Neurotropic and immunomodulatory properties of a novel bioflavonoid composition

Irina A. Goldina , Evgeniya V. Markova , Ivan V. Savkin , Olga S. Anikeeva , Evgeniy V. Serenko , Anna V. Smyk , Tamara V. Shushpanova , Mariya A. Knyazheva

Reviews on Clinical Pharmacology and Drug Therapy ›› 2024, Vol. 22 ›› Issue (4) : 361 -376.

PDF (1808KB)
Reviews on Clinical Pharmacology and Drug Therapy ›› 2024, Vol. 22 ›› Issue (4) : 361 -376. DOI: 10.17816/RCF633855
Original study articles
research-article

Neurotropic and immunomodulatory properties of a novel bioflavonoid composition

Author information +
History +
PDF (1808KB)

Abstract

BACKGROUND: Flavonoids, a class of plant polyphenols, exhibit a wide range of biological (neuro- and immunotropic, antioxidant, anti-inflammatory, epigenome-modulating) properties involved in the mechanisms of management in various pathological processes, including nervous system diseases. Alcoholism is a pervasive social, medical, and economic issue of a modern society. Prolonged exposure to ethanol has a direct and mediated toxic effect on the human body through its metabolites negatively affecting nervous and immune systems that play a major role in adaptation. The ability of bioflavonoids to manage pathological disorders in a wide range of chronic diseases with neuroimmune pathogenesis mechanisms by interacting with specific cell surface receptors can provide therapeutic benefits in alcoholism.

AIM: To assess neurotropic and immunomodulatory properties of a novel curcumin-based bioflavonoid composition during prolonged ethanol consumption.

MATERIALS AND METHODS: The content of bioflavonoids in the composition was measured in aqueous-organic extracts using high-performance liquid chromatography (HPLC). Chronically alcoholized male (CBA×C57Bl/6)F1 mice who received a 10% ethanol solution as the sole source of fluid during six months were administered a bioflavonoid composition during 30 days. Subsequent studies assessed alcohol motivation by consumption of a 10% ethanol solution in free choice with water, as well as behavioral parameters in the open field test, cytokine content in the brain structures (prefrontal cortex, hypothalamus, hippocampus, striatum) using enzyme immunoassay. The intensity of the cellular and humoral immune response was determined by the severity of the delayed-type hypersensitivity response and relative number of splenic antibody-forming cells, respectively.

RESULTS: The quantitative content of bioflavonoids was determined in the composition consisting of curcumin, piperine, soybean isoflavonoids, epigallocatechin-3-gallate, triterpene saponins, and β-carotene. Taking this composition in the context of prolonged ethanol consumption was shown to have a positive effect expressed in correcting the alcoholism-related behavioral phenotype (reduced alcohol motivation, stimulation of locomotor and exploratory activity), accompanied by decreased levels of certain proinflammatory cytokines in the brain structures (most pronounced in the hippocampus). Stimulation of the humoral and cellular immune response was also demonstrated after a course of treatment with the described composition.

CONCLUSIONS: The data support the use of the novel bioflavonoid composition as an additional immunomodulatory and neurotropic agent in the treatment of chronic alcoholism.

Keywords

novel bioflavonoid composition / alcoholism / brain structures / cytokines / immune response

Cite this article

Download citation ▾
Irina A. Goldina, Evgeniya V. Markova, Ivan V. Savkin, Olga S. Anikeeva, Evgeniy V. Serenko, Anna V. Smyk, Tamara V. Shushpanova, Mariya A. Knyazheva. Neurotropic and immunomodulatory properties of a novel bioflavonoid composition. Reviews on Clinical Pharmacology and Drug Therapy, 2024, 22(4): 361-376 DOI:10.17816/RCF633855

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Jett JD, Kordas G, Parent S, et al. Assessing clinically significant cognitive impairment using the nih toolbox in individuals with co-occurring serious mental illness and alcohol use disorder. J Addict Med. 2023;17(3):305–311. doi: 10.1097/ADM.0000000000001105

[2]

Jett J.D., Kordas G., Parent S., et al. Assessing clinically significant cognitive impairment using the nih toolbox in individuals with co-occurring serious mental illness and alcohol use disorder // J Addict Med. 2023. Vol. 17, N 3. P. 305–311. doi: 10.1097/ADM.0000000000001105

[3]

Grant BF, Chou SP, Saha TD, et al. Prevalence of 12-month alcohol use, high-risk drinking, and DSM–IV alcohol use disorder in the United States, 2001–2002 to 2012–2013: results from the national epidemiologic survey on alcohol and related conditions. JAMA Psychiatry. 2017;74(9):911–923. doi: 10.1001/jamapsychiatry.2017.2161

[4]

Grant B.F., Chou S.P., Saha T.D., et al. Prevalence of 12-month alcohol use, high-risk drinking, and DSM–IV alcohol use disorder in the United States, 2001–2002 to 2012–2013: results from the national epidemiologic survey on alcohol and related conditions // JAMA Psychiatry. 2017. Vol. 74, N 9. P. 911–923. doi: 10.1001/jamapsychiatry.2017.2161

[5]

Bell RL, Hauser SR, McClintick J, et al. Ethanol-associated changes in glutamate reward neurocircuitry: a minireview of clinical and preclinical genetic findings. Prog Mol Biol Transl Sci. 2016;137:41–85. doi: 10.1016/bs.pmbts.2015.10.018

[6]

Bell R.L., Hauser S.R., McClintick J., et al. Ethanol-associated changes in glutamate reward neurocircuitry: a minireview of clinical and preclinical genetic findings // Prog Mol Biol Transl Sci. 2016. Vol. 137. P. 41–85. doi: 10.1016/bs.pmbts.2015.10.018

[7]

Abrahao KP, Salinas AG, Lovinger DM. Alcohol and the brain: neuronal molecular targets, synapses, and circuits. Neuron. 2017;96(6):1223–1238. doi: 10.1016/j.neuron.2017.10.032

[8]

Abrahao K.P., Salinas A.G., Lovinger D.M. Alcohol and the brain: neuronal molecular targets, synapses, and circuits // Neuron. 2017. Vol. 96, N 6. P. 1223–1238. doi: 10.1016/j.neuron.2017.10.032

[9]

Ayrapetov MI, Eresko SO, Shamaeva SA, et al. Prolonged alcohol consumption influences microrna expression in the nucleus accumbens of the rat brain. Biomedical Chemistry. 2023;69(4):235–239. EDN: YSAZTO doi: 10.18097/PBMC20236904235

[10]

Айрапетов М.И., Ереско С.О., Шамаева С.А., и др. Хроническая алкоголизация изменяет содержание микро-РНК в прилежащем ядре головного мозга у крыс // Биомедицинская химия. 2023. Т. 69, № 4. С. 235–239. EDN: YSAZTO doi: 10.18097/PBMC20236904235

[11]

Motaghinejad M, Motevalian M, Fatima S, et al. Curcumin confers neuroprotection against alcohol-induced hippocampal neurodegeneration via CREB-BDNF pathway in rats. Biomed Pharmacother. 2017;87:721–740. doi: 10.1016/j.biopha.2016.12.020

[12]

Motaghinejad M., Motevalian M., Fatima S., et al. Curcumin confers neuroprotection against alcohol-induced hippocampal neurodegeneration via CREB-BDNF pathway in rats // Biomed Pharmacother. 2017. Vol. 87. P. 721–740. doi: 10.1016/j.biopha.2016.12.020

[13]

Crews FT, Vetreno RP. Mechanisms of neuroimmune gene induction in alcoholism. Psychopharmacology (Berl). 2016;233(9): 1543–1557. doi: 10.1007/s00213-015-3906-1

[14]

Crews F.T., Vetreno R.P. Mechanisms of neuroimmune gene induction in alcoholism // Psychopharmacology (Berl). 2016. Vol. 233, N 9. P. 1543–1557. doi: 10.1007/s00213-015-3906-1

[15]

Blednov YA, Benavidez JM, Black M, et al. Role of interleukin-1 receptor signaling in the behavioral effects of ethanol and benzodiazepines. Neuropharmacology. 2015;95:309–320. doi: 10.1016/j.neuropharm.2015.03.015

[16]

Blednov Y.A., Benavidez J.M., Black M., et al. Role of interleukin-1 receptor signaling in the behavioral effects of ethanol and benzodiazepines // Neuropharmacology. 2015. Vol. 95. P. 309–320. doi: 10.1016/j.neuropharm.2015.03.015

[17]

Pascual M, Baliño P, Alfonso-Loeches S, et al. Impact of TLR4 on behavioral and cognitive dysfunctions associated with alcohol-induced neuroinflammatory damage. Brain Behav Immun. 2011;25(Sl): S80–S91. doi: 10.1016/j.bbi.2011.02.012

[18]

Pascual M., Baliño P., Alfonso-Loeches S., et al. Impact of TLR4 on behavioral and cognitive dysfunctions associated with alcohol-induced neuroinflammatory damage // Brain Behav Immun. 2011. Vol. 25 N S1. P. S80–S91. doi: 10.1016/j.bbi.2011.02.012

[19]

Nunes PT, Kipp BT, Reitz NL, Savage LM. Aging with alcohol-related brain damage: Critical brain circuits associated with cognitive dysfunction. Int Rev Neurobiol. 2019;148:101–168. doi: 10.1016/bs.irn.2019.09.002

[20]

Nunes P.T., Kipp B.T., Reitz N.L., Savage L.M. Aging with alcohol-related brain damage: Critical brain circuits associated with cognitive dysfunction // Int Rev Neurobiol. 2019. Vol. 148. P. 101–168. doi: 10.1016/bs.irn.2019.09.002

[21]

Zahr NM, Pfefferbaum A. Alcohol’s effects on the brain: neuroimaging results in humans and animal models. Alcohol Res. 2017;38(2):183–206.

[22]

Zahr N.M., Pfefferbaum A. Alcohol’s effects on the brain: neuroimaging results in humans and animal models // Alcohol Res. 2017. Vol. 38, N 2. P. 183–206.

[23]

Zhang J., He Sh., Zhou W., Yuan B. Ethanol induces oxidative stress and apoptosis in human umbilical vein endothelial cells. Int J Clin Exp Med. 2016;9(2):4125–4130.

[24]

Zhang J., He Sh., Zhou W., Yuan B. Ethanol induces oxidative stress and apoptosis in human umbilical vein endothelial cells // Int J Clin Exp Med. 2016. Vol. 9, N 2. P. 4125–4130.

[25]

Erickson EK, Grantham EK, Warden AS, Harris RA. Neuroimmune signaling in alcohol use disorder. Pharmacol Biochem Behav. 2019;177:34–60. doi: 10.1016/j.pbb.2018.12.007

[26]

Erickson E.K., Grantham E.K., Warden A.S., Harris R.A. Neuroimmune signaling in alcohol use disorder // Pharmacol Biochem Behav. 2019. Vol. 177. P. 34–60. doi: 10.1016/j.pbb.2018.12.007

[27]

Sureshchandra S, Raus A, Jankeel A, et al. Dose-dependent effects of chronic alcohol drinking on peripheral immune responses. Sci Rep. 2019;9(1):7847. doi: 10.1038/s41598-019-44302-3

[28]

Sureshchandra S., Raus A., Jankeel A., et al. Dose-dependent effects of chronic alcohol drinking on peripheral immune responses // Sci Rep. 2019. Vol. 9, N 1. P. 7847. doi: 10.1038/s41598-019-44302-3

[29]

Appay V, Sauce D. Immune activation and inflammation in HIV-1 infection: causes and consequences. J Pathol. 2008;214(2):231–241. doi: 10.1002/path.2276

[30]

Appay V., Sauce D. Immune activation and inflammation in HIV-1 infection: causes and consequences // J Pathol. 2008. Vol. 214, N 2. P. 231–241. doi: 10.1002/path.2276

[31]

Ciabattini A, Pettini E, Andersen P, et al. Primary activation of antigen-specific naive CD4+ and CD8+ T cells following intranasal vaccination with recombinant bacteria. Infect Immun. 2008;76(12): 5817–5825. doi: 10.1128/IAI.00793-08

[32]

Ciabattini A., Pettini E., Andersen P., et al. Primary activation of antigen-specific naive CD4+ and CD8+ T cells following intranasal vaccination with recombinant bacteria // Infect Immun. 2008. Vol. 76, N 12. P. 5817–5825. doi: 10.1128/IAI.00793-08

[33]

Shi X, DeLucia AL, Bao J, Zhang P. Alcohol abuse and disorder of granulopoiesis. Pharmacol Ther. 2019;198:206–219. doi: 10.1016/j.pharmthera.2019.03.001

[34]

Shi X., DeLucia A.L., Bao J., Zhang P. Alcohol abuse and disorder of granulopoiesis // Pharmacol Ther. 2019. Vol. 198. P. 206–219. doi: 10.1016/j.pharmthera.2019.03.001

[35]

Romeo HE, Tio DL, Taylor AN. Effects of glossopharyngeal nerve transection on central and peripheral cytokines and serum corticosterone induced by localized inflammation. J Neuroimmunol. 2003;136(1–2):104–111. doi: 10.1016/s0165–5728(03)00033-x

[36]

Romeo H.E., Tio D.L., Taylor A.N. Effects of glossopharyngeal nerve transection on central and peripheral cytokines and serum corticosterone induced by localized inflammation // J Neuroimmunol. 2003. Vol. 136, N 1–2. P. 104–111. doi: 10.1016/s0165–5728(03)00033-x

[37]

Nevidimova TI, Vetlugina TP, Batukhtina EI, et al. Features of cytokine production in addiction. Mezhdunarodnyi zhurnal prikladnykh i fundamentalnykh issledovanii. 2015;1(1):49–51. (In Russ.) EDN: TDWOUL

[38]

Невидимова Т.И., Ветлугина Т.П., Батухтина Е.И., и др. Особенности продукции цитокинов при болезнях зависимости // Международный журнал прикладных и фундаментальных исследований. 2015. № 1. С. 49–51. EDN: TDWOUL

[39]

Carlson ER, Guerin SP, Nixon K, Fonken LK. The neuroimmune system — Where aging and excess alcohol intersect. Alcohol. 2023;107:153–167. doi: 10.1016/j.alcohol.2022.08.009

[40]

Carlson E.R., Guerin S.P., Nixon K., Fonken L.K. The neuroimmune system — Where aging and excess alcohol intersect // Alcohol. 2023. Vol. 107. P. 153–167. doi: 10.1016/j.alcohol.2022.08.009

[41]

Doremus-Fitzwater TL, Deak T. Adolescent neuroimmune function and its interaction with alcohol. Int Rev Neurobiol. 2022;161: 167–208. doi: 10.1016/bs.irn.2021.08.006

[42]

Doremus-Fitzwater T.L., Deak T. Adolescent neuroimmune function and its interaction with alcohol // Int Rev Neurobiol. 2022. Vol. 161. P. 167–208. doi: 10.1016/bs.irn.2021.08.006

[43]

Davinelli S, Medoro A, Ali S, et al. Dietary flavonoids and adult neurogenesis: potential implications for brain aging. Curr Neuropharmacol. 2023;21(3):651–668. doi: 10.2174/1570159X21666221031103909

[44]

Davinelli S., Medoro A., Ali S., et al. Dietary flavonoids and adult neurogenesis: potential implications for brain aging // Curr Neuropharmacol. 2023. Vol. 21, N 3. P. 651–668. doi: 10.2174/1570159X21666221031103909

[45]

Yi YS. Regulatory roles of flavonoids in caspase-11 non-canonical inflammasome-mediated inflammatory responses and diseases. Int J Mol Sci. 2023;24(12):10402. doi: 10.3390/ijms241210402

[46]

Yi Y.S. Regulatory roles of flavonoids in caspase-11 non-canonical inflammasome-mediated inflammatory responses and diseases // Int J Mol Sci. 2023. Vol. 24, N 12. P. 10402. doi: 10.3390/ijms241210402

[47]

Markova EV, Goldina IA, Savkin IV. Bioflavonoids in neuroimmune pathology: mechanisms of action and therapeutic effects. Krasnoyarsk: Research and Innovation Center; 2019. 158 p. (In Russ.) EDN: YBNNZM doi: 10.12731/978-5-907208-15-5

[48]

Маркова Е.В., Гольдина И.А., Савкин И.В. Биофлавоноиды при нейроиммунной патологии: механизмы действия и терапевтические эффекты. Красноярск: Научно-инновационный центр, 2019. 158 c. EDN: YBNNZM doi: 10.12731/978-5-907208-15-5

[49]

Goldina IA, Markova EV, Goldin BG, et al. Protective properties of turmeric extract in ethanol-induced behavioral disorders. Saratov Journal of Medical Scientific Research. 2017;13(1):131–135. EDN: YPYFXX

[50]

Гольдина И.А., Маркова Е.В., Гольдин Б.Г., и др. Протекторные свойства экстракта куркумы при этанолиндуцированных нарушениях поведения // Саратовский научно-медицинский журнал. 2017. Т. 13, № 1. С. 131–135. EDN: YPYFXX

[51]

Markova EV, Goldina IA, Goldin BG, et al. Turmeric extract in correction of nervous and immune systems functional activity parameters in experimental alcoholism. Medical Academic Journal. 2019;19(S):215–217. EDN: GCRYLB doi: 10.17816/MAJ191S1215–217

[52]

Маркова Е.В., Гольдина И.А., Гольдин В.Г., и др. Экстракт куркумы в коррекции показателей функциональной активности нервной и иммунной систем при экспериментальном алкоголизме // Медицинский академический журнал. 2019. Т. 19, № S. С. 215–217. EDN: GCRYLB doi: 10.17816/MAJ191S1215–217

[53]

Goldina IA, Markova EV, Savkin IV. Bioflavonoids efficiency in experimental alcoholism. Russian Immunological Journal. 2019;13(2): 212–214. EDN: ETMXJC doi: 10.31857/S102872210006461-2

[54]

Гольдина И.А., Маркова Е.В., Савкин И.В. Эффективность биофлавоноидов при экспериментальном алкоголизме // Российский иммунологический журнал. 2019. Т. 13, № 2–1. С. 212–214. EDN: ETMXJC doi: 10.31857/S102872210006461-2

[55]

Patent RU No. 2654868/23.05.2024. Gaidul KV, Kornilov SI. Nutraceutical composition [cited: 2024 Oct 29] Available from: https://patents.google.com/patent/RU2654868C1/ru (In Russ.)

[56]

Патент РФ на изобретение № 2654868/ 23.05.24. Гайдуль К.В., Корнилов С.И. Нутрицевтическая композиция. Режим доступа: https://patents.google.com/patent/RU2654868C1/ru Дата обращения: 29.10.2024.

[57]

Cheong WJ, Park MH, Kang GW. Determination of catechin compounds in Korean green tea infusions under various extraction conditions by high performance liquid chromatography. Bulletin of the Korean Chemical Society. 2005;26(5):747–754. doi: 10.5012/bkcs.2005.26.5.747

[58]

Cheong W.J., Park M.H., Kang G.W. Determination of catechin compounds in Korean green tea infusions under various extraction conditions by high performance liquid chromatography // Bulletin of the Korean Chemical Society. 2005. Vol. 26, N 5. P. 747–754. doi: 10.5012/bkcs.2005.26.5.747

[59]

Fedorova YS, Kulpin PV, Suslov NI. Study of the cardioprotective properties of biologically active substances Hedysarum alpinum L. Bulletin of science and education. 2018;(16–1):85–91. (In Russ.) EDN: PJISBX

[60]

Федорова Ю.С., Кульпин П.В., Суслов Н.И. Изучение кардиопротекторных свойств биологически активных веществ Hedysarum alpinum L. // Вестник науки и образования. 2018. № 16–1. С. 85–91. EDN: PJISBX

[61]

Ermakov AI, Arasimovich VV, Yarosh NP, et al. Methods of biochemical study of plants. Leningrad: Agropromizdat; 1987. 430 p. (In Russ.)

[62]

Ермаков А.И., Арасимович В.В., Ярош Н.П., и др. Методы биохимического исследования растений. Ленинград: Агропромиздат, 1987. 430 с.

[63]

Pavlova AB, Chirkina TF, Zolotareva AM. Biologically active food additive based on the woody greens of sea buckthorn. Chemistry of Plant Raw Material. 2001;(4):73–76. (In Russ.) EDN: HWIMCD

[64]

Павлова А.Б., Чиркина Т.Ф., Золотарева А.М. Биологически активная пищевая добавка на основе древесной зелени облепихи // Химия растительного сырья. 2001. № 4. С. 73–76. EDN: HWIMCD

[65]

Markova EV. Immunocompetent cells and regulation of behavioral reactions in norm and pathology. Krasnoyarsk: Research and Innovation Center. 2021. 184 p. (In Russ.) EDN: QMDWXP doi: 10.12731/978-5-907208-67-4

[66]

Маркова Е.В. Иммунокомпетентные клетки и регуляция поведенческих реакций в норме и патологии. Красноярск: Научно-инновационный центр. 2021. 184 c. EDN: QMDWXP doi: 10.12731/978-5-907208-67-4

[67]

Markova EV, Savkin IV, Kniazheva MA, Shushpanova TV. Anticonvulsant with immunomodulating properties in alcoholism therapy: experimental study. Siberian Herald of Psychiatry and Addiction Psychiatry. 2020;(1):14–22. EDN: IGJPCT doi: 10.26617/1810-3111-2020-1(106)-14-22

[68]

Маркова Е.В., Савкин И.В., Княжева М.А., Шушпанова Т.В. Антиконвульсант с иммуномодулирующими свойствами в терапии алкоголизма: экспериментальное исследование // Сибирский вестник психиатрии и наркологии. 2020. № 1. С. 14–22. EDN: IGJPCT doi: 10.26617/1810-3111-2020-1(106)-14-22

[69]

Yoshikai Y, Miake S, Matsumoto T. Effect of stimulation and blockade of mononuclear phagocyte system on the delayed footpad reaction to SRBC in mice. Immunology. 1979;38(3):577–583.

[70]

Yoshikai Y., Miake S., Matsumoto T. Effect of stimulation and blockade of mononuclear phagocyte system on the delayed footpad reaction to SRBC in mice // Immunology. 1979. Vol. 38, N 3. P. 577–583.

[71]

Kelley KW, Dantzer R. Alcoholism and inflammation: neuroimmunology of behavioral and mood disorders. Brain Behav Immun. 2011;25(Suppl 1):S13–S20. doi: 10.1016/j.bbi.2010.12.013

[72]

Kelley K.W., Dantzer R. Alcoholism and inflammation: neuroimmunology of behavioral and mood disorders // Brain Behav Immun. 2011. Vol. 25, N S1. P. S13–S20. doi: 10.1016/j.bbi.2010.12.013

[73]

Airapetov MI, Eresko SO, Bychkov ER, et al. Expression of Toll-like receptors in emotiogenic structures of rat brain is changed under longterm alcohol consumption and ethanol withdrawal. Medical Immunology (Russia). 2020;22(1):77–86. EDN: XDISIK doi: 10.15789/1563–0625-EOT-1836

[74]

Айрапетов М.И., Ереско С.О., Бычков Е.Р., и др. Уровень экспрессии Toll-подобных рецепторов изменяется в эмоциогенных структурах мозга крыс в условиях длительной алкоголизации и при отмене этанола // Медицинская иммунология. 2020. Т. 22, № 1. С. 77–86. EDN: XDISIK doi: 10.15789/1563-0625-EOT-1836

[75]

Pérez-Reytor D, Karahanian E. Alcohol use disorder, neuroinflammation, and intake of dietary fibers: a new approach for treatment. Am J Drug Alcohol Abuse. 2023;49(3):283–289. doi: 10.1080/00952990.2022.2114005

[76]

Pérez-Reytor D., Karahanian E. Alcohol use disorder, neuroinflammation, and intake of dietary fibers: a new approach for treatment // Am J Drug Alcohol Abuse. 2023. Vol. 49, N 3. P. 283–289. doi: 10.1080/00952990.2022.2114005

[77]

Wang H, Zhao T, Liu Z, et al. The neuromodulatory effects of flavonoids and gut Microbiota through the gut-brain axis. Front Cell Infect Microbiol. 2023;13:1197646. doi: 10.3389/fcimb.2023.1197646

[78]

Wang H., Zhao T., Liu Z., et al. The neuromodulatory effects of flavonoids and gut Microbiota through the gut-brain axis // Front Cell Infect Microbiol. 2023. Vol. 13. P. 1197646. doi: 10.3389/fcimb.2023.1197646

[79]

Gazatova ND, Yurova KA, Gavrilov DV, et al. Features of cellular immunity and regeneration in alcoholic hepatic fibrosis. Bulletin of Siberian Medicine. 2019;18(1):175–189. EDN: ZHBGKD doi: 10.20538/1682-0363-2019-1-175-189

[80]

Газатова Н.Д., Юрова К.А., Гаврилов Д.В., и др. Особенности клеточного иммунитета и регенерации при алкогольном фиброзе печению // Бюллетень cибирской vедицины. 2019. Т. 18, № 1. С. 175–189. EDN: ZHBGKD doi: 10.20538/1682-0363-2019-1-175-189

[81]

Moukham H, Lambiase A, Barone GD, et al. Exploiting natural niches with neuroprotective properties: a comprehensive review. Nutrients. 2024;16(9):1298. doi: 10.3390/nu16091298

[82]

Moukham H., Lambiase A., Barone G.D., et al. Exploiting natural niches with neuroprotective properties: a comprehensive review // Nutrients. 2024. Vol. 16, N 9. P. 1298. doi: 10.3390/nu16091298

[83]

Lamanna-Rama N, Romero-Miguel D, Desco M, Soto-Montenegro ML. An update on the exploratory use of curcumin in neuropsychiatric disorders. Antioxidants (Basel). 2022;11(2):353. doi: 10.3390/antiox11020353

[84]

Lamanna-Rama N., Romero-Miguel D., Desco M., Soto-Montenegro M.L. An update on the exploratory use of curcumin in neuropsychiatric disorders // Antioxidants (Basel). 2022. Vol. 11, N 2. P. 353. doi: 10.3390/antiox11020353

[85]

Sohn SI, Priya A, Balasubramaniam B, et al. Biomedical applications and bioavailability of curcumin-an updated overview. Pharmaceutics. 2021;13(12):2102. doi: 10.3390/pharmaceutics13122102

[86]

Sohn S.I., Priya A., Balasubramaniam B., et al. Biomedical applications and bioavailability of curcumin-an updated overview // Pharmaceutics. 2021. Vol. 13, N 12. P. 2102. doi: 10.3390/pharmaceutics13122102

[87]

Esmaealzadeh N, Miri MS, Mavaddat H, et al. The regulating effect of curcumin on NF-κB pathway in neurodegenerative diseases: a review of the underlying mechanisms. Inflammopharmacology. 2024;32(4):2125–2151. doi: 10.1007/s10787-024-01492-1

[88]

Esmaealzadeh N., Miri M.S., Mavaddat H., et al. The regulating effect of curcumin on NF-κB pathway in neurodegenerative diseases: a review of the underlying mechanisms // Inflammopharmacology. 2024. Vol. 32, N 4. P. 2125–2151. doi: 10.1007/s10787-024-01492-1

[89]

Zhou H, Beevers CS, Huang S. The targets of curcumin. Curr Drug Targets. 2011;12(3):332–347. doi: 10.2174/138945011794815356

[90]

Zhou H., Beevers C.S., Huang S. The targets of curcumin // Curr Drug Targets. 2011. Vol. 12, N 3. P. 332–347. doi: 10.2174/138945011794815356

[91]

Zhou J, Wu N, Lin L. Curcumin suppresses apoptosis and inflammation in hypoxia/reperfusion-exposed neurons via wnt signaling pathway. Med Sci Monit. 2020;26:e920445. doi: 10.12659/MSM.920445

[92]

Zhou J., Wu N., Lin L. Curcumin suppresses apoptosis and inflammation in hypoxia/reperfusion-exposed neurons via wnt signaling pathway // Med Sci Monit. 2020. Vol. 26. P. e920445. doi: 10.12659/MSM.920445

[93]

Reddy PH, Manczak M, Yin X, et al. Protective effects of Indian Spice curcumin against amyloid-β in Alzheimer’s disease. J Alzheimers Dis. 2018;61(3):843–866. doi: 10.3233/JAD-170512

[94]

Reddy P.H., Manczak M., Yin X., et al. Protective effects of Indian Spice curcumin against amyloid-β in Alzheimer’s disease // J Alzheimers Dis. 2018. Vol. 61, N 3. P. 843–866. doi: 10.3233/JAD-170512

[95]

Hu S, Maiti P, Ma Q, et al. Clinical development of curcumin in neurodegenerative disease. Expert Rev Neurother. 2015;15(6): 629–637. doi: 10.1586/14737175.2015.1044981

[96]

Hu S., Maiti P., Ma Q., et al. Clinical development of curcumin in neurodegenerative disease // Expert Rev Neurother. 2015. Vol. 15, N 6. P. 629–637. doi: 10.1586/14737175.2015.1044981

[97]

He HJ, Xiong X, Zhou S, et al. Neuroprotective effects of curcumin via autophagy induction in 6-hydroxydopamine Parkinson’s models. Neurochem Int. 2022;155:105297. doi: 10.1016/j.neuint.2022.105297

[98]

He H.J., Xiong X., Zhou S., et al. Neuroprotective effects of curcumin via autophagy induction in 6-hydroxydopamine Parkinson’s models // Neurochem Int. 2022. Vol. 155. P. 105297. doi: 10.1016/j.neuint.2022.105297

[99]

Sanmukhani J, Anovadiya A, Tripathi CB. Evaluation of antidepressant like activity of curcumin and its combination with fluoxetine and imipramine: an acute and chronic study. Acta Pol Pharm. 2011;68(5):769–775.

[100]

Sanmukhani J., Anovadiya A., Tripathi C.B. Evaluation of antidepressant like activity of curcumin and its combination with fluoxetine and imipramine: an acute and chronic study // Acta Pol Pharm. 2011. Vol. 68, N 5. P. 769–775.

[101]

Kaufmann FN, Gazal M, Bastos CR, et al. Curcumin in depressive disorders: An overview of potential mechanisms, preclinical and clinical findings. Eur J Pharmacol. 2016;784:192–198. doi: 10.1016/j.ejphar.2016.05.026

[102]

Kaufmann F.N., Gazal M., Bastos C.R., et al. Curcumin in depressive disorders: An overview of potential mechanisms, preclinical and clinical findings // Eur J Pharmacol. 2016. Vol. 784. P. 192–198. doi: 10.1016/j.ejphar.2016.05.026

[103]

Bava SV, Puliyappadamba VT, Deepti A, et al. Sensitization of taxol-induced apoptosis by curcumin involves down-regulation of nuclear factor-kappaB and the serine/threonine kinase Akt and is independent of tubulin polymerization J Biol Chem. 2005;280(8): 6301–6308. doi: 10.1074/jbc.M410647200

[104]

Bava S.V., Puliyappadamba V.T., Deepti A., et al. Sensitization of taxol-induced apoptosis by curcumin involves down-regulation of nuclear factor-kappaB and the serine/threonine kinase Akt and is independent of tubulin polymerization // J Biol Chem. 2005. Vol. 280, N 8. P. 6301–6308. doi: 10.1074/jbc.M410647200

[105]

Franco-Robles E, Campos-Cervantes A, Murillo-Ortiz BO, et al. Effects of curcumin on brain-derived neurotrophic factor levels and oxidative damage in obesity and diabetes. Appl Physiol Nutr Metab. 2014;39(2):211–218. doi: 10.1139/apnm-2013-0133

[106]

Franco-Robles E., Campos-Cervantes A., Murillo-Ortiz B.O., et al. Effects of curcumin on brain-derived neurotrophic factor levels and oxidative damage in obesity and diabetes // Appl Physiol Nutr Metab. 2014. Vol. 39, N 2. P. 211–218. doi: 10.1139/apnm-2013-0133

[107]

Fusar-Poli L, Vozza L, Gabbiadini A, et al. Curcumin for depression: a meta-analysis. Crit Rev Food Sci Nutr. 2020;60(15): 2643–2653. doi: 10.1080/10408398.2019.1653260

[108]

Fusar-Poli L., Vozza L., Gabbiadini A., et al. Curcumin for depression: a meta-analysis // Crit Rev Food Sci Nutr. 2020. Vol. 60, N 15. P. 2643–2653. doi: 10.1080/10408398.2019.1653260

[109]

Bao S, Zhang Y, Ye J, et al. Self-assembled micelles enhance the oral delivery of curcumin for the management of alcohol-induced tissue injury. Pharm Dev Technol. 2021;26(8):880–889. doi: 10.1080/10837450.2021.1950185

[110]

Bao S., Zhang Y., Ye J., et al. Self-assembled micelles enhance the oral delivery of curcumin for the management of alcohol-induced tissue injury // Pharm Dev Technol. 2021. Vol. 26, N 8. P. 880–889. doi: 10.1080/10837450.2021.1950185

[111]

Kim MA, Kim MJ. Isoflavone profiles and antioxidant properties in different parts of soybean sprout. J Food Sci. 2020;85(3): 689–695. doi: 10.1111/1750-3841.15058

[112]

Kim M.A., Kim M.J. Isoflavone profiles and antioxidant properties in different parts of soybean sprout // J Food Sci. 2020. Vol. 85, N 3. P. 689–695. doi: 10.1111/1750-3841.15058

[113]

Danesi F, Philpott M, Huebner C, et al. Food-derived bioactives as potential regulators of the IL-12/IL-23 pathway implicated in inflammatory bowel diseases. Mutat Res. 2010;690(1–2):139–144. doi: 10.1016/j.mrfmmm.2010.01.001

[114]

Danesi F., Philpott M., Huebner C., et al. Food-derived bioactives as potential regulators of the IL-12/IL-23 pathway implicated in inflammatory bowel diseases // Mutat Res. 2010. Vol. 690, N 1–2. P. 139–144. doi: 10.1016/j.mrfmmm.2010.01.001

[115]

Juang YP, Liang PH. Biological and pharmacological effects of synthetic saponins. Molecules. 2020;25(21):4974. doi: 10.3390/molecules25214974

[116]

Juang Y.P., Liang P.H. Biological and pharmacological effects of synthetic saponins // Molecules. 2020. Vol. 25, N 21. P. 4974. doi: 10.3390/molecules25214974

[117]

Milani A, Basirnejad M, Shahbazi S, Bolhassani A. Carotenoids: biochemistry, pharmacology and treatment. Br J Pharmacol. 2017;174(11):1290–1324. doi: 10.1111/bph.13625

[118]

Milani A., Basirnejad M., Shahbazi S., Bolhassani A. Carotenoids: biochemistry, pharmacology and treatment // Br J Pharmacol. 2017. Vol. 174, N 11. P. 1290–1324. doi: 10.1111/bph.13625

RIGHTS & PERMISSIONS

Eco-Vector

AI Summary AI Mindmap
PDF (1808KB)

108

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/