Melatonin in the pathogenesis of preeclampsia

Inna I. Evsyukova , Igor M. Kvetnoy

Journal of obstetrics and women's diseases ›› 2022, Vol. 71 ›› Issue (3) : 53 -64.

PDF
Journal of obstetrics and women's diseases ›› 2022, Vol. 71 ›› Issue (3) : 53 -64. DOI: 10.17816/JOWD103863
Reviews
review-article

Melatonin in the pathogenesis of preeclampsia

Author information +
History +
PDF

Abstract

The review presents the results of experimental studies that have revealed the molecular mechanisms underlying implantation and placentation controlled by cytokines, chemokines, adhesion molecules, hormones, as well as transcription and growth factors, and have indicated the key regulatory and protective role of melatonin. It has been shown that low production of the hormone and lack of its circadian rhythm underlie the disruption of endogenous antioxidant protection and contribute to oxidative stress leading to the development of preeclampsia. The necessity of using melatonin as a neuroimmunoendocrine marker of pathology is emphasized in this review article, which will allow for developing new approaches to its use for the prevention and treatment of preeclampsia, as well as its adverse consequences, such as obesity, type 2 diabetes mellitus, renal failure, and cardiovascular pathology.

Keywords

melatonin / preeclampsia / implantation / placentation / oxidative stress

Cite this article

Download citation ▾
Inna I. Evsyukova, Igor M. Kvetnoy. Melatonin in the pathogenesis of preeclampsia. Journal of obstetrics and women's diseases, 2022, 71(3): 53-64 DOI:10.17816/JOWD103863

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Rana S, Lemoine E, Granger JP, Karumanchi SA. Preeclampsia: Pathophysiology, challenges, and perspectives. Circ Res. 2019;124(7):1094–1112. DOI: 10.1161/CIRCRESAHA.118.313276

[2]

Rana S., Lemoine E., Granger J.P., Karumanchi S.A. Preeclampsia: Pathophysiology, challenges, and perspectives // Circ. Res. 2019. Vol. 124. No. 7. P. 1094–1112. DOI: 10.1161/CIRCRESAHA.118.313276

[3]

Jenabi E, Afshari M, Khazaei S. The association between preeclampsia and the risk of metabolic syndrome after delivery: a meta-analysis. J Matern-Fetal Neonat Med. 2021;34(19):3253−3258. DOI: 10.1080/14767058.2019.1678138

[4]

Jenabi E., Afshari M., Khazaei S. The association between preeclampsia and the risk of metabolic syndrome after delivery: a meta-analysis // J. Matern-Fetal. Neonat. Med. 2021. Vol. 34. No. 19. P. 3253−3258. DOI: 10.1080/14767058.2019.1678138

[5]

Armengaud JB, Yzydorczyk C, Siddeek B, et al. Intrauterine growth restriction: Clinical consequences on health and disease at adulthood. Reprod Toxicol. 2021;99:168−176. DOI: 10.1016/j.reprotox.2020.10.005

[6]

Armengaud J.B., Yzydorczyk C., Siddeek B., et al. Intrauterine growth restriction: Clinical consequences on health and disease at adulthood // Reprod. Toxicol. 2021. Vol. 99. P. 168−176. DOI: 10.1016/j.reprotox.2020.10.005

[7]

Garovic VD, White WM, Vaughan L, et al. Incidence and long-term outcomes of hypertensive disorders of pregnancy. J Am Coll Cardiol. 2020;75(18):2323−2334. DOI: 10.1016/j.jacc.2020.03.028

[8]

Garovic V.D., White W.M., Vaughan L., et al. Incidence and long-term outcomes of hypertensive disorders of pregnancy // J. Am. Coll. Cardiol. 2020. Vol. 75. No. 18. P. 2323−2334. DOI: 10.1016/j.jacc.2020.03.028

[9]

Abramova MY, Churnosov MI. Modern concepts of etiology, pathogenesis and risk factors for preeclampsia. Journal of Obstetrics and Women’s Diseases. 2021;70(5):105–116. DOI: 10.17816/JOWD77046

[10]

Абрамова М.Ю., Чурносов М.И. Современные представления об этиологии, патогенезе и факторах риска преэклампсии // Журнал акушерства и женских болезней. 2021. Т. 70. № 5. C. 105−116. DOI: 10.17816/JOWD77046

[11]

Bakrania BA, Spradley FT, Drummond HA, et al. Preeclampsia: Linking placental ischemia with maternal endothelial and vascular dysfunction. Compr Physiol. 2021;11(1):1315–1349. DOI: 10.1002/cphy.c200008

[12]

Bakrania B.A., Spradley F.T., Drummond H.A., et al. Preeclampsia: Linking placental ischemia with maternal endothelial and vascular dysfunction // Compr. Physiol. 2021. Vol. 11. No. 1. P. 1315–1349. DOI: 10.1002/cphy.c200008

[13]

Lim S, Li W, Kemper J, et al. Biomarkers and the prediction of adverse outcomes in preeclampsia: A systematic review and meta-analysis. Obstet Gynecol. 2021;137(1):72–81. DOI: 10.1097/AOG.0000000000004149

[14]

Lim S., Li W., Kemper J., et al. Biomarkers and the prediction of adverse outcomes in preeclampsia: A systematic review and meta-analysis // Obstet. Gynecol. 2021. Vol. 137. No. 1. P. 72–81. DOI: 10.1097/AOG.0000000000004149

[15]

Jena MK, Sharma NR, Petitt M, et al. Pathogenesis of preeclampsia and therapeutic approaches targeting the placenta. Biomolecules. 2020;10(6):953. DOI: 10.3390/biom10060953

[16]

Jena M.K., Sharma N.R., Petitt M., et al. Pathogenesis of preeclampsia and therapeutic approaches targeting the placenta // Biomolecules. 2020. Vol. 10. No. 6. P. 953. DOI: 10.3390/biom10060953

[17]

Phipps EA, Thadhani R, Benzing T, Karumanchi SA. Pre-eclampsia: Pathogenesis, novel diagnostics and therapies. Nat Rev Nephrol. 2019;15:275−289. DOI: 10.1038/s41581-019-0119-6

[18]

Phipps E.A., Thadhani R., Benzing T., Karumanchi S.A. Pre-eclampsia: Pathogenesis, novel diagnostics and therapies // Nat. Rev. Nephrol. 2019. Vol. 15. P. 275−289. DOI: 10.1038/s41581-019-0119-6

[19]

Tamura H, Jozaki M, Tanabe M, et al. Importance of melatonin in assisted reproductive technology and ovarian aging. Int J Mol Sci. 2020;21(3):1135. DOI: 10.3390/ijms21031135

[20]

Tamura H., Jozaki M., Tanabe M., et al. Importance of melatonin in assisted reproductive technology and ovarian aging // Int. J. Mol. Sci. 2020. Vol. 21. No. 3. P. 1135. DOI: 10.3390/ijms21031135

[21]

Ashary N, Tiwari A, Modi D. Embryo implantation: War in times of love. Endocrinology. 2018;159(2):1188−1198. DOI: 10.1210/en.2017-03082

[22]

Ashary N., Tiwari A., Modi D. Embryo implantation: War in times of love // Endocrinology. 2018. Vol. 159. No. 2. P. 1188−1198. DOI: 10.1210/en.2017-03082

[23]

Zhu YQ, Yan XY, Li H, Zhang C. Insights into the pathogenesis of preeclampsia based on the features of placentation and tumorigenesis. Reprod Dev Med. 2021;5:97−106. DOI: 10.4103/2096-2924.320886

[24]

Zhu Y.Q., Yan X.Y., Li H., Zhang C. Insights into the pathogenesis of preeclampsia based on the features of placentation and tumorigenesis // Reprod. Dev. Med. 2021. Vol. 5. P. 97−106. DOI: 10.4103/2096-2924.320886

[25]

Staff AC. The two-stage placental model of preeclampsia: An update. J Reprod Immunol. 2019;134−135:1–10. DOI: 10.1016/j.jri.2019.07.004

[26]

Staff A.C. The two-stage placental model of preeclampsia: An update // J. Reprod. Immunol. 2019. Vol. 134−135. P. 1–10. DOI: 10.1016/j.jri.2019.07.004

[27]

Hong K, Kim SH, Cha DH, Park HJ. Defective uteroplacental vascular remodeling in preeclampsia: Key molecular factors leading to long term cardiovascular disease. Int J Mol Sci. 2021;22(20):11202. DOI: 10.3390/ijms222011202

[28]

Hong K., Kim S.H., Cha D.H., Park H.J. Defective uteroplacental vascular remodeling in preeclampsia: Key molecular factors leading to long term cardiovascular disease // Int. J. Mol. Sci. 2021. Vol. 22. No. 20. P. 11202. DOI: 10.3390/ijms222011202

[29]

Chiarello DI, Abada C, Rojasa D, et al. Oxidative stress: Normal pregnancy versus preeclampsia. Biochim Biophys Acta Mol Basis Dis. 2020;1866(2):165354. DOI: 10.1016/j.bbadis.2018.12.005

[30]

Chiarello D.I., Abada C., Rojasa D., et al. Oxidative stress: Normal pregnancy versus preeclampsia // Biochim. Biophys. Acta. Mol. Basis. Dis. 2020. Vol. 1866. No. 2. P. 165354. DOI: 10.1016/j.bbadis.2018.12.005

[31]

Guerby P, Tasta O, Swiader A, et al. Role of oxidative stress in the dysfunction of the placental endothelial nitric oxide synthase in preeclampsia. Redox Biol. 2021;40:101861. DOI: 10.1016/j.redox.2021.101861

[32]

Guerby P., Tasta O., Swiader A., et al. Role of oxidative stress in the dysfunction of the placental endothelial nitric oxide synthase in preeclampsia // Redox. Biol. 2021. Vol. 40. P. 101861. DOI: 10.1016/j.redox.2021.101861

[33]

Zhou X, Han TL, Chen H, et al. Impaired mitochondrial fusion, autophagy, biogenesis and dysregulated lipid metabolism is associated with preeclampsia. Exp Cell Res. 2017;359(1):195–204. DOI: 10.1016/j.yexcr.2017.07. 029

[34]

Zhou X., Han T.L., Chen H., et al. Impaired mitochondrial fusion, autophagy, biogenesis and dysregulated lipid metabolism is associated with preeclampsia // Exp. Cell Res. 2017. Vol. 359. No. 1. P. 195–204. DOI: 10.1016/j.yexcr.2017.07. 029

[35]

Sutton EF, Gemmel M, Powers RW. Nitric oxide signaling in pregnancy and preeclampsia. Nitric Oxide. 2020,95:55–62. DOI: 10.1016/j.niox.2019.11.006

[36]

Sutton E.F., Gemmel M., Powers R.W. Nitric oxide signaling in pregnancy and preeclampsia // Nitric. Oxide. 2020. Vol. 95. P. 55–62. DOI: 10.1016/j.niox.2019.11.006

[37]

Hu X-Q, Zhang L. Hypoxia and mitochondrial dysfunction in pregnancy complications. Antioxidants (Basel). 2021;10(3):405. DOI: 10.3390/antiox10030405

[38]

Hu X-Q., Zhang L. Hypoxia and mitochondrial dysfunction in pregnancy complications // Antioxidants (Basel). 2021. Vol. 10. No. 3. P. 405. DOI: 10.3390/antiox10030405

[39]

Vangrieken P, Salwan Al-Nasiry S, Bast A, et al. Placental mitochondrial abnormalities in preeclampsia. Reprod Sci. 2021;28:2186–2199. DOI: 10.1007/s43032-021-00464-y

[40]

Vangrieken P., Salwan Al-Nasiry S., Bast A., et al. Placental mitochondrial abnormalities in preeclampsia // Reprod. Sci. 2021. Vol. 28. P. 2186–2199. DOI: 10.1007/s43032-021-00464-y

[41]

Stefańska K, Zieliński M, Jankowiak M, et al. Cytokine imprint in preeclampsia. Front Immunol. 2021;12:667841. DOI: 10.3389/fimmu.2021.667841

[42]

Stefańska K., Zieliński M., Jankowiak M., et al. Cytokine imprint in preeclampsia // Front. Immunol. 2021. Vol. 12. P. 667841. DOI: 10.3389/fimmu.2021.667841

[43]

Nath MC, Cubro H, McCormick D.J, et al. Preeclamptic women have decreased circulating IL-10 (Interleukin-10) values at the time of preeclampsia diagnosis: systematic review and meta-analysis. Hypertension. 2020;76(6):1817–1827. DOI: 10.1161/HYPERTENSIONAHA.120.15870

[44]

Nath M.C., Cubro H., McCormick D.J., et al. Preeclamptic women have decreased circulating IL-10 (Interleukin-10) values at the time of preeclampsia diagnosis: Systematic review and meta-analysis // Hypertension. 2020. Vol. 76. No. 6. P. 1817–1827. DOI: 10.1161/HYPERTENSIONAHA.120.15870

[45]

Magatti M, Masserdotti A, Cargnoni A, et al. The role of B cells in PE pathophysiology: A potential target for perinatal cell-based therapy? Int J Mol Sci. 2021;22:3405. DOI: 10.3390/ijms22073405

[46]

Magatti M., Masserdotti A., Cargnoni A., et al. The role of B cells in PE pathophysiology: A potential target for perinatal cell-based therapy? // Int. J. Mol. Sci. 2021. Vol. 22. P. 3405. DOI: 10.3390/ijms22073405

[47]

Guney G, Taskin MI, Tokmak A. Increase of circulating inflammatory molecules in preeclampsia, an update. Eur Cytokine Netw. 2020;31(1):18−31. DOI: 10.1684/ecn.2020.0443

[48]

Guney G., Taskin M.I., Tokmak A. Increase of circulating inflammatory molecules in preeclampsia, an update // Eur. Cytokine. Netw. 2020. Vol. 31. No. 1. P. 18−31. DOI: 10.1684/ecn.2020.0443

[49]

Sahu MB, Deepak V, Gonzale SK, et al. Decidual cells from women with preeclampsia exhibit inadequate decidualization and reduced sFlt1 suppression. Pregnancy Hypertens. 2018;15:64–71. DOI: 10.1016/j.preghy.2018.11.003

[50]

Sahu M.B., Deepak V., Gonzale S.K., et al. Decidual cells from women with preeclampsia exhibit inadequate decidualization and reduced sFlt1 suppression // Pregnancy Hypertens. 2018. Vol. 15. P. 64–71. DOI: 10.1016/j.preghy.2018.11.003

[51]

Huppertz B. Biology of preeclampsia: Combined actions of angiogenic factors, their receptors and placental proteins. Biochim Biophys Acta Mol Basis Dis. 2020;1866(2):165349. DOI: 10.1016/j.bbadis.2018.11.024

[52]

Huppertz B. Biology of preeclampsia: Combined actions of angiogenic factors, their receptors and placental proteins // Biochim. Biophys. Acta Mol. Basis Dis. 2020. Vol. 1866. No. 2. P. 165349. DOI: 10.1016/j.bbadis.2018.11.024

[53]

Nuh AM, You Y, Ma M. Information on dysregulation of microRNA in placenta. linked to preeclampsia. Bioinformation. 2021;17(1):240−248. DOI: 10.6026/97320630017240

[54]

Nuh A.M., You Y., Ma M. Information on dysregulation of microRNA in placenta. linked to preeclampsia // Bioinformation. 2021. Vol. 17. No. 1. P. 240−248. DOI: 10.6026/97320630017240

[55]

Xu P, Ma Y, Wu H, Wang Y-L. Placenta-derived microRNAs in the pathophysiology of human pregnancy. Front Cell Dev Biol. 2021;9:646326 DOI: 10.3389/fcell.2021.646326

[56]

Xu P., Ma Y., Wu H., Wang Y-L. Placenta-derived MicroRNAs in the pathophysiology of human pregnancy // Front. Cell Dev. Biol. 2021. Vol. 9. P. 646326 DOI: 10.3389/fcell.2021.646326

[57]

Sun N, Qin S, Zhang L, Shiguo S. Roles of noncoding RNAs in preeclampsia. Reprod Biol Endocrinol. 2021;19:100. DOI: 10.1186/s12958-021-00783-4

[58]

Sun N., Qin S., Zhang L., Shiguo S. Roles of noncoding RNAs in preeclampsia // Reprod. Biol. Endocrinol. 2021. Vol. 19. P. 100. DOI: 10.1186/s12958-021-00783-4

[59]

Wang Z, Yang R, Zhang J, et al. Role of extracellular vesicles in placental inflammation and local immune balance. Мediators inflamm. 2021:5558048. DOI: 10.1155/2021/5558048

[60]

Wang Z., Yang R., Zhang J., et al. Role of extracellular vesicles in placental inflammation and local immune balance // Mediators Inflamm. 2021. P. 5558048. DOI: 10.1155/2021/5558048

[61]

Chuffa LGA, Lupi LA, Cucielo MS, et al. Melatonin promotes uterine and placental health: Potential molecular mechanisms. Int J Mol Sci. 2020;21(1):300. DOI: 10.3390/ijms21010300

[62]

Chuffa L.G.A., Lupi L.A., Cucielo M.S., et al. Melatonin promotes uterine and placental health: Potential molecular mechanisms // Int. J. Mol. Sci. 2020. Vol. 21. No. 1. P. 300. DOI: 10.3390/ijms21010300

[63]

Langston-Cox A, Marshall SA, Lu D, et al. Melatonin for the Management of Preeclampsia: A Review. Antioxidants (Basel). 2021;10(3):376. DOI: 10.3390/antiox10030376

[64]

Langston-Cox A., Marshall S.A., Lu D., et al. Melatonin for the management of preeclampsia: A review // Antioxidants (Basel). 2021. Vol. 10. No. 3. P. 376. DOI: 10.3390/antiox10030376

[65]

Carlomagno G, Minini M, Tilotta M, Unfer V. From implantation to birth: Insight into molecular melatonin functions. Int J Mol Sci. 2018;19(9):2802. DOI: 10.3390/ijms19092802

[66]

Carlomagno G., Minini M., Tilotta M., Unfer V. From implantation to birth: Insight into molecular melatonin functions // Int. J. Mol. Sci. 2018. Vol. 19. No. 9. P. 2802. DOI: 10.3390/ijms19092802

[67]

Hannan NJ, Binder NK, Beard S, et al. Melatonin enhances antioxidant molecules in the placenta, reduces secretion of soluble fms-like tyrosine kinase 1 (SFLT) from primary trophoblast but does not rescue endothelial dysfunction: An evaluation of Its potential to treat preeclampsia. PLoS One. 2018;13(4):e0187082. DOI: 10.1371/journal.pone.0187082

[68]

Hannan N.J., Binder N.K., Beard S., et al. Melatonin enhances antioxidant molecules in the placenta, reduces secretion of soluble fms-like tyrosine kinase 1 (SFLT) from primary trophoblast but does not rescue endothelial dysfunction: An evaluation of Its potential to treat preeclampsia // PLoS One. 2018. Vol. 13. No. 4. P. e0187082. DOI: 10.1371/journal.pone.0187082

[69]

Ramiro-Cortijo D, de la Calle M, Benitez V, et al. Maternal psychological and biological factors associated to gestational complications. J Pers Med. 2021;11(3):183. DOI: 10.3390/jpm11030183

[70]

Ramiro-Cortijo D., de la Calle M., Benitez V., et al. Maternal psychological and biological factors associated to gestational complications // J. Pers. Med. 2021. Vol. 11. No. 3. P. 183. DOI: 10.3390/jpm11030183

[71]

Ferlazzo N, Andolina G, Cannata A, et al. Is melatonin the cornucopia of the 21st century? Antioxidants. 2020;9(11):1088. DOI: 10.3390/antiox9111088

[72]

Ferlazzo N., Andolina G., Cannata A., et al. Is melatonin the cornucopia of the 21st century? // Antioxidants. 2020. Vol. 9. No. 11. P. 1088. DOI: 10.3390/antiox9111088

[73]

Slominski RM, Reiter RJ, Schlabritz-Loutsevitch N, et al. Melatonin membrane receptors in peripheral tissues: Distribution and functions. Mol Cell Endocrinol. 2012;351(2):152–166. DOI: 10.1016/j.mce.2012.01.004

[74]

Slominski R.M., Reiter R.J., Schlabritz-Loutsevitch N., et al. Melatonin membrane receptors in peripheral tissues: Distribution and functions // Mol. Cell Endocrinol. 2012. Vol. 351. No. 2. P. 152–166. DOI: 10.1016/j.mce.2012.01.004

[75]

Kvetnoy I, Ivanov D, Mironova E., et al. Melatonin as the cornerstone of neuroimmunoendocrinology. Int J Mol Sci. 2022;23:1835. DOI: 10.3390/ ijms23031835

[76]

Kvetnoy I., Ivanov D., Mironova E., et al. Melatonin as the cornerstone of neuroimmunoendocrinology // Int. J. Mol. Sci. 2022. Vol. 23. P. 1835. DOI: 10.3390/ ijms23031835

[77]

Yu K, Wang RX, Li MH, et al. Melatonin reduces androgen production and upregulates hem oxygenase-1 expression in granulosa cells from PCOS patients with hypoestrogenia and hyperandrogenia. Oxid Med Cell Longev. 2019:8218650. DOI: 10.1155/2019/8218650

[78]

Yu K., Wang R.X., Li M.H., et al. Melatonin reduces androgen production and upregulates hem oxygenase-1 expression in granulosa cells from PCOS patients with hypoestrogenia and hyperandrogenia // Oxid. Med. Cell Longev. 2019. P. 8218650. DOI: 10.1155/2019/8218650

[79]

Guo Y, Sun TC, Wang HP, Chen X. Research progress of melatonin (MT) in improving ovarian function: A review of the current status. Aging (Albany NY). 2021;13(13):17930−17947. DOI: 10.18632/aging.203231

[80]

Guo Y., Sun T.C., Wang H.P., Chen X. Research progress of melatonin (MT) in improving ovarian function: A review of the current status // Aging (Albany NY). 2021. Vol. 13. No. 13. P. 17930−17947. DOI: 10.18632/aging.203231

[81]

Olcese JM. Melatonin and female reproduction: An expanding universe. Front Endocrinol (Lausanne). 2020;11:85. DOI: 10.3389/fendo.2020.0008511:85

[82]

Olcese J.M. Melatonin and female reproduction: An expanding universe // Front. Endocrinol. (Lausanne). 2020. Vol. 11. P. 85. DOI: 10.3389/fendo.2020.0008511:85

[83]

Rai S, Ghosh H. Modulation of human ovarian function by melatonin. Front Biosci (Elite Ed). 2021;13:140–157. DOI: 10.2741/875

[84]

Rai S., Ghosh H. Modulation of human ovarian function by melatonin // Front. Biosci (Elite Ed). 2021. Vol. 13. P. 140–157. DOI: 10.2741/875

[85]

Russo M, Forte G, Montanino Oliva M, et al. Melatonin and myo-inositol: Supporting reproduction from the oocyte to birth. Int J Mol Sci. 2021;22(16):8433. DOI: 10.3390/ijms22168433

[86]

Russo M., Forte G., Montanino Oliva M., et al. Melatonin and myo-inositol: Supporting reproduction from the oocyte to birth // Int. J. Mol. Sci. 2021. Vol. 22. No. 16. P. 8433. DOI: 10.3390/ijms22168433

[87]

Zhang S, Lin H, Kong S, et al. Physiological and molecular determinants of embryo implantation. Mol Aspects Med. 2013;34(5);939–980. DOI: 10.1016/j.mam.2012.12.011

[88]

Zhang S., Lin H., Kong S., et al. Physiological and molecular determinants of embryo implantation // Mol. Aspects. Med. 2013. Vol. 34. No. 5. P. 939–980. DOI: 10.1016/j.mam.2012.12.011

[89]

He C, Wang J, Li Y, et al. Melatonin-related genes expressed in the mouse uterus during early gestation promote embryo implantation. J Pineal Res. 2015;58(3):300–309. DOI: 10.1111/jpi.12216

[90]

He C., Wang J., Li Y., et al. Melatonin-related genes expressed in the mouse uterus during early gestation promote embryo implantation // J. Pineal. Res. 2015. Vol. 58. No. 3. P. 300–309. DOI: 10.1111/jpi.12216

[91]

Cha J, Sun X, Dey SK. Mechanisms of implantation: strategies for successful pregnancy. Nat Med. 2012;18(12):1754–1767. DOI: 1038/nm.3012

[92]

Cha J., Sun X., Dey S.K. Mechanisms of implantation: strategies for successful pregnancy // Nat. Med. 2012. Vol. 18. No. 12. P. 1754–1767. DOI: 1038/nm.3012

[93]

Bae H, Yang C, Lee J-Y, et al. Melatonin improves uterine-conceptus interaction via regulation of SIRT1 during early pregnancy. J Pineal Res. 2020;69(2):e12670. DOI: 10.1111/jpi.12670

[94]

Bae H., Yang C, Lee J-Y., et al. Melatonin improves uterine-conceptus interaction via regulation of SIRT1 during early pregnancy // J. Pineal. Res. 2020. Vol. 69. No. 2. P. e12670. DOI: 10.1111/jpi.12670

[95]

Lanoix D, Beghdadi H, Lafond J, Vaillancourt C. Human placental trophoblasts synthesize melatonin and express its receptors. J Pineal Res. 2008;45(1):50–60. DOI: 10.1111/j.1600-079X.2008.00555.x

[96]

Lanoix D., Beghdadi H., Lafond J., Vaillancourt C. Human placental trophoblasts synthesize melatonin and express its receptors // J. Pineal. Res. 2008. Vol. 45. No. 1. P. 50–60. DOI: 10.1111/j.1600-079X.2008.00555.x

[97]

Swarnakar S, Paul S, Singh LP, Reiter RJ. Matrix metalloproteinases in health and disease: regulation by Melatonin. J Pineal Res. 2011;50(1):8–20. DOI: 10.1111/j.1600-079X.2010.00812.x

[98]

Swarnakar S., Paul S., Singh L.P., Reiter R.J. Matrix metalloproteinases in health and disease: regulation by Melatonin // J. Pineal. Res. 2011. Vol. 50. No. 1. P. 8–20. DOI: 10.1111/j.1600-079X.2010.00812.x

[99]

Mirza-Aghazadeh-Attari M, Reiter RJ, Rikhtegar R, et al. Melatonin: An atypical hormone with major functions in the regulation of angiogenesis. IUBMB Life. 2020;72(8):1560–1584. DOI: 10.1002/iub.2287

[100]

Mirza-Aghazadeh-Attari M., Reiter R.J., Rikhtegar R., et al. Melatonin: An atypical hormone with major functions in the regulation of angiogenesis // IUBMB Life. 2020. Vol. 72. No. 8. P. 1560–1584. DOI: 10.1002/iub.2287

[101]

Uzun М, Gencer M, Turkon H, et al. Effects of melatonin on blood pressure, oxidative stress and placental expressions of TNFa, IL-6, VEGF and sFlt-1 in RUPP rat model of preeclampsiа. Arch Med Res. 2017;48(7):592−598. DOI: 10.1016/j.arcmed.2017.08.007

[102]

Uzun М., Gencer M., Turkon H., et al. Effects of melatonin on blood pressure, oxidative stress and placental expressions of TNFa, IL-6, VEGF and sFlt-1 in RUPP rat model of preeclampsiа // Arch. Med. Res. 2017. Vol. 48. No. 7. P. 592−598. DOI: 10.1016/j.arcmed.2017.08.007

[103]

Waddel BJ, Wharfe MD, Crew RC, Mark PJ. A rhythmic placenta? Circadian variation, clock genes and placental function. Placenta. 2012;33(7):533–539. DOI: 10.1016/j.placenta.2012.03.008

[104]

Waddel B.J., Wharfe M.D., Crew R.C., Mark P.J. A rhythmic placenta? Circadian variation, clock genes and placental function // Placenta. 2012. Vol. 33. No. 7. P. 533–539. DOI: 10.1016/j.placenta.2012.03.008

[105]

Chitimus DM, Popescu MR, Voiculescu SE, et al. Melatonin’s impact on antioxidative and anti-inflammatory reprogramming in homeostasis and disease. Biomolecules. 2020;10(9):1211. DOI: 10.3390/biom10091211

[106]

Chitimus D.M., Popescu M.R., Voiculescu S.E., et al. Melatonin’s impact on antioxidative and anti-inflammatory reprogramming in homeostasis and disease // Biomolecules. 2020. Vol. 10. No. 9. P. 1211. DOI: 10.3390/biom10091211

[107]

Sagrillo-Fagundes L, Salustiano EMA, Ruano R, et al. Melatonin modulates autophagy and inflammation protecting human placental trophoblast from hypoxia/reoxygenation. J Pieal Res. 2018;65(4):e12520. DOI: 10.1111/jpi.12520

[108]

Sagrillo-Fagundes L., Salustiano E.M.A., Ruano R., et al. Melatonin modulates autophagy and inflammation protecting human placental trophoblast from hypoxia/reoxygenation // J. Pieal. Res. 2018. Vol. 65. No. 4. P. e12520. DOI: 10.1111/jpi.12520

[109]

Ejaz H, Figaro JK, Woolner AMF, et al. Maternal serum melatonin increases during pregnancy and falls immediately after delivery implicating the placenta as a major source of melatonin. Front Endocrinol. 2021;11:623038. DOI: 10.3389/fendo.2020.623038

[110]

Ejaz H., Figaro J.K., Woolner A.M.F., et al. Maternal serum melatonin increases during pregnancy and falls immediately after delivery implicating the placenta as a major source of melatonin // Front. Endocrinol. 2021. Vol. 11. P. 623038. DOI: 10.3389/fendo.2020.623038

[111]

Majidinia M, Sadeghpour A, Mehrzadi S, et al. Melatonin: A pleiotropic molecule that modulates DNA damage response and repair pathways. J Pineal Res. 2017;63(1):e12416. DOI: 10.1111/jpi.12416

[112]

Majidinia M., Sadeghpour A., Mehrzadi S., et al. Melatonin: A pleiotropic molecule that modulates DNA damage response and repair pathways // J. Pineal. Res. 2017. Vol. 63. No. 1. P. e12416. DOI: 10.1111/jpi.12416

[113]

Tang Y, Groom K, Chamley L, Chen Q. Melatonin, a potential therapeutic agent for preeclampsia, reduces the extrusion of toxic extracellular vesicles from preeclamptic placenta. Cells. 2021;10(8):1904. DOI: 10.3390/cells10081904

[114]

Tang Y., Groom K., Chamley L., Chen Q. Melatonin, a potential therapeutic agent for preeclampsia, reduces the extrusion of toxic extracellular vesicles from preeclamptic placenta // Cells. 2021. Vol. 10. No. 8. P. 1904. DOI: 10.3390/cells10081904

[115]

Reiter RJ, Ma O, Sharm R. Melatonin in mitochondria: Mitigating clear and present dangers. Physiology. 2020;35(2):86–95. DOI: 10.1152/physiol.00034.2019

[116]

Reiter R.J., Ma O., Sharm R. Melatonin in mitochondria: Mitigating clear and present dangers // Physiology. 2020. Vol. 35. No. 2. P. 86–95. DOI: 10.1152/physiol.00034.2019

[117]

Carrascal L, Nunez-Abades P, Ayala A, Cano M. Role of melatonin in the inflammatory process and its therapeutic potential. Curr Pharm Des. 2018;24(14):1563–1588. DOI: 10.2174/1381612824666180426112832

[118]

Carrascal L., Nunez-Abades P., Ayala A., Cano M. Role of melatonin in the inflammatory process and its therapeutic potential // Curr. Pharm. Des. 2018. Vol. 24. No. 14. P. 1563–1588. DOI: 10.2174/1381612824666180426112832

[119]

Ren W, Liu G, Chen S, et al. Melatonin signaling in T cells: Functions and applications. J Pineal Res. 2017:62(3). DOI: 10.1111/jpi.12394

[120]

Ren W., Liu G., Chen S., et al. Melatonin signaling in T cells: Functions and applications // J. Pineal. Res. 2017. Vol. 62. No. 3. DOI: 10.1111/jpi.12394

[121]

Kopustinskiene DM, Bernatoniene J. Molecular mechanisms of melatonin-mediated cell protection and signaling in health and disease. Pharmaceutics. 2021;13(2):129. DOI: 10.3390/pharmaceutics13020129

[122]

Kopustinskiene D.M., Bernatoniene J. Molecular mechanisms of melatonin-mediated cell protection and signaling in health and disease // Pharmaceutics. 2021. Vol. 13. No. 2. P. 129. DOI: 10.3390/pharmaceutics13020129

[123]

Pan X, Taylor MJ, Cohen E, et al. Circadian clock, time-restricted feeding and reproduction. Int J Mol Sci. 2020;21(3):831. DOI: 10.3390/ijms21030831

[124]

Pan X., Taylor M.J., Cohen E., et al. Circadian clock, time-restricted feeding and reproduction // Int. J. Mol. Sci. 2020. Vol. 21. No. 3. P. 831. DOI: 10.3390/ijms21030831

[125]

McCarthy R, Jungheim ES, Fay JC, et al. Riding the rhythm of melatonin through pregnancy to deliver on time. Front Endocrinol (Lausanne). 2019;10:616. DOI: 10.3389/fendo.2019.00616

[126]

McCarthy R., Jungheim E.S., Fay J.C., et al. Riding the rhythm of melatonin through pregnancy to deliver on time // Front. Endocrinol. (Lausanne). 2019. Vol. 10. P. 616. DOI: 10.3389/fendo.2019.00616

[127]

Evsyukova II. The role of melatonin in prenatal ontogenesis. J Evol Biochim Physiol. 2021,57(1):33−43. DOI: 10.31857/S0044452921010022

[128]

Evsyukova I.I. The role of melatonin in prenatal ontogenesis // J. Evol. Biochim. Physiol. 2021. Vol. 57. No. 1. P. 33-43. DOI: 10.31857/S0044452921010022

[129]

Dou Y, Lin B, Cheng H, et al. The reduction of melatonin levels is associated with the development of preeclampsia: A meta-analysis. Hypertens Pregnancy. 2019;38(2):65−72. DOI: 10.1080/10641955.2019.1581215

[130]

Dou Y., Lin B., Cheng H., et al. The reduction of melatonin levels is associated with the development of preeclampsia: A meta-analysis // Hypertens Pregnancy. 2019. Vol. 38. No. 2. P. 65−72. DOI: 10.1080/10641955.2019.1581215

[131]

Zeng K, Gao Y, Wan J, et al. The reduction in circulating levels of melatonin may be associated with the development of preeclampsia. J Hum Hypertens. 2016;30(11):666–671. DOI: 10.1038/jhh.2016.37

[132]

Zeng K., Gao Y., Wan J., et al. The reduction in circulating levels of melatonin may be associated with the development of preeclampsia // J. Hum. Hypertens. 2016. Vol. 30. No. 11. P. 666–671. DOI: 10.1038/jhh.2016.37

[133]

Bouchlariotou S, Liakopoulos V, Giannopoulou M, et al. Melatonin secretion is impaired in women with preeclampsia and an abnormal circadian blood pressure rhythm. Ren Fail. 2014;36(7):1001−1007. DOI: 10.3109/0886022X.2014.926216

[134]

Bouchlariotou S., Liakopoulos V., Giannopoulou M., et al. Melatonin secretion is impaired in women with preeclampsia and an abnormal circadian blood pressure rhythm // Ren. Fail. 2014. Vol. 36. No. 7. P. 1001−1007. DOI: 10.3109/0886022X.2014.926216

[135]

Laste G, Silva AA, Gheno BR, Rychcik PM. Relationship between melatonin and high-risk pregnancy: A review of investigations published between the years 2010 and 2020. Chronobiol. 2021;38(2):168−181. DOI: 10.1080/07420528.2020.1863975

[136]

Laste G., Silva A.A., Gheno B.R., Rychcik P.M. Relationship between melatonin and high-risk pregnancy: A review of investigations published between the years 2010 and 2020 // Chronobiol. 2021. Vol. 38. No. 2. P. 168−181. DOI: 10.1080/07420528.2020.1863975

[137]

Berbets AM, Davydenko IS, Barbe AM, et al. Melatonin 1A and 1B receptors’ expression decreases in the placenta of women with fetal growth restriction. Reprod Sci. 2021;28(1):197−206. DOI: 10.1007/s43032-020-00285-5

[138]

Berbets A.M., Davydenko I.S., Barbe A.M., et al. Melatonin 1A and 1B receptors’ expression decreases in the placenta of women with fetal growth restriction // Reprod. Sci. 2021. Vol. 28. No. 1. P. 197−206. DOI: 10.1007/s43032-020-00285-5

[139]

Forrestel AC, Miedlich SU, Yurcheshen M, et al. Chronomedicine and type 2 diabetes: shining some light on melatonin. Diabetologia. 2017;60(5):808−822. DOI: 10.1007/s00125-016-4175-1

[140]

Forrestel A.C., Miedlich S.U., Yurcheshen M., et al. Chronomedicine and type 2 diabetes: shining some light on melatonin // Diabetologia. 2017. Vol. 60. No. 5. P. 808−822. DOI: 10.1007/s00125-016-4175-1

[141]

Nechme PA, Amaral FG, Middleton B, et al. Melatonin profiles during the third trimester of pregnancy and health status in the offspring among day and night workers: A case series. Neurobiol Sleep Circadian Rhythms. 2019;6:70−76. DOI: 10.1016/j.nbscr.2019.04.001

[142]

Nechme P.A., Amaral F.G., Middleton B., et al. Melatonin profiles during the third trimester of pregnancy and health status in the offspring among day and night workers: A case series. Neurobiol. Sleep Circadian. Rhythms. 2019. Vol. 6. P. 70−76. DOI: 10.1016/j.nbscr.2019.04.001

[143]

Palmer KR, Mockler JC, Davies-Tuck ML, et al. Protect-me: A parallel-group, triple blinded, placebo-controlled randomised clinical trial protocol assessing antenatal maternal melatonin supplementation for fetal neuroprotection in early-onset fetal growth restriction. BMJ Open. 2019;9(6):e028243. DOI: 10.1136/bmjopen-2018-028243

[144]

Palmer K.R., Mockler J.C., Davies-Tuck M.L., et al. Protect-me: A parallel-group, triple blinded, placebo-controlled randomised clinical trial protocol assessing antenatal maternal melatonin supplementation for fetal neuroprotection in early-onset fetal growth restriction // BMJ Open. 2019. Vol. 9. No. 6. P. e028243. DOI: 10.1136/bmjopen-2018-028243

[145]

Fernando S, Wallace EM, Vollenhoven B, et al. Melatonin in assisted reproductive technology: A pilot double-blind randomized placebo-controlled clinical trial. Front Endocrino (Lausanne). 2018;9:545. DOI: 10.3389/fendo.2018.00545

[146]

Fernando S., Wallace E.M., Vollenhoven B., et al. Melatonin in assisted reproductive technology: A pilot double-blind randomized placebo-controlled clinical trial // Front. Endocrino (Lausanne). 2018. Vol. 9. P. 545. DOI: 10.3389/fendo.2018.00545

[147]

Khezri MB, Reihany MD, Dabbaghi Ghaleh T, Mohammadi N. Effect of melatonin on blood loss after cesarean section: A prospective randomized double-blind trial. J Obstet. Gynaecol India. 2019;69(5):436–443. DOI: 10.1007/s13224-019-01205-7

[148]

Khezri M.B., Reihany M.D., Dabbaghi Ghaleh T., Mohammadi N. Effect of melatonin on blood loss after cesarean section: A prospective randomized double-blind trial // J. Obstet. Gynaecol. India. 2019. Vol. 69. No. 5. P. 436–443. DOI: 10.1007/s13224-019-01205-7

[149]

Hobson SR, Gurusinghe S, Lim R, et al. Melatonin improves endothelial function in vitro and prolongs pregnancy in women with early-onset preeclampsia. J Pineal Res. 2018;65(3):e12508. DOI: 10.1111/jpi.12508

[150]

Hobson S.R., Gurusinghe S., Lim R., et al. Melatonin improves endothelial function in vitro and prolongs pregnancy in women with early-onset preeclampsia // J. Pineal. Res. 2018. Vol. 65. No. 3. P. e12508. DOI: 10.1111/jpi.12508

[151]

Zheng M, Tong J, Li WP, Chen ZJ, Zhang C. Melatonin concentration in follicular fluid is correlated with antral follicle count (AFC) and in vitro fertilization (IVF) outcomes in women undergoing assisted reproductive technology (ART) procedures. Gynecol Endocrinol. 2018;34(5):446–450. DOI: 10.1080/09513590.2017.1409713

[152]

Zheng M., Tong J., Li W.P., Chen Z.J., Zhang C. Melatonin concentration in follicular fluid is correlated with antral follicle count (AFC) and in vitro fertilization (IVF) outcomes in women undergoing assisted reproductive technology (ART) procedures // Gynecol. Endocrinol. 2018. Vol. 34. No. 5. P. 446–450. DOI: 10.1080/09513590.2017.1409713

[153]

Mokhtari F, Akbari Asbagh F, Azmoodeh O, et al. Effects of melatonin administration on chemical pregnancy rates of polycystic ovary syndrome patients undergoing intrauterine insemination: A randomized clinical trial. Int J Fertil Steril. 2019;13(3):225–229. DOI: 10.22074/ijfs.2019.5717

[154]

Mokhtari F., Akbari Asbagh F., Azmoodeh O., et al. Effects of melatonin administration on chemical pregnancy rates of polycystic ovary syndrome patients undergoing intrauterine insemination: A randomized clinical trial // Int. J. Fertil. Steril. 2019. Vol. 13. No. 3. P. 225–229. DOI: 10.22074/ijfs.2019.5717

[155]

Valenzuela-Melgarejo FJ, Lagunas C, Carmona-Pastén F, et al. Supraphysiological role of melatonin over vascular dysfunction of pregnancy, a new therapeutic agent? Front Physiol. 2021;12:767684. DOI: 10.3389/fphys.2021.767684

[156]

Valenzuela-Melgarejo F.J., Lagunas C., Carmona-Pastén F., et al. Supraphysiological role of melatonin over vascular dysfunction of pregnancy, a new therapeutic agent? // Front. Physiol. 2021. Vol. 12. P. 767684. DOI: 10.3389/fphys.2021.767684

[157]

De Martelly VA, Dreixler J, Tung A, et al Long-term postpartum cardiac function and its association with preeclampsia. J Am Heart Assoc. 2021;10(5):e018526. DOI: 10.1161/JAHA.120.018526

[158]

De Martelly V.A., Dreixler J., Tung A., et al. Long-term postpartum cardiac function and its association with preeclampsia // J. Am. Heart Assoc. 2021. Vol. 10. No. 5. P. e018526. DOI: 10.1161/JAHA.120.018526

RIGHTS & PERMISSIONS

Eсо-Vector

AI Summary AI Mindmap
PDF

126

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/