Ubiquitylation in the development of somatic diseases: a mechanism of cellular regulation and a new therapeutic target
Aleksandr L. Urakov , Anton V. Tyurin , Vlas S. Shchekin , Olim A. Siddikov , Ilkhomjon R. Abdurakhmonov , Renata A. Gabdrakhimova , Aleksandr V. Samorodov
Reviews on Clinical Pharmacology and Drug Therapy ›› 2024, Vol. 22 ›› Issue (4) : 339 -349.
Ubiquitylation in the development of somatic diseases: a mechanism of cellular regulation and a new therapeutic target
At the present stage of medical science, an increasing role in the pathogenesis of various groups of diseases is assigned to the mechanisms of epigenetic regulation and posttranslational modifications of proteins. One of these mechanisms is ubiquitylation, which is able to regulate the functional activity of proteins, their stability, and also influence the processes of cell death. Involvement in a large number of metabolic pathways and presently identified associations with oncological, cardiovascular, neurological, and inflammatory diseases makes ubiquitylation of the enzymes involved a promising target to develop new therapy options. In this review, we consider the effect of ubiquitination on the development of diseases of the cardiovascular, nervous systems, diabetes mellitus, as well as the development of possible treatment options.
ubiquitylation / ubiquitin proteases / apoptosis
| [1] |
Catic A, Ploegh HL. Ubiquitin — conserved protein or selfish gene? Trends Biochem Sci. 2005;30(11):600–604. doi: 10.1016/j.tibs.2005.09.002 |
| [2] |
Catic A., Ploegh H.L. Ubiquitin — conserved protein or selfish gene? // Trends Biochem Sci. 2005. Vol. 30, N 11. P. 600–604. doi: 10.1016/j.tibs.2005.09.002 |
| [3] |
Kravtsova-Ivantsiv Y, Сiechanover A. Non-canonical ubiquitin-based signals for proteasomal degradation. J Cell Sci. 2012;125(3):539–548. doi: 10.1242/jcs.093567 |
| [4] |
Kravtsova-Ivantsiv Y., Сiechanover A. Non-canonical ubiquitin-based signals for proteasomal degradation // J Cell Sci. 2012. Vol. 125, N 3. P. 539–548. doi: 10.1242/jcs.093567 |
| [5] |
Bedford L, Paine S, Sheppard PW, et al. Structure, and function of the 26S proteasome. Trends Cell Biol. 2010;20(7):391–401. doi: 10.1016/j.tcb.2010.03.007 |
| [6] |
Bedford L., Paine S., Sheppard P.W., et al. Structure, and function of the 26S proteasome // Trends Cell Biol. 2010. Vol. 20, N 7. P. 391–401. doi: 10.1016/j.tcb.2010.03.007 |
| [7] |
Zeng W, Sun L, Jiang X, et al. Reconstitution of the RIG-I pathway reveals a signaling role of unanchored polyubiquitin chains in innate immunity. Cell. 2010;141(2):315–330. doi: 10.1016/j.cell.2010.03.029 |
| [8] |
Zeng W., Sun L., Jiang X., et al. Reconstitution of the RIG-I pathway reveals a signaling role of unanchored polyubiquitin chains in innate immunity // Cell. 2010. Vol. 141, N 2. P. 315–330. doi: 10.1016/j.cell.2010.03.029 |
| [9] |
Roberts JZ, Crawford N, Longley DB. The Role of ubiquitination in apoptosis and necroptosis. Cell Death Differ. 2022;29(2):272–284. doi: 10.1038/s41418-021-00922-9 |
| [10] |
Roberts J.Z., Crawford N., Longley D.B. The Role of ubiquitination in apoptosis and necroptosis // Cell Death Differ. 2022. Vol. 29, N 2. P. 272–284. doi: 10.1038/s41418-021-00922-9 |
| [11] |
Moujalled D, Strasser A, Liddell JR. Molecular mechanisms of cell death in neurological diseases. Cell Death Differ. 2021;28(7): 2029–2044. doi: 10.1038/s41418-021-00814-y |
| [12] |
Moujalled D., Strasser A., Liddell J.R. Molecular mechanisms of cell death in neurological diseases // Cell Death Differ. 2021. Vol. 28, N 7. P. 2029–2044. doi: 10.1038/s41418-021-00814-y |
| [13] |
Holohan C, Van Schaeybroeck S, Longley DB. Cancer drug resistance: an evolving paradigm. Nat. Rev. Cancer. 2013;13(10): 714–726. doi: 10.1038/nrc3599 |
| [14] |
Holohan C., Van Schaeybroeck S., Longley D.B. Cancer drug resistance: an evolving paradigm // Nat Rev Cancer. 2013. Vol. 13, N 10. P. 714–726. doi: 10.1038/nrc3599 |
| [15] |
Kwasna D, Abdul Rehman SA, Natarajan J, et al. Discovery and characterization of ZUFSP/ZUP1, a distinct deubiquitinase class important for genome stability. Mol Cell. 2018;70(1):150–164. doi: 10.1016/j.molcel.2018.02.023 |
| [16] |
Kwasna D., Abdul Rehman S.A., Natarajan J., et al. Discovery and characterization of ZUFSP/ZUP1, a distinct deubiquitinase class important for genome stability // Mol Cell. 2018. Vol. 70, N 1. P. 150–164. doi: 10.1016/j.molcel.2018.02.023 |
| [17] |
Atanassov BS, Koutelou E, Dent SY. The role of deubiquitinating enzymes in chromatin regulation. FEBS Lett. 2011;585(13): 2016–2023. doi: 10.1016/j.febslet.2010.10.042 |
| [18] |
Atanassov B.S., Koutelou E., Dent S.Y. The role of deubiquitinating enzymes in chromatin regulation // FEBS Lett. 2011. Vol. 585, N 13. P. 2016–2023. doi: 10.1016/j.febslet.2010.10.042 |
| [19] |
Li HL, Zhuo ML, Wang D et al. Targeted cardiac overexpression of a20 improves left ventricular performance and reduces compensatory hypertrophy after myocardial infarction. Circulation. 2007;115(14):1885–1894. doi: 10.1161/CIRCULATIONAHA.106.656835 |
| [20] |
Li H.L., Zhuo M.L., Wang D., et al. Targeted cardiac overexpression of a20 improves left ventricular performance and reduces compensatory hypertrophy after myocardial infarction // Circulation. 2007. Vol. 115, N 14. P. 1885–1894. doi: 10.1161/CIRCULATIONAHA.106.656835 |
| [21] |
He B, Zhao YC, Gao LC, et al. Ubiquitin-specific protease 4 is an endogenous negative regulator of pathological cardiac hypertrophy. Hypertension. 2016;67(6):1237–1248. doi: 10.1161/HYPERTENSIONAHA.116.07392 |
| [22] |
He B., Zhao Y.C., Gao L.C., et al. Ubiquitin-specific protease 4 is an endogenous negative regulator of pathological cardiac hypertrophy // Hypertension. 2016. Vol. 67, N 6. P. 1237–1248. doi: 10.1161/HYPERTENSIONAHA.116.07392 |
| [23] |
Ying X, Zhao Y, Yao T, et al. Novel protective role for ubiquitin-specific protease 18 in pathological cardiac remodeling. Hypertension. 2016;68(5):1160–1170. doi: 10.1161/HYPERTENSIONAHA.116.07562 |
| [24] |
Ying X., Zhao Y., Yao T., et al. Novel protective role for ubiquitin-specific protease 18 in pathological cardiac remodeling // Hypertension. 2016. Vol. 68, N 5. P. 1160–1170. doi: 10.1161/HYPERTENSIONAHA.116.07562 |
| [25] |
Dhingra R, Rabinovich-Nikitin I, Rothman S, et al. Proteasomal degradation of TRAF2 mediates mitochondrial dysfunction in doxorubicin-cardiomyopathy. Circulation. 2022;146(12):934–954. doi: 10.1161/CIRCULATIONAHA.121.058411 |
| [26] |
Dhingra R., Rabinovich-Nikitin I., Rothman S., et al. Proteasomal degradation of TRAF2 mediates mitochondrial dysfunction in doxorubicin-cardiomyopathy // Circulation. 2022. Vol. 146, N 12. P. 934–954. doi: 10.1161/CIRCULATIONAHA.121.058411 |
| [27] |
Gisterå A, Hansson GK. The immunology of atherosclerosis. Nat Rev Nephrol. 2017;13(6):368–380. doi: 10.1038/nrneph.2017.51 |
| [28] |
Gisterå A., Hansson G.K. The immunology of atherosclerosis // Nat Rev Nephrol. 2017. Vol. 13, N 6. P. 368–380. doi: 10.1038/nrneph.2017.51 |
| [29] |
Soehnlein O, Libby P. Targeting inflammation in atherosclerosis — from experimental insights to the clinic. Nat Rev Drug Discov. 2021;20(8):589–610. doi: 10.1038/s41573-021-00198-1 |
| [30] |
Soehnlein O., Libby P. Targeting inflammation in atherosclerosis — from experimental insights to the clinic // Nat Rev Drug Discov. 2021. Vol. 20, N 8. P. 589–610. doi: 10.1038/s41573-021-00198-1 |
| [31] |
Fu Y, Qiu J, Wu J, et al. USP14-mediated NLRC5 upregulation inhibits endothelial cell activation and inflammation in atherosclerosis. Biochim Biophys Acta Mol Cell Biol Lipids. 2023;1868(5):159258. doi: 10.1016/j.bbalip.2022.159258 |
| [32] |
Fu Y., Qiu J., Wu J., et al. USP14-mediated NLRC5 upregulation inhibits endothelial cell activation and inflammation in atherosclerosis // Biochim Biophys Acta Mol Cell Biol Lipids. 2023. Vol. 1868, N 5. P. 159258. doi: 10.1016/j.bbalip.2022.159258 |
| [33] |
Xia X, Hu T, He J, et al. USP10 deletion inhibits macrophage-derived foam cell formation and cellular-oxidized low density lipoprotein uptake by promoting the degradation of CD36. Aging (Albany NY). 2020;12(22):22892–22905. doi: 10.18632/aging.104003 |
| [34] |
Xia X., Hu T., He J., et al. USP10 deletion inhibits macrophage-derived foam cell formation and cellular-oxidized low density lipoprotein uptake by promoting the degradation of CD36 // Aging (Albany NY). 2020. Vol. 12, N 22. P. 22892–22905. doi: 10.18632/aging.104003 |
| [35] |
Wang B, Tang X, Yao L, et al. Disruption of USP9X in macrophages promotes foam cell formation and atherosclerosis. J Clin Invest. 2022;132(10):e154217. doi: 10.1172/JCI154217 |
| [36] |
Wang B., Tang X., Yao L., et al. Disruption of USP9X in macrophages promotes foam cell formation and atherosclerosis // J Clin Invest. 2022. Vol. 132, N 10. P. e154217. doi: 10.1172/JCI154217 |
| [37] |
Zhang Y, Li W, Li H, et al. Circ_USP36 silencing attenuates oxidized low-density lipoprotein-induced dysfunction in endothelial cells in atherosclerosis through mediating miR-197-3p/ROBO1 axis. J Cardiovasc Pharmacol. 2021;78(5):e761–e772. doi: 10.1097/FJC.0000000000001124 |
| [38] |
Zhang Y., Li W., Li H., et al. Circ_USP36 silencing attenuates oxidized low-density lipoprotein-induced dysfunction in endothelial cells in atherosclerosis through mediating miR-197-3p/ROBO1 axis // J Cardiovasc Pharmacol. 2021. Vol. 78, N 5. P. e761–e772. doi: 10.1097/FJC.0000000000001124 |
| [39] |
Liu H, Li X, Yan G. Knockdown of USP14 inhibits PDGF-BB-induced vascular smooth muscle cell dedifferentiation: via inhibiting MTOR/P70S6K signaling pathway. RSC Adv. 2019;9(63):36649–36657. doi: 10.1039/c9ra04726c. |
| [40] |
Liu H., Li X., Yan G. Knockdown of USP14 inhibits PDGF-BB-induced vascular smooth muscle cell dedifferentiation: via inhibiting MTOR/P70S6K signaling pathway // RSC Adv. 2019. Vol. 9, N 63. P. 36649–36657. doi: 10.1039/c9ra04726c. |
| [41] |
Zhang F, Xia X, Chai R, et al. Inhibition of USP14 suppresses the formation of foam cell by promoting CD36 degradation. J Cell Mol Med. 2020;24(6):3292–3302. doi: 10.1111/jcmm.15002 |
| [42] |
Zhang F., Xia X., Chai R., et al. Inhibition of USP14 suppresses the formation of foam cell by promoting CD36 degradation // J Cell Mol Med. 2020. Vol. 24, N 6. P. 3292–3302. doi: 10.1111/jcmm.15002 |
| [43] |
Jean-Charles PY, Wu JH, Zhang L, et al. USP20 (Ubiquitin-Specific Protease 20) Inhibits TNF (tumor necrosis factor)-triggered smooth muscle cell inflammation and attenuates atherosclerosis. Arterioscler Thromb Vasc Biol. 2018;38(10):2295–2305. doi: 10.1161/ATVBAHA.118.311071 |
| [44] |
Jean-Charles P.Y., Wu J.H., Zhang L., et al. USP20 (Ubiquitin-Specific Protease 20) Inhibits TNF (tumor necrosis factor)-triggered smooth muscle cell inflammation and attenuates atherosclerosis // Arterioscler Thromb Vasc Biol. 2018. Vol. 38, N 10. P. 2295–2305. doi: 10.1161/ATVBAHA.118.311071 |
| [45] |
Li X, Wang T, Tao Y, Wang X, Li L, Liu J. MF-094, a potent and selective USP30 inhibitor, accelerates diabetic wound healing by inhibiting the NLRP3 inflammasome. Exp Cell Res. 2022;410(2):112967. doi: 10.1016/j.yexcr.2021.112967 |
| [46] |
Li X., Wang T., Tao Y., et al. MF-094, a potent and selective USP30 inhibitor, accelerates diabetic wound healing by inhibiting the NLRP3 inflammasome // Exp Cell Res. 2022. Vol. 410, N 2. P. 112967. doi: 10.1016/j.yexcr.2021.112967 |
| [47] |
Zhang T, Wang L, Chen L. Alleviative effect of microRNA-497 on diabetic neuropathic pain in rats in relation to decreased USP15. Cell Biol Toxicol. 2023;39(5):1–16. doi: 10.1007/s10565-022-09702-8 |
| [48] |
Zhang T., Wang L., Chen L. Alleviative effect of microRNA-497 on diabetic neuropathic pain in rats in relation to decreased USP15 // Cell Biol Toxicol. 2023. Vol. 39, N 5. P. 1–16. doi: 10.1007/s10565-022-09702-8 |
| [49] |
Li X, Wang T, Tao Y, Wang X, Li L, Liu J. Inhibition of USP7 suppresses advanced glycation end-induced cell cycle arrest and senescence of human umbilical vein endothelial cells through ubiquitination of p53. Acta Biochim Biophys Sin (Shanghai). 2022;54(3):311–320. doi: 10.3724/abbs.2022003 |
| [50] |
Li X., Wang T., Tao Y., et al. Inhibition of USP7 suppresses advanced glycation end-induced cell cycle arrest and senescence of human umbilical vein endothelial cells through ubiquitination of p53 // Acta Biochim Biophys Sin (Shanghai). 2022. Vol. 54, N 3. P. 311–320. doi: 10.3724/abbs.2022003 |
| [51] |
Bluestone JA, Buckner JH, Herold KC. Immunotherapy: Building a bridge to a cure for type 1 diabetes. Science. 2021;373(6554): 510–516. doi: 10.1126/science.abh1654 |
| [52] |
Bluestone J.A., Buckner J.H., Herold K.C. Immunotherapy: Building a bridge to a cure for type 1 diabetes // Science. 2021. Vol. 373, N 6554. P. 510–516. doi: 10.1126/science.abh1654 |
| [53] |
Gorrepati KDD, Lupse B, Annamalai K, et al. Loss of deubiquitinase USP1 blocks pancreatic β-Cell apoptosis by inhibiting DNA damage response. iScience. 2018;1:72–86. doi: 10.1016/j.isci.2018.02.003 |
| [54] |
Gorrepati K.D.D., Lupse B., Annamalai K., et al. Loss of deubiquitinase USP1 blocks pancreatic β-Cell apoptosis by inhibiting DNA damage response // iScience. 2018. Vol. 1. P. 72–86. doi: 10.1016/j.isci.2018.02.003 |
| [55] |
Pearson G, Chai B, Vozheiko T, et al. Clec16a, Nrdp1, and USP8 form a ubiquitin-dependent tripartite complex that regulates β-Cell mitophagy. Diabetes. 2018;67(2):265–277. doi: 10.2337/db17-0321 |
| [56] |
Pearson G., Chai B., Vozheiko T., et al. Clec16a, Nrdp1, and USP8 form a ubiquitin-dependent tripartite complex that regulates β-Cell mitophagy // Diabetes. 2018. Vol. 67, N 2. P. 265–277. doi: 10.2337/db17-0321 |
| [57] |
Meyerovich K, Violato NM, Fukaya M, et al. MCL-1 is a key antiapoptotic protein in human and rodent pancreatic β-Cells. Diabetes. 2017;66(9):2446–2458. doi: 10.2337/db16-1252 |
| [58] |
Meyerovich K., Violato N.M., Fukaya M., et al. MCL-1 is a key antiapoptotic protein in human and rodent pancreatic β-Cells // Diabetes. 2017. Vol. 66, N 9. P. 2446–2458. doi: 10.2337/db16-1252 |
| [59] |
Malenczyk K, Girach F, Szodorai E, et al. A TRPV1-to-secretagogin regulatory axis controls pancreatic β-cell survival by modulating protein turnover. EMBO J. 2017;36(14):2107–2125. doi: 10.15252/embj.201695347 |
| [60] |
Malenczyk K., Girach F., Szodorai E., et al. A TRPV1-to-secretagogin regulatory axis controls pancreatic β-cell survival by modulating protein turnover // EMBO J. 2017. Vol. 36, N 14. P. 2107–2125. doi: 10.15252/embj.201695347 |
| [61] |
Honke N, Shaabani N, Zhang DE, et al. Usp18 driven enforced viral replication in dendritic cells contributes to break of immunological tolerance in autoimmune diabetes. PLoS Pathog. 2013;9(10): e1003650. doi: 10.1371/journal.ppat.1003650 |
| [62] |
Honke N., Shaabani N., Zhang D.E., et al. Usp18 driven enforced viral replication in dendritic cells contributes to break of immunological tolerance in autoimmune diabetes // PLoS Pathog. 2013. Vol. 9, N 10. P. e1003650. doi: 10.1371/journal.ppat.1003650 |
| [63] |
Santin I, Moore F, Grieco FA, et al. USP18 is a key regulator of the interferon-driven gene network modulating pancreatic beta cell inflammation and apoptosis. Cell Death Dis. 2012;3(11):e419. doi: 10.1038/cddis.2012.158 |
| [64] |
Santin I., Moore F., Grieco F.A., et al. USP18 is a key regulator of the interferon-driven gene network modulating pancreatic beta cell inflammation and apoptosis // Cell Death Dis. 2012. Vol. 3, N 11. P. e419. doi: 10.1038/cddis.2012.158 |
| [65] |
Santin I, Eizirik DL. Candidate genes for type 1 diabetes modulate pancreatic islet inflammation and β-cell apoptosis. Diabetes Obes Metab. 2013;15(Suppl 3):71–81. doi: 10.1111/dom.12162 |
| [66] |
Santin I., Eizirik D.L. Candidate genes for type 1 diabetes modulate pancreatic islet inflammation and β-cell apoptosis // Diabetes Obes Metab. 2013. Vol. 15, Suppl 3. P. 71–81. doi: 10.1111/dom.12162 |
| [67] |
Donath MY, Shoelson SE. Type 2 diabetes as an inflammatory disease. Nat Rev Immunol. 2011;11(2):98–107. doi: 10.1038/nri2925 |
| [68] |
Donath M.Y., Shoelson S.E. Type 2 diabetes as an inflammatory disease // Nat Rev Immunol. 2011. Vol. 11, N 2. P. 98–107. doi: 10.1038/nri2925 |
| [69] |
Saito N, Kimura S, Miyamoto T, et al. Macrophage ubiquitin-specific protease 2 modifies insulin sensitivity in obese mice. Biochem Biophys Rep. 2017;9:322–329. doi: 10.1016/j.bbrep.2017.01.009 |
| [70] |
Saito N., Kimura S., Miyamoto T., et al. Macrophage ubiquitin-specific protease 2 modifies insulin sensitivity in obese mice // Biochem Biophys Rep. 2017. Vol. 9. P. 322–329. doi: 10.1016/j.bbrep.2017.01.009 |
| [71] |
Bai Y, Mo K, Wang G, et al. intervention of gastrodin in type 2 diabetes mellitus and its mechanism. Front Pharmacol. 2021;12:710722. doi: 10.3389/fphar.2021.710722 |
| [72] |
Bai Y., Mo K., Wang G., et al. intervention of gastrodin in type 2 diabetes mellitus and its mechanism // Front Pharmacol. 2021. Vol. 12. P. 710722. doi: 10.3389/fphar.2021.710722 |
| [73] |
Forand A, Koumakis E, Rousseau A, et al. disruption of the phosphate transporter pit1 in hepatocytes improves glucose metabolism and insulin signaling by modulating the USP7/IRS1 interaction. Cell Rep. 2016;16(10):2736–2748. doi: 10.1016/j.celrep.2016.08.012 |
| [74] |
Forand A., Koumakis E., Rousseau A., et al. disruption of the phosphate transporter pit1 in hepatocytes improves glucose metabolism and insulin signaling by modulating the USP7/IRS1 interaction // Cell Rep. 2016. Vol. 16, N 10. P. 2736–2748. doi: 10.1016/j.celrep.2016.08.012 |
| [75] |
Liu B, Zhang Z, Hu Y, et al. Sustained ER stress promotes hyperglycemia by increasing glucagon action through the deubiquitinating enzyme USP14. Proc Natl Acad Sci U S A. 2019;116(43):21732–21738. doi: 10.1073/pnas.1907288116 |
| [76] |
Liu B., Zhang Z., Hu Y., et al. Sustained ER stress promotes hyperglycemia by increasing glucagon action through the deubiquitinating enzyme USP14 // Proc Natl Acad Sci U S A. 2019. Vol. 116, N 43. P. 21732–21738. doi: 10.1073/pnas.1907288116 |
| [77] |
Coyne ES, Bédard N, Gong YJ, et al. The deubiquitinating enzyme USP19 modulates adipogenesis and potentiates high-fat-diet-induced obesity and glucose intolerance in mice. Diabetologia. 2019;62(1):136–146. doi: 10.1007/s00125-018-4754-4 |
| [78] |
Coyne E.S., Bédard N., Gong Y.J., et al. The deubiquitinating enzyme USP19 modulates adipogenesis and potentiates high-fat-diet-induced obesity and glucose intolerance in mice // Diabetologia. 2019. Vol. 62, N 1. P. 136–146. doi: 10.1007/s00125-018-4754-4 |
| [79] |
Lu XY, Shi XJ, Hu A, et al. Feeding induces cholesterol biosynthesis via the mTORC1-USP20-HMGCR axis. Nature. 2020;588(7838): 479–484. doi: 10.1038/s41586-020-2928-y |
| [80] |
Lu X.Y., Shi X.J., Hu A., et al. Feeding induces cholesterol biosynthesis via the mTORC1-USP20-HMGCR axis // Nature. 2020. Vol. 588, N 7838. P. 479–484. doi: 10.1038/s41586-020-2928-y |
| [81] |
Kim A, Koo JH, Jin X, et al. Ablation of USP21 in skeletal muscle promotes oxidative fibre phenotype, inhibiting obesity and type 2 diabetes. J Cachexia Sarcopenia Muscle. 2021;12(6):1669–1689. doi: 10.1002/jcsm.12777 |
| [82] |
Kim A., Koo J.H., Jin X., et al. Ablation of USP21 in skeletal muscle promotes oxidative fibre phenotype, inhibiting obesity and type 2 diabetes // J Cachexia Sarcopenia Muscle. 2021. Vol. 12, N 6. P. 1669–1689. doi: 10.1002/jcsm.12777 |
| [83] |
Zhang S, Liu X, Wang J, et al. Targeting ferroptosis with miR-144-3p to attenuate pancreatic β cells dysfunction via regulating USP22/SIRT1 in type 2 diabetes. Diabetol Metab Syndr. 2022;14(1):89. doi: 10.1186/s13098-022-00852-7 |
| [84] |
Zhang S., Liu X., Wang J., et al. Targeting ferroptosis with miR-144-3p to attenuate pancreatic β cells dysfunction via regulating USP22/SIRT1 in type 2 diabetes // Diabetol Metab Syndr. 2022. Vol. 14, N 1. P. 89. doi: 10.1186/s13098-022-00852-7 |
| [85] |
Niu Y, Jiang H, Yin H, et al. Hepatokine ERAP1 disturbs skeletal muscle insulin sensitivity via inhibiting USP33-mediated ADRB2 deubiquitination. Diabetes. 2022;71(5):921-933. doi: 10.2337/db21-0857 |
| [86] |
Niu Y., Jiang H., Yin H., et al. Hepatokine ERAP1 disturbs skeletal muscle insulin sensitivity via inhibiting USP33-mediated ADRB2 deubiquitination // Diabetes. 2022. Vol. 71, N 5. P. 921–933. doi: 10.2337/db21-0857 |
| [87] |
Lennox G, Lowe J, Morrell K, et al. Ubiquitin is a component of neurofibrillary tangles in a variety of neurodegenerative diseases. Neurosci Lett. 1988;94(1–2):211–217. doi: 10.1016/0304-3940(88)90297-2 |
| [88] |
Lennox G., Lowe J., Morrell K., et al. Ubiquitin is a component of neurofibrillary tangles in a variety of neurodegenerative diseases // Neurosci Lett. 1988. Vol. 94, N 1–2. P. 211–217. doi: 10.1016/0304-3940(88)90297-2 |
| [89] |
Mori H, Kondo J, Ihara Y. Ubiquitin is a component of paired helical filaments in Alzheimer’s disease. Science. 1987;235(4796): 1641–1644. doi: 10.1126/science.3029875 |
| [90] |
Mori H., Kondo J., Ihara Y. Ubiquitin is a component of paired helical filaments in Alzheimer’s disease // Science. 1987. Vol. 235, N 4796. P. 1641–1644. doi: 10.1126/science.3029875 |
| [91] |
Paulson HL, Das SS, Crino PB, et al. Machado–Joseph disease gene product is a cytoplasmic protein widely expressed in brain. Ann Neurol. 1997;41(4):453–462. doi: 10.1002/ana.410410408 |
| [92] |
Paulson H.L., Das S.S., Crino P.B., et al. Machado–Joseph disease gene product is a cytoplasmic protein widely expressed in brain // Ann Neurol. 1997. Vol. 41, N 4. P. 453–462. doi: 10.1002/ana.410410408 |
| [93] |
DiAntonio A, Haghighi AP, Portman SL, et al. Ubiquitination-dependent mechanisms regulate synaptic growth and function. Nature. 2001;412(6845):449–452. doi: 10.1038/35086595 |
| [94] |
DiAntonio A., Haghighi A.P., Portman S.L., et al. Ubiquitination-dependent mechanisms regulate synaptic growth and function // Nature. 2001. Vol. 412, N 6845. P. 449–452. doi: 10.1038/35086595 |
| [95] |
Ding M, Shen K. The role of the ubiquitin proteasome system in synapse remodeling and neurodegenerative diseases. Bioessays. 2008;30(11–12):1075–1083. doi: 10.1002/bies.20843 |
| [96] |
Ding M., Shen K. The role of the ubiquitin proteasome system in synapse remodeling and neurodegenerative diseases // Bioessays. 2008. Vol. 30, N 11–12. P. 1075–1083. doi: 10.1002/bies.20843 |
| [97] |
Yi JJ, Ehlers MD. Emerging roles for ubiquitin and protein degradation in neuronal function. Pharmacol Rev. 2007;59(1):14–39. doi: 10.1124/pr.59.1.4 |
| [98] |
Yi J.J., Ehlers M.D. Emerging roles for ubiquitin and protein degradation in neuronal function // Pharmacol Rev. 2007. Vol. 59, N 1. P. 14–39. doi: 10.1124/pr.59.1.4 |
| [99] |
Tai HC, Schuman EM. Ubiquitin, the proteasome and protein degradation in neuronal function and dysfunction. Nat Rev Neurosci. 2008;9(11):826–838. doi: 10.1038/nrn2499 |
| [100] |
Tai H.C., Schuman E.M. Ubiquitin, the proteasome and protein degradation in neuronal function and dysfunction // Nat Rev Neurosci. 2008. Vol. 9, N 11. P. 826–838. doi: 10.1038/nrn2499 |
| [101] |
Chen H, Polo S, Di Fiore PP, De Camilli PV. Rapid Ca2+-dependent decrease of protein ubiquitination at synapses. Proc Natl Acad Sci USA. 2003;100(25):14908–14913. doi: 10.1073/pnas.2136625100 |
| [102] |
Chen H., Polo S., Di Fiore P.P., De Camilli P.V. Rapid Ca2+-dependent decrease of protein ubiquitination at synapses // Proc Natl Acad Sci USA. 2003. Vol. 100, N 25. P. 14908–14913. doi: 10.1073/pnas.2136625100 |
| [103] |
Ehlers MD. Activity level controls postsynaptic composition and signaling via the ubiquitin-proteasome system. Nat Neurosci. 2003;6(3):231–242. doi: 10.1038/nn1013 |
| [104] |
Ehlers M.D. Activity level controls postsynaptic composition and signaling via the ubiquitin-proteasome system // Nat Neurosci. 2003. Vol. 6, N 3. P. 231–242. doi: 10.1038/nn1013 |
| [105] |
Xiao N, Li H, Luo J, et al. Ubiquitin-specific protease 4 (USP4) targets TRAF2 and TRAF6 for deubiquitination and inhibits TNFα-induced cancer cell migration. Biochem J. 2012;441(3): 979–986. doi: 10.1042/BJ20111358 |
| [106] |
Xiao N., Li H., Luo J., et al. Ubiquitin-specific protease 4 (USP4) targets TRAF2 and TRAF6 for deubiquitination and inhibits TNFα-induced cancer cell migration // Biochem J. 2012. Vol. 441, N 3. P. 979–986. doi: 10.1042/BJ20111358 |
| [107] |
Jiang X, Yu M, Ou Y, et al. Downregulation of USP4 promotes activation of microglia and subsequent neuronal inflammation in rat spinal cord after injury. Neurochem Res. 2017;42(11):3245–3253. doi: 10.1007/s11064-017-2361-2 |
| [108] |
Jiang X., Yu M., Ou Y., et al. Downregulation of usp4 promotes activation of microglia and subsequent neuronal inflammation in rat spinal cord after injury // Neurochem Res. 2017. Vol. 42, N 11. P. 3245–3253. doi: 10.1007/s11064-017-2361-2 |
| [109] |
Qin N, Han F, Li L, et al. Deubiquitinating enzyme 4 facilitates chemoresistance in glioblastoma by inhibiting P53 activity. Oncol Lett. 2019;17(1):958–964. doi: 10.3892/ol.2018.9654 |
| [110] |
Qin N., Han F., Li L., et al. Deubiquitinating enzyme 4 facilitates chemoresistance in glioblastoma by inhibiting P53 activity // Oncol Lett. 2019. Vol. 17, N 1. P. 958–964. doi: 10.3892/ol.2018.9654 |
| [111] |
Everington EA, Gibbard AG, Swinny JD, Seifi M. Molecular characterization of GABA-A receptor subunit diversity within major peripheral organs and their plasticity in response to early life psychosocial stress. Front Mol Neurosci. 2018;11:18. doi: 10.3389/fnmol.2018.00018 |
| [112] |
Everington E.A., Gibbard A.G., Swinny J.D., Seifi M. Molecular characterization of GABA-A receptor subunit diversity within major peripheral organs and their plasticity in response to early life psychosocial stress // Front Mol Neurosci. 2018. Vol. 11. P. 18. doi: 10.3389/fnmol.2018.00018 |
| [113] |
Lappe-Siefke C, Loebrich S, Hevers W, et al. The ataxia (AXJ) mutation causes abnormal GABAA receptor turnover in mice. PLoS Genet. 2009;5(9): e1000631. doi: 10.1371/journal.pgen.1000631 |
| [114] |
Lappe-Siefke C., Loebrich S., Hevers W., et al. The ataxia (AXJ) mutation causes abnormal GABAA receptor turnover in mice // PLoS Genet. 2009. Vol. 5, N 9. P. e1000631. doi: 10.1371/journal.pgen.1000631 |
| [115] |
Anderson C, Crimmins S, Wilson JA, et al. Loss of Usp14 results in reduced levels of ubiquitin in ataxia mice. J Neurochem. 2005;95(3):724–731. doi: 10.1111/j.1471-4159.2005.03409.x |
| [116] |
Anderson C., Crimmins S., Wilson J.A., et al. Loss of USP14 results in reduced levels of ubiquitin in ataxia mice // J Neurochem. 2005. Vol. 95, N 3. P. 724–731. doi: 10.1111/j.1471-4159.2005.03409.x |
| [117] |
Chen PC, Qin LN, Li XM, et al. The proteasome-associated deubiquitinating enzyme Usp14 is essential for the maintenance of synaptic ubiquitin levels and the development of neuromuscular junctions. J Neurosci. 2009;29(35):10909–10919. doi: 10.1523/JNEUROSCI.2635-09.2009 |
| [118] |
Chen P.C., Qin L.N., Li X.M., et al. The proteasome-associated deubiquitinating enzyme Usp14 is essential for the maintenance of synaptic ubiquitin levels and the development of neuromuscular junctions // J Neurosci. 2009. Vol. 29, N 35. P. 10909–10919. doi: 10.1523/JNEUROSCI.2635-09.2009 |
| [119] |
Vaden JH, Bhattacharyya BJ, Chen PC, et al. Ubiquitin-specific protease 14 regulates c-Jun N-terminal kinase signaling at the neuromuscular junction. Mol Neurodegener. 2015;10:3. doi: 10.1186/1750-1326-10-3 |
| [120] |
Vaden J.H., Bhattacharyya B.J., Chen P.C., et al. Ubiquitin-specific protease 14 regulates c-Jun N-terminal kinase signaling at the neuromuscular junction // Mol Neurodegener. 2015. Vol. 10. P. 3. doi: 10.1186/1750-1326-10-3 |
| [121] |
Colland F. The therapeutic potential of deubiquitinating enzyme inhibitors. Biochem Soc Trans. 2010;38(Pt 1):137–143. doi: 10.1042/BST0380137 |
| [122] |
Colland F. The therapeutic potential of deubiquitinating enzyme inhibitors // Biochem Soc Trans. 2010. Vol. 38, Pt 1. P. 137–143. doi: 10.1042/BST0380137 |
| [123] |
Chen RH, Chen YH, Huang TY. Ubiquitin-mediated regulation of autophagy. J Biomed Sci. 2019;26(1):80. doi: 10.1186/s12929-019-0569-y |
| [124] |
Chen R.H., Chen Y.H., Huang T.Y. Ubiquitin-mediated regulation of autophagy // J Biomed Sci. 2019. Vol. 26, N 1. P. 80. doi: 10.1186/s12929-019-0569-y |
| [125] |
Lee BH, Lee MJ, Park S, et al. Enhancement of proteasome activity by a small-molecule inhibitor of USP14. Nature. 2010;467(7312):179–184. doi: 10.1038/nature09299 |
| [126] |
Lee B.H., Lee M.J., Park S., et al. Enhancement of proteasome activity by a small-molecule inhibitor of USP14 // Nature. 2010. Vol. 467, N 7312. P. 179–184. doi: 10.1038/nature09299 |
| [127] |
Karpel-Massler G, Banu MA, Shu C, et al. Inhibition of deubiquitinases primes glioblastoma cells to apoptosis in vitro and in vivo. Oncotarget. 2016;7(11):12791–12805. doi: 10.18632/oncotarget.7302 |
| [128] |
Karpel-Massler G., Banu M.A., Shu C., et al. Inhibition of deubiquitinases primes glioblastoma cells to apoptosis in vitro and in vivo // Oncotarget. 2016. Vol. 7, N 11. P. 12791–12805. doi: 10.18632/oncotarget.7302 |
| [129] |
Hospenthal MK, Mevissen TET, Komander D. Deubiquitinase-based analysis of ubiquitin chain architecture using Ubiquitin Chain Restriction (UbiCRest). Nat Protoc. 2015;10(2):349–361. doi: 10.1038/nprot.2015.018 |
| [130] |
Hospenthal M.K., Mevissen T.E.T., Komander D. Deubiquitinase-based analysis of ubiquitin chain architecture using ubiquitin chain restriction (UbiCRest) // Nat Protoc. 2015. Vol. 10, N 2. P. 349–361. doi: 10.1038/nprot.2015.018 |
| [131] |
Komander D, Rape M. The ubiquitin code. Annu Rev Biochem. 2012;81:203–229. doi: 10.1146/annurev-biochem-060310-170328 |
| [132] |
Komander D., Rape M. The ubiquitin code // Annu Rev Biochem. 2012. Vol. 81. P. 203–229. doi: 10.1146/annurev-biochem-060310-170328 |
| [133] |
Wilson SM, Bhattacharyya B, Rachel RA, et al. Synaptic defects in ataxia mice result from a mutation in Usp14, encoding a ubiquitin-specific protease. Nat Genet. 2002;32(3):420–425. doi: 10.1038/ng1006 |
| [134] |
Wilson S.M., Bhattacharyya B., Rachel R.A., et al. Synaptic defects in ataxia mice result from a mutation in Usp14, encoding a ubiquitin-specific protease // Nat Genet. 2002. Vol. 32, N 3. P. 420–425. doi: 10.1038/ng1006 |
| [135] |
Kerrisk Campbell M, Sheng M. USP8 deubiquitinates SHANK3 to control synapse density and SHANK3 activity-dependent protein levels. J Neurosci. 2018;38(23):5289–5301. doi: 10.1523/JNEUROSCI.3305-17.2018 |
| [136] |
Kerrisk Campbell M., Sheng M. USP8 deubiquitinates SHANK3 to control synapse density and SHANK3 activity-dependent protein levels // J Neurosci. 2018. Vol. 38, N 23. P. 5289–5301. doi: 10.1523/JNEUROSCI.3305-17.2018 |
| [137] |
Yeates EF, Tesco G. The endosome-associated deubiquitinating enzyme USP8 regulates BACE1 enzyme ubiquitination and degradation. J Biol Chem. 2016;291(30):15753–15766. doi: 10.1074/jbc.M116.718023 |
| [138] |
Yeates E.F., Tesco G. The endosome-associated deubiquitinating enzyme USP8 regulates BACE1 enzyme ubiquitination and degradation // J Biol Chem. 2016. Vol. 291, N 30. P. 15753–15766. doi: 10.1074/jbc.M116.718023 |
| [139] |
Cockram PE, Kist M, Prakash S, et al. Ubiquitination in the regulation of inflammatory cell death and cancer. Cell Death Differ. 2021;28(2):591–605. doi: 10.1038/s41418-020-00708-5 |
| [140] |
Cockram P.E., Kist M., Prakash S., et al. Ubiquitination in the regulation of inflammatory cell death and cancer // Cell Death Differ. 2021. Vol. 28, N 2. P. 591–605. doi: 10.1038/s41418-020-00708-5 |
| [141] |
Chen S, Liu Y, Zhou H. Advances in the development ubiquitin-specific peptidase (USP) inhibitors. Int J Mol Sci. 2021;22(9):4546. doi: 10.3390/ijms22094546 |
| [142] |
Chen S., Liu Y., Zhou H. Advances in the development ubiquitin-specific peptidase (USP) inhibitors // Int J Mol Sci. 2021. Vol. 22, N 9. P. 4546. doi: 10.3390/ijms22094546 |
| [143] |
Xu X, Xia J, Zhao S, et al. Qing-Fei-Pai-Du decoction and wogonoside exert anti-inflammatory action through down-regulating USP14 to promote the degradation of activating transcription factor 2. FASEB J. 2021;35(9): e21870. doi: 10.1096/fj.202100370RR |
| [144] |
Xu X., Xia J., Zhao S., et al. Qing-Fei-Pai-Du decoction and wogonoside exert anti-inflammatory action through down-regulating USP14 to promote the degradation of activating transcription factor 2 // FASEB J. 2021. Vol. 35, N 9. P. e21870. doi: 10.1096/fj.202100370RR |
| [145] |
Zou M, Zeng QS, Nie J, et al. The role of E3 ubiquitin ligases and deubiquitinases in inflammatory bowel disease: friend or foe? Front Immunol. 2021;12:769167. doi: 10.3389/fimmu.2021.769167 |
| [146] |
Zou M., Zeng Q.S., Nie J., et al. The role of E3 ubiquitin ligases and deubiquitinases in inflammatory bowel disease: friend or foe? // Front Immunol. 2021. Vol. 12. P. 769167. doi: 10.3389/fimmu.2021.769167 |
| [147] |
Gao H, Yin J, Ji C, et al. Targeting ubiquitin specific proteases (USPs) in cancer immunotherapy: from basic research to preclinical application. J Exp Clin Cancer Res. 2023;42(1):225. doi: 10.1186/s13046-023-02805-y |
| [148] |
Gao H., Yin J., Ji C., et al. Targeting ubiquitin specific proteases (USPs) in cancer immunotherapy: from basic research to preclinical application // J Exp Clin Cancer Res. 2023. Vol. 42, N 1. P. 225. doi: 10.1186/s13046-023-02805-y |
| [149] |
Wang F, Gao Y, Zhou L, et al. USP30: structure, emerging physiological role, and target inhibition. Front Pharmacol. 2022;13:851654. doi: 10.3389/fphar.2022.851654 |
| [150] |
Wang F., Gao Y., Zhou L., et al. USP30: structure, emerging physiological role, and target inhibition // Front Pharmacol. 2022. Vol. 13. P. 851654. doi: 10.3389/fphar.2022.851654 |
Eco-Vector
/
| 〈 |
|
〉 |