study // Ultrasound Obstet. Gynecol. 2009. Vol. 34. No. 6. P. 634−642. DOI: 10.1002/uog.7459

[27]

Yagel S, Kivilevitch Z, Cohen SM, et al. The fetal venous system, part I: normal embryology, anatomy, hemodynamics, ultrasound evaluation and Doppler investigation. Ultrasound Obstet Gynecol. 2010;35(6):741−750. DOI: 10.1002/uog.7618

[28]

Yagel S., Kivilevitch Z., Cohen S.M., et al. The fetal venous system, part I: normal embryology, anatomy, hemodynamics, ultrasound evaluation and Doppler investigation // Ultrasound Obstet. Gynecol. 2010. Vol. 35. No. 6. P. 741−750. DOI: 10.1002/uog.7618

[29]

Mavrides E, Moscoso G, Carvalho JS, et al. The anatomy of the umbilical, portal and hepatic venous systems in the human fetus at 14-19 weeks of gestation. Ultrasound Obstet Gynecol. 2001;18(6):598−604. DOI: 10.1046/j.0960-7692.2001.00581.x

[30]

Mavrides E., Moscoso G., Carvalho J.S., et al. The anatomy of the umbilical, portal and hepatic venous systems in the human fetus at 14-19 weeks of gestation // Ultrasound Obstet. Gynecol. 2001. Vol. 18. No. 6. P. 598−604. DOI:10.1046/j.0960-7692.2001.00581.x

[31]

Chaoui R, Heling KS, Karl K. Ultrasound of the fetal veins part 1: the intrahepatic venous system. Ultraschall Med. 2014;35(3):208−228. DOI: 10.1055/s-0034-1366316

[32]

Chaoui R., Heling K.S., Karl K. Ultrasound of the fetal veins part 1: the intrahepatic venous system // Ultraschall. Med. 2014. Vol. 35. No. 3. P. 208−228. DOI: 10.1055/s-0034-1366316

[33]

Mavrides E, Moscoso G, Carvalho JS, et al. The human ductus venosus between 13 and 17 weeks of gestation: histological and morphometric studies. Ultrasound Obstet Gynecol. 2002;19(1):39−46. DOI: 10.1046/j.1469-0705.2002.00614.x

[34]

Mavrides E., Moscoso G., Carvalho J.S., et al. The human ductus venosus between 13 and 17 weeks of gestation: histological and morphometric studies // Ultrasound Obstet. Gynecol. 2002. Vol. 19. No. 1. P. 39−46. DOI: 10.1046/j.1469-0705.2002.00614.x

[35]

Ailamazyan EK, Kirillova OV, Polyanin AA, Kogan IYu. Functional morphology of ductus venosus in human fetus. Neuro Endocrinol Lett. 2003;24(1−2):28−32.

[36]

Ailamazyan E.K., Kirillova O.V., Polyanin A.A., Kogan I.Yu. Functional morphology of ductus venosus in human fetus // Neuro Endocrinol. Lett. 2003. Vol. 24. No. 1−2. P. 28−32.

[37]

Kogan IYu. Znachenie doplerometricheskogo issledovaniya venoznoy tsirkulyatsii ploda dlya otsenki ego funktsional’nogo sostoyaniya. Journal of obstetrics and women’s diseases. 2014;63(1):54. (In Russ.). DOI: 10.17816/JOWD63154

[38]

Коган И.Ю. Значение доплерометрического исследования венозной циркуляции плода для оценки его функционального состояния // Журнал акушерства и женских болезней. 2014. Т. 63. № 1. C. 54. DOI: 10.17816/JOWD63154

[39]

Kessler J, Rasmussen S, Kiserud T. The fetal portal vein: normal blood flow development during the second half of human pregnancy. Ultrasound Obstet Gynecol. 2007;30(1):52−60. DOI: 10.1002/uog.4054

[40]

Kessler J., Rasmussen S., Kiserud T. The fetal portal vein: normal blood flow development during the second half of human pregnancy // Ultrasound Obstet. Gynecol. 2007. Vol. 30. No. 1. P. 52−60. DOI: 10.1002/uog.4054

[41]

Kessler J, Rasmussen S, Godfrey K, et al. Longitudinal study of umbilical and portal venous blood flow to the fetal liver: low pregnancy weight gain is associated with preferential supply to the fetal left liver lobe. Pediatr Res. 2008;63(3):315−320. DOI: 10.1203/pdr.0b013e318163a1de

[42]

Kessler J., Rasmussen S., Godfrey K., et al. Longitudinal study of umbilical and portal venous blood flow to the fetal liver: low pregnancy weight gain is associated with preferential supply to the fetal left liver lobe // Pediatr. Res. 2008. Vol. 63. No. 3. P. 315−320. DOI: 10.1203/pdr.0b013e318163a1de

[43]

Karmegaraj B. Normal fetal umbilical, portal, and hepatic venous system: four-dimensional stic rendering. Radiology. 2021;299(1):51. DOI: 10.1148/radiol.2021203300

[44]

Karmegaraj B. Normal fetal umbilical, portal, and hepatic venous system: four-dimensional stic rendering // Radiology. 2021. Vol. 299. No. 1. P. 51. DOI: 10.1148/radiol.2021203300

[45]

Kilavuz O, Vetter K. Is the liver of the fetus the 4th preferential organ for arterial blood supply besides brain, heart, and adrenal glands? J Perinat Med. 1999;27(2):103−106. DOI: 10.1515/JPM.1999.012

[46]

Kilavuz O., Vetter K. Is the liver of the fetus the 4th preferential organ for arterial blood supply besides brain, heart, and adrenal glands? // J. Perinat. Med. 1999. Vol. 27. No. 2. P. 103−106. DOI: 10.1515/JPM.1999.012

[47]

Ebbing C, Rasmussen S, Godfrey KM, et al. Redistribution pattern of fetal liver circulation in intrauterine growth restriction. Acta Obstet Gynecol Scand. 2009;88(10):1118−1123. DOI: 10.1080/00016340903214924

[48]

Ebbing C., Rasmussen S., Godfrey K.M., et al. Redistribution pattern of fetal liver circulation in intrauterine growth restriction // Acta Obstet. Gynecol. Scand. 2009. Vol. 88. No. 10. P. 1118−1123. DOI: 10.1080/00016340903214924

[49]

Ebbing C, Rasmussen S, Godfrey KM, et al. Hepatic artery hemodynamics suggest operation of a buffer response in the human fetus. Reprod Sci. 2008;15(2):166−178. DOI: 10.1177/1933719107310307

[50]

Ebbing C., Rasmussen S., Godfrey K.M., et al. Hepatic artery hemodynamics suggest operation of a buffer response in the human fetus // Reprod. Sci. 2008. Vol. 15. No. 2. P. 166−178. DOI: 10.1177/1933719107310307

[51]

Kessler J, Rasmussen S, Godfrey K, et al. Fetal growth restriction is associated with prioritization of umbilical blood flow to the left hepatic lobe at the expense of the right lobe. Pediatr Res. 2009;66(1):113−117. DOI: 10.1203/PDR.0b013e3181a29077

[52]

Kessler J., Rasmussen S., Godfrey K., et al. Fetal growth restriction is associated with prioritization of umbilical blood flow to the left hepatic lobe at the expense of the right lobe // Pediatr. Res. 2009. Vol. 66. No. 1. P. 113−117. DOI: 10.1203/PDR.0b013e3181a29077

[53]

Achiron R, Kivilevitch Z. Fetal umbilical-portal-systemic venous shunt: in-utero classification and clinical significance. Ultrasound Obstet Gynecol. 2016;47(6):739−747. DOI: 10.1002/uog.14906

[54]

Achiron R., Kivilevitch Z. Fetal umbilical-portal-systemic venous shunt: in-utero classification and clinical significance // Ultrasound Obstet. Gynecol. 2016. Vol. 47. No. 6. P. 739−747. DOI: 10.1002/uog.14906

[55]

Kivilevitch Z, Kassif E, Gilboa Y, et al. The intra-hepatic umbilical-Porto-systemic venous shunt and fetal growth. Prenat Diagn. 2021;41(4):457−464. DOI: 10.1002/pd.5882

[56]

Kivilevitch Z., Kassif E., Gilboa Y., et al. The intra-hepatic umbilical-Porto-systemic venous shunt and fetal growth // Prenat. Diagn. 2021. Vol. 41. No. 4. P. 457−464. DOI: 10.1002/pd.5882

[57]

Seravalli V, Miller JL, Block-Abraham D, Baschat AA. Ductus venosus Doppler in the assessment of fetal cardiovascular health: an updated practical approach. Acta Obstetricia et Gynecologica Scandinavica. 2016;95(6);635–644. DOI: 10.1111/AOGS.12893

[58]

Seravalli V., Miller J.L., Block-Abraham D., Baschat A.A. Ductus venosus Doppler in the assessment of fetal cardiovascular health: an updated practical approach // Acta Obstet. Gynecol. Scand. 2016. Vol. 95. No 6. P. 635–644. DOI: 10.1111/AOGS.12893

[59]

Su EJ, Galan HL. Fetal growth and growth restriction. In: Pandya PP, Oepkes D, Sebire NJ, Wapner RJ. editors. Fetal Medicine. 3rd ed. London: Elsevier; 2020. P. 469−483.e4. DOI: 0.1016/B978-0-7020-6956-7.00039-7. [cited 2022 Feb. 14]. Available from: https://www.sciencedirect.com/science/article/pii/B9780702069567000397

[60]

Su E.J., Galan H.L. Fetal Growth and Growth Restriction // Fetal Medicine. Ed. by P.P. Pandya, D. Oepkes, N.J. Sebire, R.J. Wapner. 3rd ed. London: Elsevier, 2020. P. 469−483.e4. DOI: 10.1016/B978-0-7020-6956-7.00039-7. [дата обращения: 14.02.2022]. Доступ по ссылке: https://www.sciencedirect.com/science/article/pii/B9780702069567000397

[61]

Medvedev MV. Prenatal echography. Differential diagnosis and prognosis. Moscow: Real Time; 2016. (In Russ.)

[62]

Медведев М.В. Пренатальная эхография: дифференциальный диагноз и прогноз. 4-е изд. Москва: Реальное время, 2016.

[63]

Minnella GP, Crupano FM, Syngelaki A, et al. Diagnosis of major heart defects by routine first-trimester ultrasound examination: association with increased nuchal translucency, tricuspid regurgitation and abnormal flow in ductus venosus. Ultrasound Obstet Gynecol. 2020;55(5):637−644. DOI: 10.1002/uog.21956

[64]

Minnella G.P., Crupano F.M., Syngelaki A., et al. Diagnosis of major heart defects by routine first-trimester ultrasound examination: association with increased nuchal translucency, tricuspid regurgitation and abnormal flow in ductus venosus // Ultrasound Obstet. Gynecol. 2020. Vol. 55. No. 5. P. 637−644. DOI: 10.1002/uog.21956

[65]

Ferrazzi E, Lees C, Acharya G. The controversial role of the ductus venosus in hypoxic human fetuses. Acta Obstetricia et Gynecologica Scandinavica. 2019;98(7):823–829. DOI: 10.1111/AOGS.13572

[66]

Ferrazzi E., Lees C., Acharya G. The controversial role of the ductus venosus in hypoxic human fetuses // Acta Obstet. Gynecol. Scandinavica. 2019. Vol. 98. N 7. P. 823–829. doi: 10.1111/AOGS.13572

[67]

Caradeux J, Martinez-Portilla RJ, Basuki TR, et al. Risk of fetal death in growth-restricted fetuses with umbilical and/or ductus venosus absent or reversed end-diastolic velocities before 34 weeks of gestation: a systematic review and meta-analysis. Am J Obstet Gynecol. 2018;218(2S):S774−S782.e21. DOI: 10.1016/j.ajog.2017.11.566

[68]

Caradeux J., Martinez-Portilla R.J., Basuki T.R., et al. Risk of fetal death in growth-restricted fetuses with umbilical and/or ductus venosus absent or reversed end-diastolic velocities before 34 weeks of gestation: a systematic review and meta-analysis // Am. J. Obstet. Gynecol. 2018. Vol. 218. No. 2S. P. S774−S782.e21. DOI: 10.1016/j.ajog.2017.11.566

[69]

Hecher K, Bilardo CM, Stigter RH, et al. Monitoring of fetuses with intrauterine growth restriction: a longitudinal study. Ultrasound Obstet Gynecol. 2001;18(6):564−570. DOI: 10.1046/j.0960-7692.2001.00590.x

[70]

Hecher K., Bilardo C.M., Stigter R.H., et al. Monitoring of fetuses with intrauterine growth restriction: a longitudinal study // Ultrasound Obstet. Gynecol. 2001. Vol. 18. No. 6. P. 564−570. DOI: 10.1046/j.0960-7692.2001.00590.x

[71]

Morris RK, Selman TJ, Verma M, et al. Systematic review and meta-analysis of the test accuracy of ductus venosus Doppler to predict compromise of fetal/neonatal wellbeing in high risk pregnancies with placental insufficiency. Eur J Obstet Gynecol Reprod Biol. 2010;152(1):3−12. DOI: 10.1016/j.ejogrb.2010.04.017

[72]

Morris R.K., Selman T.J., Verma M., et al. Systematic review and meta-analysis of the test accuracy of ductus venosus Doppler to predict compromise of fetal/neonatal wellbeing in high risk pregnancies with placental insufficiency // Eur. J. Obstet. Gynecol. Reprod. Biol. 2010. Vol. 152. No. 1. P. 3−12. DOI: 10.1016/j.ejogrb.2010.04.017

[73]

Kessler J, Rasmussen S, Godfrey K, et al. Venous liver blood flow and regulation of human fetal growth: evidence from macrosomic fetuses. Am J Obstet Gynecol. 2011;204(5):429.e1−429.e4297. DOI: 10.1016/j.ajog.2010.12.038

[74]

Kessler J., Rasmussen S., Godfrey K., et al. Venous liver blood flow and regulation of human fetal growth: evidence from macrosomic fetuses // Am. J. Obstet. Gynecol. 2011. Vol. 204. No. 5. P. 429.e1−429.e4297. DOI: 10.1016/j.ajog.2010.12.038

[75]

Kilavuz O, Vetter K, Kiserud T, Vetter P. The left portal vein is the watershed of the fetal venous system. J Perinat Med. 2003;31(2):184−187. DOI: 10.1515/JPM.2003.025

[76]

Kilavuz O., Vetter K., Kiserud T., Vetter P. The left portal vein is the watershed of the fetal venous system // J Perinat Med. 2003. Vol. 31. No. 2. P. 184−187. DOI: 10.1515/JPM.2003.025

[77]

Kessler J, Rasmussen S, Kiserud T. The left portal vein as an indicator of watershed in the fetal circulation: development during the second half of pregnancy and a suggested method of evaluation. Ultrasound Obstet Gynecol. 2007;30(5):757−764. DOI: 10.1002/uog.5146

[78]

Kessler J., Rasmussen S., Kiserud T. The left portal vein as an indicator of watershed in the fetal circulation: development during the second half of pregnancy and a suggested method of evaluation // Ultrasound Obstet. Gynecol. 2007. Vol. 30. No. 5. P. 757−764. DOI: 10.1002/uog.5146

[79]

Ebbing C, Rasmussen S, Kiserud T. Fetal hemodynamic development in macrosomic growth. Ultrasound in Obstetrics & Gynecology. 2011;38(3):303–308. DOI: 10.1002/UOG.9046

[80]

Ebbing C., Rasmussen S., Kiserud T. Fetal hemodynamic development in macrosomic growth // Ultrasound Obstet. Gynecol. 2011. Vol. 38. No. 3. P. 303–308. DOI: 10.1002/UOG.9046

[81]

Tchirikov M, Kertschanska S, Schröder HJ. Obstruction of ductus venosus stimulates cell proliferation in organs of fetal sheep. Placenta. 2001;22(1):24−31. DOI: 10.1053/plac.2000.0585

[82]

Tchirikov M., Kertschanska S., Schröder H.J. Obstruction of ductus venosus stimulates cell proliferation in organs of fetal sheep // Placenta. 2001. Vol. 22. No. 1. P. 24−31. DOI: 10.1053/plac.2000.0585

[83]

Rees WD. Interactions between nutrients in the maternal diet and the implications for the long-term health of the offspring. Proc Nutr Soc. 2019;78(1):88−96. DOI: 10.1017/S0029665118002537

[84]

Rees W.D. Interactions between nutrients in the maternal diet and the implications for the long-term health of the offspring // Proc. Nutr. Soc. 2019. Vol. 78. No. 1. P. 88−96. DOI: 10.1017/S0029665118002537

[85]

Ikenoue S, Waffarn F, Ohashi M, et al. Prospective association of fetal liver blood flow at 30 weeks gestation with newborn adiposity. Am J Obstet Gynecol. 2017;217(2):204.e1−204.e8. DOI: 10.1016/j.ajog.2017.04.022

[86]

Ikenoue S., Waffarn F., Ohashi M., et al. Prospective association of fetal liver blood flow at 30 weeks gestation with newborn adiposity // Am. J. Obstet. Gynecol. 2017. Vol. 217. No. 2. P. 204.e1−204.e8. DOI: 10.1016/j.ajog.2017.04.022

[87]

American College of Obstetricians and Gynecologists’ Committee on Practice Bulletins–Obstetrics. Obesity in pregnancy: ACOG practice bulletin, number 230. Obstet Gynecol. 2021;137(6):e128−e144. DOI: 10.1097/AOG.0000000000004395

[88]

American College of Obstetricians and Gynecologists’ Committee on Practice Bulletins–Obstetrics. Obesity in pregnancy: ACOG practice bulletin, Number 230 // Obstet. Gynecol. 2021. Vol. 137. No. 6. P. e128−e144. DOI: 10.1097/AOG.0000000000004395

[89]

Kuzawa CW. Fetal origins of developmental plasticity: are fetal cues reliable predictors of future nutritional environments? Am J Hum Biol. 2005;17(1):5−21. DOI: 10.1002/ajhb.20091

[90]

Kuzawa C.W. Fetal origins of developmental plasticity: are fetal cues reliable predictors of future nutritional environments? // Am. J. Hum. Biol. 2005. Vol. 17. No. 1. P. 5−21. DOI: 10.1002/ajhb.20091

[91]

Cosmo YC, Araujo Júnior E, de Sá RA, et al. Doppler velocimetry of ductus venous in preterm fetuses with brain sparing effect: neonatal outcome. J Prenat Med. 2012;6(3):40−46.

[92]

Cosmo Y.C., Araujo Júnior E., de Sá R.A., et al. Doppler velocimetry of ductus venous in preterm fetuses with brain sparing effect: neonatal outcome // J. Prenat. Med. 2012. Vol. 6. No. 3. P. 40−46.

[93]

Haugen G, Hanson M, Kiserud T, et al. Fetal liver-sparing cardiovascular adaptations linked to mother’s slimness and diet. Circ Res. 2005;96(1):12−14. DOI: 10.1161/01.RES.0000152391.45273.A2

[94]

Haugen G., Hanson M., Kiserud T., et al. Fetal liver-sparing cardiovascular adaptations linked to mother’s slimness and diet // Circ. Res. 2005. Vol. 96. No. 1. P. 12−14. DOI: 10.1161/01.RES.0000152391.45273.A2

[95]

Godfrey KM, Haugen G, Kiserud T, et al. Fetal liver blood flow distribution: role in human developmental strategy to prioritize fat deposition versus brain development. PLoS One. 2012;7(8):e41759. DOI: 10.1371/journal.pone.0041759

[96]

Godfrey K.M., Haugen G., Kiserud T., et al. Fetal liver blood flow distribution: role in human developmental strategy to prioritize fat deposition versus brain development // PLoS One. 2012. Vol. 7. No. 8. P. e41759. DOI: 10.1371/journal.pone.0041759

[97]

Tchirikov M, Kertschanska S, Stürenberg HJ, Schröder HJ. Liver blood perfusion as a possible instrument for fetal growth regulation. Placenta. 2002;23 Suppl A:S153−S158. DOI: 10.1053/plac.2002.0810

[98]

Tchirikov M., Kertschanska S., Stürenberg H.J., Schröder H.J. Liver blood perfusion as a possible instrument for fetal growth regulation // Placenta. 2002. Vol. 23. Suppl. A. P. S153−S158. DOI: 10.1053/plac.2002.0810

[99]

Vedmedovska N, Rezeberga D, Teibe U, et al. Adaptive changes in the splenic artery and left portal vein in fetal growth restriction. J Ultrasound Med. 2012;31(2):223−229. DOI: 10.7863/jum.2012.31.2.223

[100]

Vedmedovska N., Rezeberga D., Teibe U., et al. Adaptive changes in the splenic artery and left portal vein in fetal growth restriction // J. Ultrasound. Med. 2012. Vol. 31. No. 2. P. 223−229. DOI: 10.7863/jum.2012.31.2.223

[101]

Kiserud T, Rasmussen S, Skulstad S. Blood flow and the degree of shunting through the ductus venosus in the human fetus. Am J Obstet Gynecol. 2000;182(1 Pt 1):147−153. DOI: 10.1016/s0002-9378(00)70504-7

[102]

Kiserud T., Rasmussen S., Skulstad S. Blood flow and the degree of shunting through the ductus venosus in the human fetus // Am. J. Obstet. Gynecol. 2000. Vol. 182. No. 1. Pt. 1. P. 147−153. DOI: 10.1016/s0002-9378(00)70504-7

[103]

Baschat AA. Venous Doppler evaluation of the growth-restricted fetus. Clin Perinatol. 2011;38(1):103−vi. DOI: 10.1016/j.clp.2010.12.001

[104]

Baschat A.A. Venous Doppler evaluation of the growth-restricted fetus // Clin. Perinatol. 2011. Vol. 38. No. 1. P. 103-vi. DOI: 10.1016/j.clp.2010.12.001

[105]

Bellotti M, Pennati G, De Gasperi C, et al. Simultaneous measurements of umbilical venous, fetal hepatic, and ductus venosus blood flow in growth-restricted human fetuses. Am J Obstet Gynecol. 2004;190(5):1347−1358. DOI: 10.1016/j.ajog.2003.11.018

[106]

Bellotti M., Pennati G., De Gasperi C., et al. Simultaneous measurements of umbilical venous, fetal hepatic, and ductus venosus blood flow in growth-restricted human fetuses // Am. J. Obstet. Gynecol. 2004. Vol. 190. No. 5. P. 1347−1358. DOI: 10.1016/j.ajog.2003.11.018

[107]

Kiserud T, Kessler J, Ebbing C, Rasmussen S. Ductus venosus shunting in growth-restricted fetuses and the effect of umbilical circulatory compromise. Ultrasound Obstet Gynecol. 2006;28(2):143−149. DOI: 10.1002/uog.2784

[108]

Kiserud T., Kessler J., Ebbing C., Rasmussen S. Ductus venosus shunting in growth-restricted fetuses and the effect of umbilical circulatory compromise // Ultrasound Obstet. Gynecol. 2006. Vol. 28. No. 2. P. 143−149. DOI: 10.1002/uog.2784

[109]

Baschat AA, Gembruch U, Reiss I, et al. Relationship between arterial and venous Doppler and perinatal outcome in fetal growth restriction. Ultrasound Obstet Gynecol. 2000;16(5):407−413. DOI: 10.1046/j.1469-0705.2000.00284.x

[110]

Baschat A.A., Gembruch U., Reiss I., et al. Relationship between arterial and venous Doppler and perinatal outcome in fetal growth restriction // Ultrasound Obstet. Gynecol. 2000. Vol. 16. No. 5. P. 407−413. DOI: 10.1046/j.1469-0705.2000.00284.x

RIGHTS & PERMISSIONS

Eсо-Vector

AI Summary AI Mindmap
PDF

134

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/