Hypoxic irreversible brain cells damage, associated risk factors and antihypoxants

Aleksandr L Urakov , Natalya A. Urakova , Petr D. Shabanov

Reviews on Clinical Pharmacology and Drug Therapy ›› 2024, Vol. 22 ›› Issue (3) : 277 -288.

PDF (1327KB)
Reviews on Clinical Pharmacology and Drug Therapy ›› 2024, Vol. 22 ›› Issue (3) : 277 -288. DOI: 10.17816/RCF629408
Reviews
review-article

Hypoxic irreversible brain cells damage, associated risk factors and antihypoxants

Author information +
History +
PDF (1327KB)

Abstract

It is reported that in the final stage of many diseases the immediate cause of biological death in humans and warm-blooded animals is hypoxic irreversible damage to brain cells. This explains the fact that to prevent biological death in all critical conditions without exception, inhalation with breathing gases containing oxygen has long been successfully used. This is also why oxygenation of the blood is considered one of the main conditions for preserving human life in all critical situations and forms the basis of emergency medical care in the intensive care unit. However, inhalation of oxygen gas and increasing blood oxygen saturation should be carried out as early as possible, and more precisely — before the onset of the stage of hypoxic irreversible damage in brain cells. The fact is that after the onset of irreversible da­mage brain cells die even in the presence of oxygen. In this connection, the mechanisms of adaptation of the organism to oxygen deficiency play a great role for longer preservation of brain cells viability and human life in conditions of hypoxemia. In order to increase resistance to hypoxemia, antihypoxants are traditionally used. But they can preserve the viability of brain cells not always, but only if they are introduced into the body before the onset of hypoxic irreversible damage to brain cells and in the case of unused reserves of adaptation to hypoxemia in the body. Risk factors of hypoxic irreversible damage of brain cells are indicated, among which excessively long duration of hypoxemia and hyperthermia are emphasized. It is shown that the most important circumstance for the development of hypoxic irreversible damage of brain cells is not so much the degree of hypoxemia as the degree of hypoxia of brain tissue and its duration, which exceeds the period of human resistance to hypoxia. It has been shown that human resistance to hypoxia can be assessed using the Stange test. It has been reported that fever and local cerebral hyperthermia decrease, and hibernation and local cerebral hypothermia increase, the resistance of brain cells to hypoxia. In this regard, recommendations not only to eliminate fever and local inflammatory processes in the head, but also recommendations to reduce brain temperature are highly appropriate to improve resistance to hypoxia. It is pointed out that among the methods of local therapeutic hypothermia, targeted temperature management is the most advanced. In addition, it is reported that in recent years a new group of promising antihypoxants — alkaline solutions of hydrogen peroxide — has been created. It is shown that hydrogen peroxide is able to decompose very quickly into water and oxygen gas under the action of catalase, which is found in all tissues. The peculiarities of using alkaline solutions of hydrogen peroxide as antihypoxants we all have to study in the future.

Keywords

hypoxia / aerobic metabolic rate / time / temperature / oxygen / antihypoxants / biological death / adaptation

Cite this article

Download citation ▾
Aleksandr L Urakov, Natalya A. Urakova, Petr D. Shabanov. Hypoxic irreversible brain cells damage, associated risk factors and antihypoxants. Reviews on Clinical Pharmacology and Drug Therapy, 2024, 22(3): 277-288 DOI:10.17816/RCF629408

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Zhongyuan S, Xuehan N, Pengguo H, et al. Comparison of physiological responses to hypoxia at high altitudes between highlanders and lowlanders. Sci Sin. 1979;22(12):1455–1469.

[2]

Zhongyuan S., Xuehan N., Pengguo H., et al. Comparison of physiological responses to hypoxia at high altitudes between highlanders and lowlanders // Sci Sin. 1979. Vol. 22, N 12. P. 1455–1469.

[3]

Yu J, Zhang Y, Hu X, et al. Hypoxia-sensitive materials for biomedical applications. Ann Biomed Eng. 2016;44(6):1931–1945. doi: 10.1007/s10439-016-1578-6

[4]

Yu J., Zhang Y., Hu X., et al. Hypoxia-sensitive materials for biomedical applications // Ann Biomed Eng. 2016. Vol. 44, N 6. P. 1931–1945. doi: 10.1007/s10439-016-1578-6

[5]

Nakamura N, Shi X, Darabi R, Li Y. Hypoxia in cell reprogramming and the epigenetic regulations. Front Cell Dev Biol. 2021;9:609984. doi: 10.3389/fcell.2021.609984

[6]

Nakamura N., Shi X., Darabi R., Li Y. Hypoxia in cell reprogramming and the epigenetic regulations // Front Cell Dev Biol. 2021. Vol. 9. ID 609984. doi: 10.3389/fcell.2021.609984

[7]

Laursen JC, Mizrak HI, Kufaishi H, et al. Lower blood oxygen saturation is associated with microvascular complications in individuals with type 1 diabetes. J Clin Endocrinol Metab. 2022;108(1):99–106. doi: 10.1210/clinem/dgac559

[8]

Laursen J.C., Mizrak H.I., Kufaishi H., et al. Lower blood oxygen saturation is associated with microvascular complications in individuals with type 1 diabetes // J Clin Endocrinol Metab. 2022. Vol. 108, N 1. P. 99–106. doi: 10.1210/clinem/dgac559

[9]

Burykh EA. Interaction of hypocapnia, hypoxia, brain blood flow, and brain electrical activity in voluntary hyperventilation in humans. Neurosci Behav Physiol. 2008;38(7):647–659. doi: 10.1007/s11055-008-9029-y

[10]

Burykh E.A. Interaction of hypocapnia, hypoxia, brain blood flow, and brain electrical activity in voluntary hyperventilation in humans // Neurosci Behav Physiol. 2008. Vol. 38, N 7. P. 647–659. doi: 10.1007/s11055-008-9029-y

[11]

Li G, Guan Y, Gu Y, et al. Intermittent hypoxic conditioning restores neurological dysfunction of mice induced by long-term hypoxia. CNS Neurosci Ther. 2023;29(1):202–215. doi: 10.1111/cns.13996

[12]

Li G., Guan Y., Gu Y., et al. Intermittent hypoxic conditioning restores neurological dysfunction of mice induced by long-term hypoxia // CNS Neurosci Ther. 2023. Vol. 29, N 1. P. 202–215. doi: 10.1111/cns.13996

[13]

Garner O, Ramey JS, Hanania NA. Management of life-threatening asthma: Severe asthma series. Chest. 2022;162(4): 747–756. doi: 10.1016/j.chest.2022.02.029

[14]

Garner O., Ramey J.S., Hanania N.A. Management of life-threatening asthma: Severe asthma series // Chest. 2022. Vol. 162, N 4. P. 747–756. doi: 10.1016/j.chest.2022.02.029

[15]

Lundberg SM, Nair B, Vavilala MS, et al. Explainable machine-learning predictions for the prevention of hypoxaemia during surgery. Nat Biomed Eng. 2018;2(10):749–760. doi: 10.1038/s41551-018-0304-0

[16]

Lundberg S.M., Nair B., Vavilala M.S., et al. Explainable machine-learning predictions for the prevention of hypoxaemia during surgery // Nat Biomed Eng. 2018. Vol. 2, N 10. P. 749–760. doi: 10.1038/s41551-018-0304-0

[17]

Fang Z, Zou D, Xiong W, et al. Dynamic prediction of hypoxemia risk at different time points based on preoperative and intraoperative features: machine learning applications in outpatients undergoing esophagogastroduodenoscopy. Ann Med. 2023;55(1):1156–1167. doi: 10.1080/07853890.2023.2187878

[18]

Fang Z., Zou D., Xiong W., et al. Dynamic prediction of hypoxemia risk at different time points based on preoperative and intraoperative features: machine learning applications in outpatients undergoing esophagogastroduodenoscopy // Ann Med. 2023. Vol. 55, N 1. P. 1156–1167. doi: 10.1080/07853890.2023.2187878

[19]

Ohira C, Tomita K, Kaneki M, et al. Effects of low concentrations of ozone gas exposure on percutaneous oxygen saturation and inflammatory responses in a mouse model of Dermatophagoides farinae-induced asthma. Arch Toxicol. 2023;97(12):3151–3162. doi: 10.1007/s00204-023-03593-2

[20]

Ohira C., Tomita K., Kaneki M., et al. Effects of low concentrations of ozone gas exposure on percutaneous oxygen saturation and inflammatory responses in a mouse model of Dermatophagoides farinae-induced asthma // Arch Toxicol. 2023. Vol. 97, N 12. P. 3151–3162. doi: 10.1007/s00204-023-03593-2

[21]

Ura H, Hirata K, Katsuramaki T. Mechanisms of cell death in hypoxic stress. Nihon Geka Gakkai Zasshi. 1999;100(10):656–662.

[22]

Ura H., Hirata K., Katsuramaki T. Mechanisms of cell death in hypoxic stress // Nihon Geka Gakkai Zasshi. 1999. Vol. 100, N 10. P. 656–662.

[23]

Urakov A, Urakova N. COVID-19: Cause of death and medications. IP Int J Comp Adv Pharmacol. 2020;5(2):45–48. doi: 10.18231/j.ijcaap.2020.011

[24]

Urakov A., Urakova N. COVID-19: Cause of death and medications // IP Int J Comp Adv Pharmacol. 2020. Vol. 5, N 2. P. 45–48. doi: 10.18231/j.ijcaap.2020.011

[25]

Della Rocca Y, Fonticoli L, Rajan TS, et al. Hypoxia: molecular pathophysiological mechanisms in human diseases. J Physiol Biochem. 2022;78(4):739–752. doi: 10.1007/s13105-022-00912-6

[26]

Della Rocca Y., Fonticoli L., Rajan T.S., et al. Hypoxia: molecular pathophysiological mechanisms in human diseases // J Physiol Biochem. 2022. Vol. 78, N 4. P. 739–752. doi: 10.1007/s13105-022-00912-6

[27]

Urakov A, Muhutdinov N, Yagudin I, et al. Brain hypoxia caused by respiratory obstruction wich should not be forgotten in COVID-19 disease. Turk J Med Sci. 2022;52(5):1504–1505. doi: 10.55730/1300-0144.5489

[28]

Urakov A., Muhutdinov N., Yagudin I., et al. Brain hypoxia caused by respiratory obstruction wich should not be forgotten in COVID-19 disease // Turk J Med Sci. 2022. Vol. 52, N 5. P. 1504–1505. doi: 10.55730/1300-0144.5489

[29]

Nakane M. Biological effects of the oxygen molecule in critically ill patients. J Intensive Care. 2020;8(1):95. doi: 10.1186/s40560-020-00505-9

[30]

Nakane M. Biological effects of the oxygen molecule in critically ill patients // J Intensive Care. 2020. Vol. 8, N 1. ID 95. doi: 10.1186/s40560-020-00505-9

[31]

Zhao Y-T, Yuan Y, Tang Y-G, et al. The association between high-oxygen saturation and prognosis for intracerebral hemorrhage. Neurosurg Rev. 2024;47(1):45. doi: 10.1007/s10143-024-02283-6

[32]

Zhao Y.-T., Yuan Y., Tang Y.-G., et al. The association between high-oxygen saturation and prognosis for intracerebral hemorrhage // Neurosurg Rev. 2024. Vol. 47, N 1. ID 45. doi: 10.1007/s10143-024-02283-6

[33]

Duke T, Graham SM, Cherian MN, et al. Oxygen is an essential medicine: a call for international action. Int J Tuberc Lung Dis. 2010;14(11):1362–1368.

[34]

Duke T., Graham S.M., Cherian M.N., et al. Oxygen is an essential medicine: a call for international action // Int J Tuberc Lung Dis. 2010. Vol. 14, N 11. P. 1362–1368.

[35]

English M, Oliwa J, Khalid K, et al. Hospital care for critical illness in low-resource settings: lessons learned during the COVID-19 pandemic. BMJ Glob Health. 2023;8(11):e013407. doi: 10.1136/bmjgh-2023-013407

[36]

English M., Oliwa J., Khalid K., et al. Hospital care for critical illness in low-resource settings: lessons learned during the COVID-19 pandemic // BMJ Glob Health. 2023. Vol. 8, N 11. ID e013407. doi: 10.1136/bmjgh-2023-013407

[37]

Revin VV, Gromova NV, Revina ES, et al. Study of the structure, oxygen-transporting functions, and ionic composition of erythrocytes at vascular deiseases. Biomed Res Int. 2015;2015:973973. doi: 10.1155/2015/973973

[38]

Revin V.V., Gromova N.V., Revina E.S., et al. Study of the structure, oxygen-transporting functions, and ionic composition of erythrocytes at vascular deiseases // Biomed Res Int. 2015. Vol. 2015. ID 973973. doi: 10.1155/2015/973973

[39]

Gottlieb J, Capetian P, Hamsen U, et al. German S3 guideline: Oxygen therapy in the acute care of adult patients. Respiration. 2022;101(2):214–252. doi: 10.1159/000520294

[40]

Gottlieb J., Capetian P., Hamsen U., et al. German S3 guideline: Oxygen therapy in the acute care of adult patients // Respiration. 2022. Vol. 101, N 2. P. 214–252. doi: 10.1159/000520294

[41]

O’Driscoll BR, Kirton L, Weatherall M, et al. Effect of a lower target oxygen saturation range on the risk of hypoxaemia and elevated NEWS2 scores at a university hospital: a retrospective study. BMJ Open Respir Res. 2024;11(1):e002019. doi: 10.1136/bmjresp-2023-002019

[42]

O’Driscoll B.R., Kirton L., Weatherall M., et al. Effect of a lower target oxygen saturation range on the risk of hypoxaemia and elevated NEWS2 scores at a university hospital: a retrospective study // BMJ Open Respir Res. 2024. Vol. 11, N 1. ID e002019. doi: 10.1136/bmjresp-2023-002019

[43]

Xu C, Yang F, Wang Q, Gao W. Comparison of high flow nasal therapy with non-invasive ventilation and conventional oxygen therapy for acute hypercapnic respiratory failure: A meta-analysis of randomized controlled trials. Int J Chron Obstruct Pulmon Dis. 2023;18:955–973. doi: 10.2147/COPD.S410958

[44]

Xu C., Yang F., Wang Q., Gao W. Comparison of high flow nasal therapy with non-invasive ventilation and conventional oxygen therapy for acute hypercapnic respiratory failure: A meta-analysis of randomized controlled trials // Int J Chron Obstruct Pulmon Dis. 2023. Vol. 18. P. 955–973. doi: 10.2147/COPD.S410958

[45]

Ghoshal AG. Hypoxemia and oxygen therapy. J Assoc Chest Physicians. 2020;8(2):42–47. doi: 10.4103/jacp.jacp_44_20

[46]

Ghoshal A.G. Hypoxemia and oxygen therapy // J Assoc Chest Physicians. 2020. Vol. 8, N 2. P. 42–47. doi: 10.4103/jacp.jacp_44_20

[47]

Lopez-Rodriguez AB, Murray CL, Kealy J, et al. Hyperthermia elevates brain temperature and improves behavioural signs in animal models of autism spectrum disorder. Mol Autism. 2023;14(1):43. doi: 10.1186/s13229-023-00569-y

[48]

Lopez-Rodriguez A.B., Murray C.L., Kealy J., et al. Hyperthermia elevates brain temperature and improves behavioural signs in animal models of autism spectrum disorder // Mol Autism. 2023. Vol. 14, N 1. ID 43. doi: 10.1186/s13229-023-00569-y

[49]

Chen P-S, Chiu W-T, Hsu P-L, et al. Pathophysiological implications of hypoxia in human diseases. J Biomed Sci. 2020;27(1):63. doi: 10.1186/s12929-020-00658-7

[50]

Chen P.-S., Chiu W.-T., Hsu P.-L., et al. Pathophysiological implications of hypoxia in human diseases // J Biomed Sci. 2020. Vol. 27, N 1. ID 63. doi: 10.1186/s12929-020-00658-7

[51]

Watanabe T, Morita M. Asphyxia due to oxygen deficiency by gaseous substances. Forensic Sci Int. 1998;96(1):47–59. doi: 10.1016/s0379-0738(98)00112-1

[52]

Watanabe T., Morita M. Asphyxia due to oxygen deficiency by gaseous substances // Forensic Sci Int. 1998. Vol. 96, N 1. P. 47–59. doi: 10.1016/s0379-0738(98)00112-1

[53]

Urakov A, Urakova N, Kasatkin A, et al. Dynamics of local temperature in the fingertips after the cuff occlusion test: Infrared diagnosis of adaptation reserves to hypoxia and assessment of survivability of victims at massive blood loss. Rev Cardiovasc Med. 2022;23(5):174. doi: 10.31083/j.rcm2305174

[54]

Urakov A., Urakova N., Kasatkin A., et al. Dynamics of local temperature in the fingertips after the cuff occlusion test: Infrared diagnosis of adaptation reserves to hypoxia and assessment of survivability of victims at massive blood loss // Rev Cardiovasc Med. 2022. Vol. 23, N 5. ID 174. doi: 10.31083/j.rcm2305174

[55]

Stange VA. Prognosis in general anesthesia. J Am Med Assoc. 1914;62:1132.

[56]

Stange V.A. Prognosis in general anesthesia // J Am Med Assoc. 1914. Vol. 62. ID 1132.

[57]

Shabanov PD, Urakov A, Urakova NA. Assessment of fetal resistance to hypoxia using the Stange test as an adjunct to Apgar scale assessment of neonatal health status. Medical Academic Journal. 2023;23(3):89–102. EDN: OFZNNV doi: 10.17816/MAJ568979

[58]

Шабанов П.Д., Ураков А.Л., Уракова Н.А. Оценка устойчивости плода к гипоксии с помощью теста Штанге как дополнение оценки здоровья новорожденного по шкале Апгар // Медицинский академический журнал. 2023. Т. 23, № 3. C. 89–102. EDN: OFZNNV doi: 10.17816/MAJ568979

[59]

Henig NR, Pierson DJ. Mechanisms of hypoxemia. Respir Care Clin N Am. 2000;6(4):501–521. doi: 10.1016/s1078-5337(05)70087-3

[60]

Henig N.R., Pierson D.J. Mechanisms of hypoxemia // Respir Care Clin N Am. 2000. Vol. 6, N 4. P. 501–521. doi: 10.1016/s1078-5337(05)70087-3

[61]

Maclaren R, Torian S, Kiser T, et al. Therapeutic hypothermia following cardiopulmonary arrest: A systematic review and meta-analysis with trial sequential analysis. J Crit Care Med (Targu Mures). 2023;9(2):64–72. doi: 10.2478/jccm-2023-0015

[62]

Maclaren R., Torian S., Kiser T., et al. Therapeutic hypothermia following cardiopulmonary arrest: A systematic review and meta-analysis with trial sequential analysis // J Crit Care Med (Targu Mures). 2023. Vol. 9, N 2. P. 64–72. doi: 10.2478/jccm-2023-0015

[63]

Elbadawi A, Sedhom R, Baig B, et al. Targeted hypothermia vs targeted normothermia in survivors of cardiac rreast: A systematic review and meta-analysis of randomized trials. Am J Med. 2022;135(5):626–633.e4. doi: 10.1016/j.amjmed.2021.11.014

[64]

Elbadawi A., Sedhom R., Baig B., et al. Targeted hypothermia vs targeted normothermia in survivors of cardiac rreast: A systematic review and meta-analysis of randomized trials // Am J Med. 2022. Vol. 135, N 5. P. 626–633.e4. doi: 10.1016/j.amjmed.2021.11.014

[65]

Arrich J, Schütz N, Oppenauer J, et al. Hypothermia for neuroprotection in adults after cardiac arrest. Cochrane Database Syst Rev. 2023;5(5):CD004128. doi: 10.1002/14651858.CD004128.pub5

[66]

Arrich J., Schütz N., Oppenauer J., et al. Hypothermia for neuroprotection in adults after cardiac arrest // Cochrane Database Syst Rev. 2023. Vol. 5, N 5. ID CD004128. doi: 10.1002/14651858.CD004128.pub5

[67]

Behringer W, Böttiger BW, Biasucci DG, et al. Temperature control after successful resuscitation from cardiac arrest in adults: A joint statement from the European Society for Emergency Medicine and the European Society of Anaesthesiology and Intensive Care. Eur J Anaesthesiol. 2024;41(4):278–281. doi: 10.1097/EJA.0000000000001948

[68]

Behringer W., Böttiger B.W., Biasucci D.G., et al. Temperature control after successful resuscitation from cardiac arrest in adults: A joint statement from the European Society for Emergency Medicine and the European Society of Anaesthesiology and Intensive Care // Eur J Anaesthesiol. 2024. Vol. 41, N 4. P. 278–281. doi: 10.1097/EJA.0000000000001948

[69]

Behringer W, Böttiger BW, Biasucci DG, et al. Temperature control after successful resuscitation from cardiac arrest in adults: a joint statement from the European Society for Emergency Medicine (EUSEM) and the European Society of Anaesthesiology and Intensive Care (ESAIC). Eur J Emerg Med. 2024;31(2):86–89. doi: 10.1097/MEJ.0000000000001106

[70]

Behringer W., Böttiger B.W., Biasucci D.G., et al. Temperature control after successful resuscitation from cardiac arrest in adults: a joint statement from the European Society for Emergency Medicine (EUSEM) and the European Society of Anaesthesiology and Intensive Care (ESAIC) // Eur J Emerg Med. 2024. Vol. 31, N 2. P. 86–89. doi: 10.1097/MEJ.0000000000001106

[71]

Awad A, Dillenbeck E, Dankiewicz J, et al. Transnasal evaporative cooling in out-of-hospital cardiac arrest patients to initiate hypothermia — A substudy of the target temperature management 2 (TTM2) Randomized trial. J Clin Med. 2023;12(23):7288. doi: 10.3390/jcm12237288

[72]

Awad A., Dillenbeck E., Dankiewicz J., et al. Transnasal evaporative cooling in out-of-hospital cardiac arrest patients to initiate hypothermia — A substudy of the target temperature management 2 (TTM2) Randomized trial // J Clin Med. 2023. Vol. 12, N 23. ID 7288. doi: 10.3390/jcm12237288

[73]

Urakova N, Urakov A, Shabanov P, Sokolova V. Aerobic brain metabolism, body temperature, oxygen, fetal oxygen supply and fetal movement dynamics as factors in stillbirth and neonatal encephalopathy. Invention review. Azerbaijan Pharmaceutical and Pharmacotherapy Journal. 2023;22(2):105–112. doi: 10.61336/appj/22-2-24

[74]

Urakova N., Urakov A., Shabanov P., Sokolova V. Aerobic brain metabolism, body temperature, oxygen, fetal oxygen supply and fetal movement dynamics as factors in stillbirth and neonatal encephalopathy. Invention review // Азербайджанский фармацевтический и фармакотерапевтический журнал. 2023. Т. 22, № 2. С. 105–112. doi: 10.61336/appj/22-2-24

[75]

Bon LI, Fliuryk S, Dremza I, et al. Hypoxia of the brain and mechanisms of its development. J Clin Res Rep. 2023;13(4):01–05. doi: 10.31579/2690-1919/311

[76]

Bon L.I., Fliuryk S., Dremza I., et al. Hypoxia of the brain and mechanisms of its development // J Clin Res Rep. 2023. Vol. 13, N 4. P. 01–05. doi: 10.31579/2690-1919/311

[77]

Shabanov P, Samorodov A, Urakova N, et al. Low fetal resistance to hypoxia as a cause of stillbirth and neonatal encephalopathy. Clin Exp Obstet Gynecol. 2024;51(2):33. doi: 10.31083/j.ceog5102033

[78]

Shabanov P., Samorodov A., Urakova N., et al. Low fetal resistance to hypoxia as a cause of stillbirth and neonatal encephalopathy // Clin Exp Obstet Gynecol. 2024. Vol. 51, N 2. ID 33. doi: 10.31083/j.ceog5102033

[79]

Terraneo L, Paroni R, Bianciardi P, et al. Brain adaptation to hypoxia and hyperoxia in mice. Redox Biol. 2017;11:12–20. doi: 10.1016/j.redox.2016.10.018

[80]

Terraneo L., Paroni R., Bianciardi P., et al. Brain adaptation to hypoxia and hyperoxia in mice // Redox Biol. 2017. Vol. 11. P. 12–20. doi: 10.1016/j.redox.2016.10.018

[81]

Bon LI, Bon EI, Maksimovich NYe, Vishnevskaya LI. Adaptation of the brain to hypoxia. J Clin Commun Med. 2023;5(2):540–543. doi: 10.32474/JCCM.2023.05.000208

[82]

Bon L.I., Bon E.I., Maksimovich N.E., Vishnevskaya L.I. Adaptation of the brain to hypoxia // J Clin Commun Med. 2023. Vol. 5, N 2. P. 540–543. doi: 10.32474/JCCM.2023.05.000208

[83]

Radzinsky VE, Urakova NA, Urakov AL, Nikityuk DB. Test Hausknecht as a predictor of Cesarean section and newborn resuscitation. V.F. Snegirev Archives of Obstetrics and Gynecology. 2014;1(2):14–18. EDN: SYSMHP doi: 10.17816/aog35256

[84]

Радзинский В.Е., Уракова Н.А., Ураков А.Л., Никитюк Д.Б. Проба Гаускнехт как способ прогнозирования кесарева сечения и реанимации новорожденного // Архив акушерства и гинекологии им. В.Ф. Снегирева. 2014. Т. 1, № 2. C. 14–18. EDN: SYSMHP doi: 10.17816/aog35256

[85]

Urakov A, Urakova N. A drowning fetus sends adistress signal, which is an indication for a Caesarean section. Indian J Obstet Gynecol Res. 2020;7(4):461–466. doi: 10.18231/j.ijogr.2020.100

[86]

Urakov A., Urakova N. A drowning fetus sends adistress signal, which is an indication for a Caesarean section // Indian J Obstet Gynecol Res. 2020. Vol. 7, N 4. P. 461–466. doi: 10.18231/j.ijogr.2020.100

[87]

Urakov A, Urakova N. Fetal hypoxia: Temperature value for oxygen exchange, resistance to hypoxic damage, and diagnostics using a thermal imager. Indian J Obstet Gynecol Res. 2020;7(2):232–238. doi: 10.18231/j.ijogr.2020.048

[88]

Urakov A., Urakova N. Fetal hypoxia: Temperature value for oxygen exchange, resistance to hypoxic damage, and diagnostics using a thermal imager // Indian J Obstet Gynecol Res. 2020. Vol. 7, N 2. P. 232–238. doi: 10.18231/j.ijogr.2020.048

[89]

Urakov AL, Urakova NA. Modified Stange test gives new gynecological criteria and recommendations for choosing caesarean section childbirth. BioImpacts. 2022;12(5):477–478. doi: 10.34172/bi.2022.23995

[90]

Urakov A.L., Urakova N.A. Modified Stange test gives new gynecological criteria and recommendations for choosing caesarean section childbirth // BioImpacts. 2022. Vol. 12, N 5. P. 477–478. doi: 10.34172/bi.2022.23995

[91]

Urakov AL, Urakova NA. Time, temperature and life. Advances in Bioresearch. 2021;12(2):246–252. EDN: NUEAAO doi: 10.15515/abr.0976-4585.12.2.246252

[92]

Urakov A.L., Urakova N.A. Time, temperature and life // Advances in Bioresearch. 2021. Vol. 12, N 2. P. 246–252. EDN: NUEAAO doi: 10.15515/abr.0976-4585.12.2.246252

[93]

Logan SR. The origin and status of the Arrhenius equation. J Chem Educ. 1982;59(4):279–281. doi: 10.1021/ed059p279

[94]

Logan S.R. The origin and status of the Arrhenius equation // J Chem Educ. 1982. Vol. 59, N 4. P. 279–281. doi: 10.1021/ed059p279

[95]

Hutchison JS, Ward RE, Lacroix J, et al. Hypothermia therapy after traumatic brain injury in children. N Engl J Med. 2008;358(23): 2447–2456. doi: 10.1056/NEJMoa0706930

[96]

Hutchison J.S., Ward R.E., Lacroix J., et al. Hypothermia therapy after traumatic brain injury in children // N Engl J Med. 2008. Vol. 358, N 23. P. 2447–2456. doi: 10.1056/NEJMoa0706930

[97]

Mackowiak PA, Wasserman SS, Levine MM. A critical appraisal of 98.6 degrees F, the upper limit of the normal body temperature, and other legacies of Carl Reinhold August Wunderlich. JAMA. 1992;268(12):1578–1580.

[98]

Mackowiak P.A., Wasserman S.S., Levine M.M. A critical appraisal of 98.6 degrees F, the upper limit of the normal body temperature, and other legacies of Carl Reinhold August Wunderlich // JAMA. 1992. Vol. 268, N 12. P. 1578–1580.

[99]

Ley C, Heath F, Hastie T, et al. Defining usual oral temperature ranges in outpatients using an unsupervised learning algorithm. JAMA Intern Med. 2023;183(10):1128–1135. doi: 10.1001/jamainternmed.2023.4291

[100]

Ley C., Heath F., Hastie T., et al. Defining usual oral temperature ranges in outpatients using an unsupervised learning algorithm // JAMA Intern Med. 2023. Vol. 183, N 10. P. 1128–1135. doi: 10.1001/jamainternmed.2023.4291

[101]

Kittrell EM, Satinoff E. Diurnal rhythms of body temperature, drinking and activity over reproductive cycles. Physiol Behav. 1988;42(5):477–484. doi: 10.1016/0031-9384(88)90180-1

[102]

Kittrell E.M., Satinoff E. Diurnal rhythms of body temperature, drinking and activity over reproductive cycles // Physiol Behav. 1988. Vol. 42, N 5. P. 477–484. doi: 10.1016/0031-9384(88)90180-1

[103]

Speaker SL, Pfoh ER, Pappas MA, et al. Relationship between oral temperature and bacteremia in hospitalized patients. J Gen Intern Med. 2023;38(12):2742–2748. doi: 10.1007/s11606-023-08168-6

[104]

Speaker S.L., Pfoh E.R., Pappas M.A., et al. Relationship between oral temperature and bacteremia in hospitalized patients // J Gen Intern Med. 2023. Vol. 38, N 12. P. 2742–2748. doi: 10.1007/s11606-023-08168-6

[105]

Alagiakrishnan K, Dhami P, Senthilselvan A. Predictors of conversion to dementia in patients with mild cognitive impairment: The role of low body temperature. J Clin Med Res. 2023;15(4): 216–224. doi: 10.14740/jocmr4883

[106]

Alagiakrishnan K., Dhami P., Senthilselvan A. Predictors of conversion to dementia in patients with mild cognitive impairment: The role of low body temperature // J Clin Med Res. 2023. Vol. 15, N 4. P. 216–224. doi: 10.14740/jocmr4883

[107]

Verduzco-Mendoza A, Mota-Rojas D, Olmos Hernández SA, et al. Traumatic brain injury extending to the striatum alters autonomic thermoregulation and hypothalamic monoamines in recovering rats. Front Neurosci. 2023;17:1304440. doi: 10.3389/fnins.2023.1304440

[108]

Verduzco-Mendoza A., Mota-Rojas D., Olmos Hernández S.A., et al. Traumatic brain injury extending to the striatum alters autonomic thermoregulation and hypothalamic monoamines in recovering rats // Front Neurosci. 2023. Vol. 17. ID 1304440. doi: 10.3389/fnins.2023.1304440

[109]

Lukyanova LD, Kirova YI. Mitochondria-controlled signaling mechanisms of brain protection in hypoxia. Front Neurosci. 2015;9:320. doi: 10.3389/fnins.2015.00320

[110]

Lukyanova L.D., Kirova Y.I. Mitochondria-controlled signaling mechanisms of brain protection in hypoxia // Front Neurosci. 2015. Vol. 9. ID 320. doi: 10.3389/fnins.2015.00320

[111]

Scott BR, Slattery KM, Sculley DV, Dascombe BJ. Hypoxia and resistance exercise: a comparison of localized and systemic methods. Sports Med. 2014;44(8):1037–1054. doi: 10.1007/s40279-014-0177-7

[112]

Scott B.R., Slattery K.M., Sculley D.V., Dascombe B.J. Hypoxia and resistance exercise: a comparison of localized and systemic methods // Sports Med. 2014. Vol. 44, N 8. P. 1037–1054. doi: 10.1007/s40279-014-0177-7

[113]

Hong JM, Choi ES, Park SY. Selective brain cooling: A new horizon of neuroprotection. Front Neurol. 2022;13:873165. doi: 10.3389/fneur.2022.873165

[114]

Hong J.M., Choi E.S., Park S.Y. Selective brain cooling: A new horizon of neuroprotection // Front Neurol. 2022. Vol. 13. ID 873165. doi: 10.3389/fneur.2022.873165

[115]

Jackson TC, Kochanek PM. A new vision for therapeutic hypothermia in the era of targeted temperature management: a speculative synthesis. Ther Hypothermia Temp Manag. 2019;9(1):13–47. doi: 10.1089/ther.2019.0001

[116]

Jackson T.C., Kochanek P.M. A new vision for therapeutic hypothermia in the era of targeted temperature management: a speculative synthesis // Ther Hypothermia Temp Manag. 2019. Vol. 9, N 1. P. 13–47. doi: 10.1089/ther.2019.0001

[117]

Lunze K, Bloom DE, Jamison DT, Hamer DH. The global burden of neonatal hypothermia: systematic review of a major challenge for newborn survival. BMC Med. 2013;11:24. doi: 10.1186/1741-7015-11-24

[118]

Lunze K., Bloom D.E., Jamison D.T., Hamer D.H. The global burden of neonatal hypothermia: systematic review of a major challenge for newborn survival // BMC Med. 2013. Vol. 11. ID 24. doi: 10.1186/1741-7015-11-24

[119]

Koehler RC, Reyes M, Hopkins CD, et al. Rapid, selective and homogeneous brain cooling with transnasal flow of ambient air for pediatric resuscitation. J Cereb Blood Flow Metab. 2023;43(11): 1842–1856. doi: 10.1177/0271678X231189463

[120]

Koehler R.C., Reyes M., Hopkins C.D., et al. Rapid, selective and homogeneous brain cooling with transnasal flow of ambient air for pediatric resuscitation // J Cereb Blood Flow Metab. 2023. Vol. 43, N 11. P. 1842–1856. doi: 10.1177/0271678X231189463

[121]

Assis FR, Bigelow MEG, Chava R, et al. Efficacy and safety of transnasal coolstat cooling device to induce and maintain hypothermia. Ther Hypothermia Temp Manag. 2019;9(2):108–117. doi: 10.1089/ther.2018.0014

[122]

Assis F.R., Bigelow M.E.G., Chava R., et al. Efficacy and safety of transnasal coolstat cooling device to induce and maintain hypothermia // Ther Hypothermia Temp Manag. 2019. Vol. 9, N 2. P. 108–117. doi: 10.1089/ther.2018.0014

[123]

Choi JH, Pile-Spellman J. Selective brain hypothermia. Handb Clin Neurol. 2018;157:839–852. doi: 10.1016/B978-0-444-64074-1.00052-5

[124]

Choi J.H., Pile-Spellman J. Selective brain hypothermia // Handb Clin Neurol. 2018. Vol. 157. P. 839–852. doi: 10.1016/B978-0-444-64074-1.00052-5

[125]

Bhowmick S, Drew KL. Mechanisms of innate preconditioning towards ischemia/anoxia tolerance: Lessons from mammalian hibernators. Cond Med. 2019;2(3):134–141.

[126]

Bhowmick S., Drew K.L. Mechanisms of innate preconditioning towards ischemia/anoxia tolerance: Lessons from mammalian hibernators // Cond Med. 2019. Vol. 2, N 3. P. 134–141.

[127]

Sahdo B, Evans AL, Arnemo JM, et al. Body temperature during hibernation is highly correlated with a decrease in circulating innate immune cells in the brown bear (Ursus arctos): a common feature among hibernators? Int J Med Sci. 2013;10(5):508–514. doi: 10.7150/ijms.4476

[128]

Sahdo B., Evans A.L., Arnemo J.M., et al. Body temperature during hibernation is highly correlated with a decrease in circulating innate immune cells in the brown bear (Ursus arctos): a common feature among hibernators? // Int J Med Sci. 2013. Vol. 10, N 5. P. 508–514. doi: 10.7150/ijms.4476

[129]

Cahill T, da Silveira WA, Renaud L, et al. Investigating the effects of chronic low-dose radiation exposure in the liver of a hypothermic zebrafish model. Sci Rep. 2023;13(1):918. doi: 10.1038/s41598-022-26976-4

[130]

Cahill T., da Silveira W.A., Renaud L., et al. Investigating the effects of chronic low-dose radiation exposure in the liver of a hypothermic zebrafish model // Sci Rep. 2023. Vol. 13, N 1. ID 918. doi: 10.1038/s41598-022-26976-4

[131]

Cerri M, Tinganelli W, Negrini M, et al. Hibernation for space travel: Impact on radioprotection. Life Sci Space Res (Amst). 2016;11:1–9. doi: 10.1016/j.lssr.2016.09.001

[132]

Cerri M., Tinganelli W., Negrini M., et al. Hibernation for space travel: Impact on radioprotection // Life Sci Space Res (Amst). 2016. Vol. 11. P. 1–9. doi: 10.1016/j.lssr.2016.09.001

[133]

Choi JH, Pile-Spellman J, Weinberger J, Poli S. Editorial: Selective brain and heart hypothermia — A path toward targeted organ resuscitation and protection. Front Neurol. 2023;14:1162865. doi: 10.3389/fneur.2023.1162865

[134]

Choi J.H., Pile-Spellman J., Weinberger J., Poli S. Editorial: Selective brain and heart hypothermia — A path toward targeted organ resuscitation and protection // Front Neurol. 2023. Vol. 14. ID 1162865. doi: 10.3389/fneur.2023.1162865

[135]

Horn M, Diprose WK, Pichardo S, et al. Non-invasive brain temperature measurement in acute ischemic stroke. Front Neurol. 2022;13:889214. doi: 10.3389/fneur.2022.889214

[136]

Horn M., Diprose W.K., Pichardo S., et al. Non-invasive brain temperature measurement in acute ischemic stroke // Front Neurol. 2022. Vol. 13. ID 889214. doi: 10.3389/fneur.2022.889214

[137]

Diprose WK, Rao A, Ghate K, et al. Penumbral cooling in ischemic stroke with intraarterial, intravenous or active conductive head cooling: A thermal modeling study. J Cereb Blood Flow Metab. 2024;44(1):66–76. doi: 10.1177/0271678X231203025

[138]

Diprose W.K., Rao A., Ghate K., et al. Penumbral cooling in ischemic stroke with intraarterial, intravenous or active conductive head cooling: A thermal modeling study // J Cereb Blood Flow Metab. 2024. Vol. 44, N 1. P. 66–76. doi: 10.1177/0271678X231203025

[139]

Choi JH, Poli S, Chen M, et al. Selective brain hypothermia in acute ischemic stroke: Reperfusion without reperfusion injury. Front Neurol. 2020;11:594289. doi: 10.3389/fneur.2020.594289

[140]

Choi J.H., Poli S., Chen M., et al. Selective brain hypothermia in acute ischemic stroke: Reperfusion without reperfusion injury // Front Neurol. 2020. Vol. 11. ID 594289. doi: 10.3389/fneur.2020.594289

[141]

Mrozek S, Vardon F, Geeraerts T. Brain temperature: physio¬logy and pathophysiology after brain injury. Anesthesiol Res Pract. 2012;2012:989487. doi: 10.1155/2012/989487

[142]

Mrozek S., Vardon F., Geeraerts T. Brain temperature: physiology and pathophysiology after brain injury // Anesthesiol Res Pract. 2012. Vol. 2012. ID 989487. doi: 10.1155/2012/989487

[143]

Fernandez Hernandez S, Barlow B, Pertsovskaya V, Maciel CB. Temperature control after cardiac arrest: A narrative review. Adv Ther. 2023;40(5):2097–2115. doi: 10.1007/s12325-023-02494-1

[144]

Fernandez Hernandez S., Barlow B., Pertsovskaya V., Maciel C.B. Temperature control after cardiac arrest: A narrative review // Adv Ther. 2023. Vol. 40, N 5. P. 2097–2115. doi: 10.1007/s12325-023-02494-1

[145]

Chen K, Schenone AL, Gheyath B, et al. Impact of hypothermia on cardiac performance during targeted temperature management after cardiac arrest. Resuscitation. 2019;142:1–7. doi: 10.1016/j.resuscitation.2019.06.276

[146]

Chen K., Schenone A.L., Gheyath B., et al. Impact of hypothermia on cardiac performance during targeted temperature management after cardiac arrest // Resuscitation. 2019. Vol. 142. P. 1–7. doi: 10.1016/j.resuscitation.2019.06.276

[147]

Ginsberg MD, Busto R. Combating hyperthermia in acute stroke: a significant clinical concern. Stroke. 1998;29(2):529–534. doi: 10.1161/01.str.29.2.529

[148]

Ginsberg M.D., Busto R. Combating hyperthermia in acute stroke: a significant clinical concern // Stroke. 1998. Vol. 29, N 2. P. 529–534. doi: 10.1161/01.str.29.2.529

[149]

Shabanov PD, Zarubina IV. Hypoxia and antihypoxants, focus on brain injury. Reviews on Clinical Pharmacology and Drug Therapy. 2019;17(1):7–16. EDN: NNOOGA doi: 10.17816/RCF1717-16

[150]

Шабанов П.Д., Зарубина И.В. Гипоксия и антигипоксанты, в фокусе черепно-мозговая травма // Обзоры по клинической фармакологии и лекарственной терапии. 2019. Т. 17, № 1. C. 7–16. EDN: NNOOGA doi: 10.17816/RCF1717-16

[151]

Urakov AL, Fisher EL, Lebedev AА, Shabanov PD. Aquarium fish and temperature neuropharmacology. Update. Psychopharmacology and biological narcology. 2024;15(1):41–52. EDN: QJVYFF doi: 10.17816/phbn625545

[152]

Ураков А.Л., Фишер Е.Л., Лебедев А.А., Шабанов П.Д. Аквариумные рыбки и температурная нейрофармакология. Обновление // Психофармакология и биологическая наркология. 2024. Т. 15, № 1. C. 41–52. EDN: QJVYFF doi: 10.17816/phbn625545

[153]

Zarubina IV, Shabanov PD. Significance of individual resistance to hypoxia for the correction of the brain trauma sequelae. Russian journal of physiology. 2003;89(8):919–925. EDN: MPOJNL

[154]

Zarubina I.V., Shabanov P.D. Significance of individual resistance to hypoxia for the correction of the brain trauma sequelae // Российский физиологический журнал им. И.М. Сеченова. 2003. Т. 89, № 8. С. 919–925. EDN: MPOJNL

[155]

Urakov A, Urakova N, Shabanov P, et al. Suffocation in asthma and COVID-19: Supplementation of inhaled corticosteroids with alkaline hydrogen peroxide as an alternative to ECMO. Preprints. 2023:2023070627. doi: 10.20944/preprints202307.0627.v1

[156]

Urakov A., Urakova N., Shabanov P., et al. Suffocation in asthma and COVID-19: Supplementation of inhaled corticosteroids with alkaline hydrogen peroxide as an alternative to ECMO // Preprints. 2023. ID 2023070627. doi: 10.20944/preprints202307.0627.v1

[157]

Shabanov PD, Fisher EL, Urakov AL. Hydrogen peroxide formulations and methods of their use for blood oxygen saturation. J Med Pharm Allied Sci. 2022;11(6):5489–5493. doi: 10.55522/jmpas.V11I6.4604

[158]

Shabanov P.D., Fisher E.L., Urakov A.L. Hydrogen peroxide formulations and methods of their use for blood oxygen saturation // J Med Pharm Allied Sci. 2022. Vol. 11, N 6. P. 5489–5493. doi:10.55522/jmpas.V11I6.4604

[159]

Fisher EL, Urakov AL, Samorodov AV, et al. Alkaline hydrogen peroxide solutions: expectorant, pyolytic, mucolytic, haemolytic, oxygen-releasing, and decolorizing effects. Reviews on Clinical Pharmacology and Drug Therapy. 2023;21(2):135–150. EDN: UDPAZJ doi: 10.17816/RCF492316

[160]

Фишер Е.Л., Ураков А.Л., Самородов А.В., и др. Щелочные растворы перекиси водорода с отхаркивающим, пиолитическим, муколитическим, гемолитическим, кислород-освобождающим и обесцвечивающим действием // Обзоры по клинической фармакологии и лекарственной терапии. 2023. Т. 21, № 2. C. 135–150. EDN: UDPAZJ doi: 10.17816/RCF49231

[161]

Urakov A, Urakova N, Reshetnikov A, Rozov R. Local warm alkaline hydrogen peroxide solutions and targeted temperature management improve the treatment of chronic wounds. Azerbaijan Pharmaceutical and Pharmacotherapy Journal. 2024;23(1):65–659. doi: 10.61336/appj/23-1-12

[162]

Urakov A., Urakova N., Reshetnikov A., Rozov R. Local warm alkaline hydrogen peroxide solutions and targeted temperature management improve the treatment of chronic wounds // Азербайджанский фармацевтический и фармакотерапевтический журнал. 2024. Т. 23, № 1. С. 65–659. doi:10.61336/appj/23-1-12

RIGHTS & PERMISSIONS

Eco-Vector

AI Summary AI Mindmap
PDF (1327KB)

123

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/