Absorption, distribution, metabolism and excretion of carbon nanostructures

Elena V. Litasova , Viktor V. Iljin , Levon B. Piotrovskiy

Reviews on Clinical Pharmacology and Drug Therapy ›› 2024, Vol. 22 ›› Issue (3) : 257 -276.

PDF (1728KB)
Reviews on Clinical Pharmacology and Drug Therapy ›› 2024, Vol. 22 ›› Issue (3) : 257 -276. DOI: 10.17816/RCF629047
Reviews
review-article

Absorption, distribution, metabolism and excretion of carbon nanostructures

Author information +
History +
PDF (1728KB)

Abstract

The interaction of any substance with the body is determined by several parameters, namely: its adsorption, distribution, metabolism, and excretion (ADME properties). Naturally, this also fully applies to such a class of compounds as carbon nanostructures. They are mostly composed of sp2-hybridized carbon atoms (except for nanodiamonds, which consist of sp3-hybridized atoms). However, they differ significantly in their properties. This review focuses on these differences. It covers fullerenes, nano-onions, carbon nanotubes, carbon nanohorns, graphene and its derivatives, as well as nanodiamonds.

Keywords

carbon nanostructures / fullerene / nanoions / nanotubes / nanohorns / graphenes / nanodiamonds / ADME properties

Cite this article

Download citation ▾
Elena V. Litasova, Viktor V. Iljin, Levon B. Piotrovskiy. Absorption, distribution, metabolism and excretion of carbon nanostructures. Reviews on Clinical Pharmacology and Drug Therapy, 2024, 22(3): 257-276 DOI:10.17816/RCF629047

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Schinazi RF, Sijbesma R, Srdanov G, et al. Synthesis and virucidal activity of a water-soluble, configurationally stable, derivatized C60 fullerene. Antimicrob Agents Chemother. 1993;37(8):1707–1710. doi: 10.1128/AAC.37.8.1707

[2]

Schinazi R.F., Sijbesma R., Srdanov G., et al. Synthesis and virucidal activity of a water-soluble, configurationally stable, derivatized C60 fullerene // Antimicrob Agents Chemother. 1993. Vol. 37, N 8. P. 1707–1710. doi: 10.1128/AAC.37.8.1707

[3]

Nakamura E, Isobe H. Functionalized fullerenes in water. The first 10 years of their chemistry, biology, and nanoscience. Acc Chem Res. 2003;36(11):807–815. doi: 10.1021/ar030027y

[4]

Nakamura E., Isobe H. Functionalized fullerenes in water. The first 10 years of their chemistry, biology, and nanoscience // Acc Chem Res. 2003. Vol. 36, N 11. P. 807–815. doi: 10.1021/ar030027y

[5]

Litasova EV, Iljin VV, Myznikov LV, Piotrovskiy LB. Toxicology of carbon nanostructures. Part I. Spherical nanoparticles (fullerenes and nanoonions). Reviews on Clinical Pharmacology and Drug Therapy. 2022;20(1):5–15. EDN: KOKLHW doi: 10.17816/RCF2015-15

[6]

Литасова Е.В., Ильин В.В., Мызников Л.В., Пиотровский Л.Б. Токсикология наноструктур углерода. Часть I. Сферические наночастицы (фуллерены и наноонионы) // Обзоры по клинической фармакологии и лекарственной терапии. 2022. Т. 20, № 1. С. 5–15. EDN: KOKLHW doi: 10.17816/RCF2015-15

[7]

Litasova EV, Iljin VV, Brusina MA, Piotrovskiy LB. Toxicology of carbon nanostructures. Part 2. Nanoscale materials based on graphene sheets. Reviews on Clinical Pharmacology and Drug Therapy. 2023;21(1):5–22. EDN: FUZQXE doi: 10.17816/RCF2115-22

[8]

Литасова Е.В., Ильин В.В., Брусина М.А., Пиотровский Л.Б. Токсикология наноструктур углерода. Часть 2. Наноразмерные материалы на основе графеновых листов // Обзоры по клинической фармакологии и лекарственной терапии. 2023. Т. 21, № 1. С. 5–22. EDN: FUZQXE doi: 10.17816/RCF2115-22

[9]

Moussa F, Trivin F, Ceolin R, et al. Early effects of C60 administration in Swiss mice; a preliminary account for in vivo C60 toxicity. Full Sci Technol. 1996;4(1):21–29. doi: 10.1080/10641229608001534

[10]

Moussa F., Trivin F., Ceolin R., et al. Early effects of C60 administration in Swiss mice; a preliminary account for in vivo C60 toxicity // Full Sci Technol. 1996. Vol. 4, N 1. P. 21–29. doi: 10.1080/10641229608001534

[11]

Gharbi N, Pressac M, Hadchouel M, et al. [60]Fullerene is an in vivo powerful antioxidant with no acute or sub-acute toxicity. NanoLetters. 2005;5(12):2578–2585. doi: 10.1021/nl051866b

[12]

Gharbi N., Pressac M., Hadchouel M., et al. [60]Fullerene is an in vivo powerful antioxidant with no acute or sub-acute toxicity // NanoLetters. 2005. Vol. 5, N 12. P. 2578–2585. doi: 10.1021/nl051866b

[13]

Baati T, Bourasset F, Gharbi N, et al. The prolongation of the lifespan of rats by repeated oral administration of [60]fullerene. Biomate¬rials. 2012;33(19):4936–4946. doi: 10.1016/j.biomaterials.2012.03.036

[14]

Baati T., Bourasset F., Gharbi N., et al. The prolongation of the lifespan of rats by repeated oral administration of [60]fullerene // Biomaterials. 2012. Vol. 33, N 19. P. 4936–4946. doi: 10.1016/j.biomaterials.2012.03.036

[15]

Scrivens WA, Tour JM, Creek KE, Pirisi L. Synthesis of 14C-labeled C60, its suspension in water and it suptake by human keratinocytes. J Am Chem Soc. 1994;116(10):4517–4518. doi: 10.1021/ja00089a067

[16]

Scrivens W.A., Tour J.M., Creek K.E., Pirisi L. Synthesis of 14C-labeled C60, its suspension in water and it suptake by human keratinocytes // J Am Chem Soc. 1994. Vol. 116, N 10. P. 4517–4518. doi: 10.1021/ja00089a067

[17]

Chang X-L, Ruan LF, Yang S-T, et al. Quantification of carbon nanomaterials in vivo; Direct stable isotope labeling on the skeleton of fullerene C60. Environ Sci Nano. 2014;1(1):64–70. doi: 10.1039/C3EN00046J

[18]

Chang X.-L., Ruan L.F., Yang S.-T., et al. Quantification of carbon nanomaterials in vivo; Direct stable isotope labeling on the skeleton of fullerene C60 // Environ Sci Nano. 2014. Vol. 1, N 1. P. 64–70. doi: 10.1039/C3EN00046J

[19]

Yamago S, Tokuyama H, Nakamura E, et al. In vivo biological behavior of a water-miscible fullerene; 14C labeling, absorption, distribution, excretion and acute toxicity. Chem Biol. 1995;2(6):385–389. doi: 10.1016/1074-5521(95)90219-8

[20]

Yamago S., Tokuyama H., Nakamura E., et al. In vivo biological behavior of a water-miscible fullerene; 14C labeling, absorption, distribution, excretion and acute toxicity // ChemBiol.1995. Vol. 2, N 6. P. 385–389. doi: 10.1016/1074-5521(95)90219-8

[21]

Bullard-Dillard R, Creek KE, Scrivens WA, Tour JM. Tissue sites of uptake of 14C-labeled C60. Bioorg Chem. 1996;24(4):376–385. doi: 10.1006/bioo.1996.003

[22]

Bullard-Dillard R., Creek K.E., Scrivens W.A., Tour J.M. Tissue sites of uptake of 14C-labeled C60 // Bioorg Chem. 1996. Vol. 24, N 4. P. 376–385. doi: 10.1006/bioo.1996.003

[23]

Shipkowski KA, Sanders JM, McDonald JD, et al. Disposition of fullerene C60 in rats following intratracheal or intravenous administration. Xenobiotica. 2019;49(9):1078–1085. doi: 10.1080/00498254.2018.1528646

[24]

Shipkowski K.A., Sanders J.M., McDonald J.D., et al. Disposition of fullerene C60 in rats following intratracheal or intravenous administration // Xenobiotica. 2019. Vol. 49, N 9. P. 1078–1085. doi: 10.1080/00498254.2018.1528646

[25]

Sumner SCJ, Snyder RW, Wingard C, et al. Distribution and biomarkers of carbon-14-labeled fullerene C60(14C–C60) in female rats and mice for up to 30 days after intravenous exposure. J Appl Toxicol. 2015;35(12):1452–1464. doi: 10.1002/jat.3110

[26]

Sumner S.C.J., Snyder R.W., Wingard C., et al. Distribution and biomarkers of carbon-14-labeled fullerene C60(14C–C60) in female rats and mice for up to 30 days after intravenous exposure // J Appl Toxicol. 2015. Vol. 35, N 12. P. 1452–1464. doi: 10.1002/jat.3110

[27]

Snyder RW, Fennell TR, Wingard CJ, et al. Distribution and biomarker of carbon-14 labeled fullerene C60 ([14C(U)]C60) in pregnant and lactating rats and their offspring after maternal intravenous exposure. J Appl Toxicol. 2015;35(12):1438–1451. doi: 10.002/jat/3177

[28]

Snyder R.W., Fennell T.R., Wingard C.J., et al. Distribution and biomarker of carbon-14 labeled fullerene C60 ([14C(U)]C60) in pregnant and lactating rats and their offspring after maternal intravenous exposure // J Appl Toxicol. 2015. Vol. 35, N 12. P. 1438–1451. doi: 10.002/jat/3177

[29]

Yamakoshi YN, Yagami T, Fukuhara K, et al. Solubilization of fulleres into water with polyvinylpyrrolidone applicable to biological tests. J Chem Soc. 1994;(4):7236. doi: 10.1039/C39940000517

[30]

Yamakoshi Y.N., Yagami T., Fukuhara K., et al. Solubilization of fulleres into water with polyvinylpyrrolidone applicable to biological tests // J Chem Soc. 1994. N 4. ID 7236. doi: 10.1039/C39940000517

[31]

Jafvert CT, Kulkarni PP. Buckminsterfullerene’s (C60) octanol-water partition coefficient (Kow) and aqueous solubility. Environ Sci Technol. 2008;42(16):5945–5950. doi: 10.1021/es702809a

[32]

Jafver tC.T., Kulkarni P.P. Buckminsterfullerene’s (C60) octanol-water partition coefficient (Kow) and aqueous solubility // Environ Sci Technol. 2008. Vol. 42, N 16. P. 5945–5950. doi: 10.1021/es702809a

[33]

Rajagopalan P, Wudl F, Schinazi RF, Boudinot FD. Pharmacokinetics of a water-soluble fullerene in rats. Antimicrob Agents Chemother. 1996;40(10):2262–2265. doi: 10.1128/AAC.40.10.2262

[34]

Rajagopalan P., Wudl F., Schinazi R.F., Boudinot F.D. Pharmacokinetics of a water-soluble fullerene in rats // Antimicrob Agents Chemother. 1996. Vol. 40, N 10. P. 2262–2265. doi: 10.1128/AAC.40.10.2262

[35]

Wang C, Bai Y, Li H, et al. Surface modification-mediated biodistribution of 13C-fullerene C60 in vivo. Part Fibre Toxicol. 2016;13:14. doi: 10.1186/s12989-016-0126-8

[36]

Wang C., Bai Y., Li H., et al. Surface modification-mediated biodistribution of 13C-fullerene C60 in vivo // Part Fibre Toxicol. 2016. Vol. 13. ID 14. doi: 10.1186/s12989-016-0126-8

[37]

Witte P, Beuerle F, Hartnagel U, et al. Water solubility, antioxidant activity and cytochrome C binding of four families of exohedral adducts of C60 and C70. Org Biomol Chem. 2007;5(22):3599–3613. doi: 10.1039/b711912g

[38]

Witte P., Beuerle F., Hartnagel U., et al. Water solubility, antioxidant activity and cytochrome C binding of four families of exohedral adducts of C60 and C70 // Org Biomol Chem. 2007. Vol. 5, N 22. P. 3599–3613. doi: 10.1039/b711912g

[39]

Wang ZZ, Chang XL, Lu ZH, et al. A precision structural model for fullerenols. Chem Sci. 2014;5(8):2940–2948. doi: 10.1039/C4SC00584H

[40]

Wang Z.Z., Chang X.L., Lu Z.H., et al. A precision structural model for fullerenols // Chem Sci. 2014. Vol. 5, N 8. P. 2940–2948. doi: 10.1039/C4SC00584H

[41]

Gan LB, Zhou DJ, Luo CP, et al. Synthesis of fullerene amino acid derivatives by direct interaction of amino acid ester with C60. J Org Chem. 1996;61(6):1954–1961. doi: 10.1021/jo951933u

[42]

Gan L.B., Zhou D.J., Luo C.P., et al. Synthesis of fullerene amino acid derivatives by direct interaction of amino acid ester with C60 // J Org Chem.1996. Vol. 61, N 6. P. 1954–1961. doi: 10.1021/jo951933u

[43]

Hardt JI, Perlmutter JS, Smith CJ, et al. Pharmacokinetics toxicology of the neuroprotective e,e,e-methanofullerene(63)-carboxylic acid in mice primates. Eur J Drug Metab Pharmacokinet. 2018;43(5):543–554. doi: 10.1007/s13318-018-0464-z

[44]

Hardt J.I., Perlmutter J.S., Smith C.J., et al. Pharmacokinetics toxicology of the neuroprotective e,e,e-methanofullerene(63)-carboxylic acid in mice primates // Eur J Drug Metab Pharmacokinet. 2018. Vol. 43, N 5. P. 543–554. doi: 10.1007/s13318-018-0464-z

[45]

Lin Y-L, Lei H-Y, Luh T-Y, et al. Light-independent inactivation of dengue-2 virus by carboxyfullerene C3 isomer. Virology. 2000;275(2):258–262. doi: 10.1006/viro.2000.0490

[46]

Lin Y.-L., Lei H.-Y., Luh T.-Y., et al. Light-independent inactivation of dengue-2 virus by carboxyfullerene C3 isomer // Virology. 2000. Vol. 275, N 2. P. 258–262. doi: 10.1006/viro.2000.0490

[47]

Dugan LL, Turetsky DM, Du C, et al. Carboxyfullerenes as neuroprotective agents. PNAS USA. 1997;94(17):9434–9439. doi: 10.1073/pnas.94.17.9434

[48]

Dugan L.L., Turetsky D.M., Du C., et al. Carboxyfullerenes as neuroprotective agents // PNAS USA. 1997. Vol. 94, N 17. P. 9434–9439. doi: 10.1073/pnas.94.17.9434

[49]

Foley S, Crowley C, Smaihi M, et al. Cellular localization of a water-soluble fullerene derivative. Biochem Biophys Res Commun. 2002;294(1):116–119. doi: 10.1016/S0006-291X(02)00445-X

[50]

Foley S., Crowley C., Smaihi M., et al. Cellular localization of a water-soluble fullerene derivative // Biochem Biophys Res Commun. 2002. Vol. 294, N 1. P. 116–119. doi: 10.1016/S0006-291X(02)00445-X

[51]

Wang IC, Tai LA, Lee DD, et al. C60 water-soluble fullerene derivatives as antioxidants against radicalinitiated lipid peroxidation. J Med Chem. 1999;42(22):4614–4620. doi: 10.1021/jm990144s

[52]

Wang I.C., Tai L.A., Lee D.D., et al. C60 water-soluble fullerene derivatives as antioxidants against radicalinitiated lipid peroxidation // J Med Chem. 1999. Vol. 42, N 22. P. 4614–4620. doi: 10.1021/jm990144s

[53]

Cagle DW, Kennel SJ, Mirzadeh S, et al. In vivo studies of of fullerene-based materials using endohedral metallofullerene radiotracers. PNAS USA. 1999;96(9):5182–5187. doi: 10.1073/pnas.96.9.5182

[54]

Cagle D.W., Kennel S.J., Mirzadeh S., et al. In vivo studies of of fullerene-based materials using endohedral metallofullerene radiotracers // PNAS USA. 1999. Vol. 96, N 9. P. 5182–5187. doi: 10.1073/pnas.96.9.5182

[55]

Wilson LJ. Medical applications of fullerene and metallofulerenes. Electrochem Soc Interface. 1999;8(4):24–28. doi: 10.1149/2.F04994IF

[56]

Wilson L.J. Medical applications of fullerene and metallofulerenes // Electrochem Soc Interface. 1999. Vol. 8, N 4. P. 24–28. doi: 10.1149/2.F04994IF

[57]

Jensen AW, Wilson SR, Schuster DI. Biological applications of fullerenes. Bioorg Med Chem. 1996;4(6):767–779. doi: 10.1016/0968-0896(96)00081-8

[58]

Jensen A.W., Wilson S.R., Schuster D.I. Biological applications of fullerenes // Bioorg Med Chem. 1996. Vol. 4, N 6. P. 767–779. doi: 10.1016/0968-0896(96)00081-8

[59]

Moussa F, Roux S, Pressac M, et al. In vivo reaction between [60]fullerene vitamin A in mouse liver. New J Chem. 1998;(9):989–992. doi: 10.1039/A803120G

[60]

Moussa F., Roux S., Pressac M., et al. In vivo reaction bet¬ween [60] fullerene vitamin A in mouse liver // NewJ Chem. 1998. N 9. P. 989–992. doi: 10.1039/A803120G

[61]

Litasova E, Iljin V, Sokolov A, et al. The biodegradation of fullerene C60 by myeloperoxidase. Doklady Biochem Biophys. 2016;471: 417–420. doi: 10.1134/S1607672916060119

[62]

Litasova E., Iljin V., Sokolov A., et al. The biodegradation of fullerene C60 by myeloperoxidase // Doklady Biochem Biophys. 2016. Vol. 471. P. 417–420. doi: 10.1134/S1607672916060119

[63]

Brant JA, Labille J, Bottero J-Y, Wiesner MR. Characterizing the impact of preparation method on fullerene cluster structure chemistry. Langmuir. 2006;22(8):3878–3885. doi: 10.1021/la053293o

[64]

Brant J.A., Labille J., Bottero J.-Y., Wiesner M.R. Characterizing the impact of preparation method on fullerene cluster structure chemistry // Langmuir. 2006. Vol. 22, N 8. P. 3878–3885. doi: 10.1021/la053293o

[65]

Li D, Fortner JD, Johnson DR, et al. Bioaccumulation of 14C60 by the earthworm Eisenia fetida. Environ Sci Technol. 2010;44(23): 9170–9175. doi: 10.1021/es1024405

[66]

Li D., Fortner J.D., Johnson D.R., et al. Bioaccumulation of 14C60 by the earthworm Eisenia fetida // Environ Sci Technol. 2010. Vol. 44, N 23. P. 9170–9175. doi: 10.1021/es1024405

[67]

Avanasi R, Jackson WA, Sherwin B, et al. C60 fullerene soil sorption, biodegradation, plant uptake. Environ Sci Technol. 2014;48(5):2792–2797. doi: 10.1021/es405306w

[68]

Avanasi R., Jackson W.A., Sherwin B., et al. C60 fullerene soil sorption, biodegradation, plant uptake // Environ Sci Technol. 2014. Vol. 48, N 5. P. 2792–2797. doi: 10.1021/es405306w

[69]

Berry TD, Filley TR, Clavijo AP, et al. Degradation microbial uptake of C60 fullerols in contrasting agricultural soils. Environ Sci Technol. 2017;51(3):1387–1394. doi: 10.1021/acs.est.6b04637

[70]

Berry T.D., Filley T.R., Clavijo A.P., et al. Degradation microbial uptake of C60 fullerols in contrasting agricultural soils // Environ Sci Technol. 2017. Vol. 51, N 3. P. 1387–1394. doi: 10.1021/acs.est.6b04637

[71]

Li J, Chen L, Su H, et al. The pharmaceutical multi-activity of metallofullerenol invigorates cancer therapy. Nanoscale. 2019;11(31):14528–14539. doi: 10.1039/c9nr04129j

[72]

Li J., Chen L., Su H., et al. The pharmaceutical multi-activity of metallofullerenol invigorates cancer therapy // Nanoscale. 2019. Vol. 11, N 31. P. 14528–14539. doi: 10.1039/c9nr04129j

[73]

Wang J, Chen C, Li B, et al. Antioxidative function and biodistribution of [Gd@C82(OH)22]n nanoparticles in tumor-bearing mice. Biochem Pharmacol. 2006;71(6):872–881. doi: 10.1016/j.bcp.2005.12.001

[74]

Wang J., Chen C., Li B., et al. Antioxidative function and biodistribution of [Gd@C82(OH)22]n nanoparticles in tumor-bearing mice // Biochem Pharmacol. 2006. Vol. 71, N 6. P. 872–881. doi: 10.1016/j.bcp.2005.12.001

[75]

Meng J, Xing J, Wang Y, et al. Epigenetic modulation of human breast cancer by metallofullerenol nanoparticles; in vivo treatment and in vitro analysis. Nanoscale. 2011;3(11):4713–4719. doi: 10.1039/c1nr10898k

[76]

Meng J., Xing J., Wang Y., et al. Epigenetic modulation of human breast cancer by metallofullerenol nanoparticles; in vivo treatment and in vitro analysis // Nanoscale. 2011. Vol. 3, N 11. P. 4713–4719. doi: 10.1039/c1nr10898k

[77]

Xing GM, Zhang J, Zhao YL, et al. Influences of structural properties on stability of fullerenols. J Phys Chem B. 2004;108(31): 11473–11479. doi: 10.1021/jp0487962

[78]

Xing G.M., Zhang J., Zhao Y.L., et al. Influences of structural properties on stability of fullerenols // J Phys Chem B. 2004. Vol. 108, N 31. P. 11473–11479. doi: 10.1021/jp0487962

[79]

Kunkel M, Schildknecht S, Boldt K, et al. Increasing the resistance of living cells against oxidative stress by non-natural surfactants as membrane guards. ACS Appl Mater Interfaces. 2018;10(28): 23638–23646. doi: 10.1021/acsami.8b07032

[80]

Kunkel M., Schildknecht S., Boldt K., et al. Increasing the resistance of living cells against oxidative stress by non-natural surfactants as membrane guards // ACS Appl Mater Interfaces. 2018. Vol. 10, N 28. P. 23638–23646. doi: 10.1021/acsami.8b07032

[81]

Kolosnjaj J, Szwarc H, Moussa F. Toxicity studies of fullerenes and derivatives. In: Сhan WCW, editor. Bio-applications of nanoparticles. Advances in experimental medicine and biology. Vol. 620. New York: Springer; 2007. P. 168–180. doi: 10.1007/978-0-387-76713-0_13

[82]

Kolosnjaj J., Szwarc H., Moussa F. Toxicity studies of fullerenesand derivatives. В кн.: Bio-applications of nanoparticles. Advances in experimental medicine and biology. Vol. 620 / W.C.W. Сhan, editor. New York: Springer, 2007. P. 168–180. doi: 10.1007/978-0-387-76713-0_13

[83]

Marisa I, AsnicarD, Matozzo V, et al. Toxicological effects and bioaccumulation of fullerene C60 (FC60) in the marine bivalve Ruditapes philippinarum. Ecotoxicol Environ Saf. 2021;207:111560. doi: 10.1016/j.ecoenv.2020.111560

[84]

Marisa I., Asnicar D., Matozzo V., et al. Toxicological effects and bioaccumulation of fullerene C60 (FC60) in the marine bivalve Ruditapes philippinarum // Ecotoxicol Environ Saf. 2021. Vol. 207. ID 111560. doi: 10.1016/j.ecoenv.2020.111560

[85]

Horie M, Nishio K, Kato H, et al. In vitro evaluation of cellular influences induced by stable fullerene C70 medium dispersion; induction of cellular oxidative stress. Chemosphere. 2013;93(6): 1182–1188. doi: 10.1016/j.chemosphere.2013.06.067

[86]

Horie M., Nishio K., Kato H., et al. In vitro evaluation of cellular influences induced by stable fullerene C70 medium dispersion; induction of cellular oxidative stress // Chemosphere. 2013. Vol. 93, N 6. P. 1182–1188. doi: 10.1016/j.chemosphere.2013.06.067

[87]

Bartkowski M, Giordani S. Supramolecular chemistry of carbon nano-onions. Nanoscale. 2020;12(17):9352–9358. doi: 10.1039/d0nr01713b

[88]

Bartkowski M., Giordani S. Supramolecular chemistry of carbon nano-onions // Nanoscale. 2020. Vol. 12, N 17. P. 9352–9358. doi: 10.1039/d0nr01713b

[89]

Kuznetsov VL, Chuvilin AL, Butenko YV, et al. Onion-like carbon from ultra-disperse diamond. Chem Phys Lett. 1994;222(4):343–348. doi: 10.1016/0009-2614(94)87072-1

[90]

Kuznetsov V.L., Chuvilin A.L., Butenko Y.V., et al. Onion-like carbon from ultra-disperse diamond // Chem Phys Lett. 1994. Vol. 222, N 4. P. 343–348. doi: 10.1016/0009-2614(94)87072-1

[91]

Sonkar SK, Ghosh M, Roy M, et al. Carbon nano-onions as nontoxic and high-fluorescence bioimaging agent in food chain — a n in vivo study from unicellular E. coli to multicellular C. elegans. Mater Express. 2012;2(2):105–114. doi: 10.1166/mex.2012.1064

[92]

Sonkar S.K., Ghosh M., Roy M., et al. Carbon nano-onions as nontoxic and high-fluorescence bioimaging agent in food chain — an in vivo study from unicellular E. coli to multicellular C. elegans // Mater Express. 2012. Vol. 2, N 2. P. 105–114. doi: 10.1166/mex.2012.1064

[93]

Bartelmess J, Frasconi M, Balakrishnan PB, et al. Non-covalent functionalization of carbon nano-onions with pyrene — BODIPY dyads for biological imaging. RSC Adv. 2015;5(62):50253–50258. doi: 10.1039/C5RA07683H

[94]

Bartelmess J., Frasconi M., Balakrishnan P.B., et al. Non-covalent functionalization of carbon nano-onions with pyrene — BODIPY dyads for biological imaging // RSC Adv. 2015. Vol. 5, N 62. P. 50253–50258. doi: 10.1039/C5RA07683H

[95]

d’Amora M, Rodio M, Bartelmess J, et al. Biocompatibility and biodistribution of functionalized carbon nano-onions (f-CNOs) in a vertebrate model. Sci Rep. 2016;6:33923. doi: 10.1038/srep33923

[96]

d’Amora M., Rodio M., Bartelmess J., et al. Biocompatibility and biodistribution of functionalized carbon nano-onions (f-CNOs) in a vertebrate model // Sci Rep. 2016. Vol. 6. ID 33923. doi: 10.1038/srep33923

[97]

Frasconi M, Marotta R, Markey L, et al. Multi-functionalized carbon nano-onions as imaging probes for cancer cells. Chemistry. 2015;21(52):19071–19080. doi: 10.1002/chem.201503166

[98]

Frasconi M., Marotta R., Markey L., et al. Multi-functionalized carbon nano-onions as imaging probes for cancer cells // Chemistry. 2015. Vol. 21, N 52. P. 19071–19080. doi: 10.1002/chem.201503166

[99]

d’Amora M, Maffeis V, Brescia R, et al. Carbon nano-onions as non-cytotoxic carriers for cellular uptake of glycopeptides and proteins. Nanomaterials (Basel). 2019;9(8):1069. doi: 10.3390/nano9081069

[100]

d’Amora M., Maffeis V., Brescia R., et al. Carbon nano-onions as non-cytotoxic carriers for cellular uptake of glycopeptides and proteins // Nanomaterials (Basel). 2019. Vol. 9, N 8. ID 1069. doi: 10.3390/nano9081069

[101]

Bartkowski M, Giordani S. Carbon nano-onions as potential nanocarriers for drug delivery. Dalton Trans. 2021;50(7):2300–2309. doi: 10.1039/d0dt04093b

[102]

Bartkowski M., Giordani S. Carbon nano-onions as potential nanocarriers for drug delivery // Dalton Trans. 2021. Vol. 50, N 7. P. 2300–2309. doi: 10.1039/d0dt04093b

[103]

Negri V, Pacheco-Torres J, Calle D, López-Larrubia P. Carbon nanotubes in biomedicine. Top Curr Chem (Cham). 2020;378(1):15. doi: 10.1007/s41061-019-0278-8

[104]

Negri V., Pacheco-Torres J., Calle D., López-Larrubia P. Carbon nanotubes in biomedicine // Top Curr Chem (Cham). 2020. Vol. 378, N 1. ID 15. doi: 10.1007/s41061-019-0278-8

[105]

Tanaka K, Yamabe T, Fukui K. The structure and technology of carbon nanotubes. 1st ed. Elsevier; 1999. 190 p.

[106]

Tanaka K., Yamabe T., Fukui K. The structure and technology of carbon nanotubes. 1st ed. Elsevier; 1999. 190 p.

[107]

Yang K, Liu Z. In vivo biodistribution, pharmacokinetics, and toxicology of carbon nanotubes. Curr Drug Metab. 2012;13(8): 1057–1067. doi: 10.2174/138920012802850029

[108]

Yang K., Liu Z. In vivo biodistribution, pharmacokinetics, and toxicology of carbon nanotubes // Curr Drug Metab. 2012. Vol. 13, N 8. P. 1057–1067. doi:10.2174/138920012802850029

[109]

García-Hevia L, Saramiforoshani M, Monge J, et al. The unpredictable carbon nanotube biocorona and a functionalization method to prevent protein biofouling. J Nanobiotechnology. 2021;19(1):129. doi: 10.1186/s12951-021-00872-x

[110]

García-Hevia L., Saramiforoshani M., Monge J., et al. The unpredictable carbon nanotube biocorona and a functionalization method to prevent protein biofouling // J Nanobiotechnology. 2021. Vol. 19, N 1. ID 129. doi: 10.1186/s12951-021-00872-x

[111]

Iijima S, Ichihashi T. Single-shell carbon nanotubes of 1-nm diameter. Nature. 1993; 363(6430):603–605. doi: 10.1038/363603a0

[112]

Iijima S., Ichihashi T. Single-shell carbon nanotubes of 1-nm diameter // Nature. 1993. Vol. 363(6430). P. 603–605. doi: 10.1038/363603a0

[113]

Oberdörster G, Oberdörster E, Oberdörster J. Nanotoxicology; an emerging discipline evolving from studies of ultrafine particles. Environ Health Perspect. 2005;113(7):823–839. doi: 10.1289/ehp.7339

[114]

Oberdörster G., Oberdörster E., Oberdörster J. Nanotoxicology; an emerging discipline evolving from studies of ultrafine particles // Environ Health Perspect. 2005. Vol. 113, N 7. P. 823–839. doi: 10.1289/ehp.7339

[115]

Cai D, Mataraza JM, Qin Z-H, et al. Highly efficient molecular delivery into mammalian cells using carbon nanotube spearing. Nat Methods. 2005;2(6):449–454. doi: 10.1038/nmeth761

[116]

Cai D., Mataraza J.M., Qin Z.-H., et al. Highly efficient molecular delivery into mammalian cells using carbon nanotube spearing // Nat Methods. 2005. Vol. 2, N 6. P. 449–454. doi: 10.1038/nmeth761

[117]

Shi Kam NW, Jessop TC, Wender PA, Dai H. Nanotube molecular transporters: internalization of carbon nanotube-protein conjugates into mammalian cells. J Am Chem Soc. 2004;126(22): 6850–6851. doi: 10.1021/ja0486059

[118]

Shi Kam N.W., Jessop T.C., Wender P.A., Dai H. Nanotube molecular transporters: internalization of carbon nanotube-protein conjugates into mammalian cells // J Am Chem Soc. 2004. Vol. 126, N 22. P. 6850–6851. doi: 10.1021/ja0486059

[119]

Shi Kam NW, Dai H. Carbon nanotubes as intracellular protein transporters: generality and biological functionality. J Am Chem Soc. 2005;127(16):6021–6026. doi: 10.1021/ja050062v

[120]

Shi Kam N.W., Dai H. Carbon nanotubes as intracellular protein transporters: generality and biological functionality // J Am Chem Soc. 2005. Vol. 127, N 16. P. 6021–6026. doi: 10.1021/ja050062v

[121]

Ito Y, Venkatesan N, Hirako N, et al. Effect of fiber length of carbon nanotubes on the absorption of erythropoietin from rat small intestine. Int J Pharm. 2007;337(1–2):357–360. doi: 10.1016/j.ijpharm.2006.12.042

[122]

Ito Y., Venkatesan N., Hirako N., et al. Effect of fiber length of carbon nanotubes on the absorption of erythropoietin from rat small intestine // Int J Pharm. 2007. Vol. 337, N 1–2. P. 357–360. doi: 10.1016/j.ijpharm.2006.12.042

[123]

Yang Z, Zhang Y, Yang Y, et al. Pharmacological and toxicological target organelles and safe use of single-walled carbon nanotubes as drug carriers in treating Alzheimer disease. Nanomedicine. 2010;6(3):427–441. doi: 10.1016/j.nano.2009.11.007

[124]

Yang Z., Zhang Y., Yang Y., et al. Pharmacological and toxicological target organelles and safe use of single-walled carbon nanotubes as drug carriers in treating Alzheimer disease // Nanomedicine. 2010. Vol. 6, N 3. P. 427–441. doi: 10.1016/j.nano.2009.11.007

[125]

Jacobsen NR, Møller P, Clausen PA, et al. Biodistribution of carbon nanotubes in animal models. Basic Clin Pharmacol Toxicol. 2017;121(S3):30–43. doi: 10.1111/bcpt.12705

[126]

Jacobsen N.R., Møller P., Clausen P.A., et al. Biodistribution of carbon nanotubes in animal models // Basic Clin Pharmacol Toxicol. 2017. Vol. 121, N S3. P. 30–43. doi: 10.1111/bcpt.12705

[127]

Principi E, Girardello R, Bruno A, et al. Systemic distribution of single-walled carbon nanotubes in a novel model: alteration of biochemical parameters, metabolic functions, liver accumulation, and inflammation in vivo. Int J Nanomedicine. 2016;11:4299–4316. doi: 10.2147/IJN.S109950

[128]

Principi E., Girardello R., Bruno A., et al. Systemic distribution of single-walled carbon nanotubes in a novel model: alteration of biochemical parameters, metabolic functions, liver accumulation, and inflammation in vivo // Int J Nanomedicine. 2016. Vol. 11. P. 4299–4316. doi: 10.2147/IJN.S109950

[129]

Galassi TV, Antman-Passig M, Yaari Z, et al. Long-term in vivo biocompatibility of single-walled carbon nanotubes. PLoS One. 2020;15(5):e0226791. doi: 10.1371/journal.pone.0226791

[130]

Galassi T.V., Antman-Passig M., Yaari Z., et al. Long-term in vivo biocompatibility of single-walled carbon nanotubes // PLoS One. 2020. Vol. 15, N 5. ID e0226791. doi: 10.1371/journal.pone.0226791

[131]

Singh R, Pantarotto D, Lacerda L, et al. Tissue biodistribution and blood clearance rates of intravenously administered carbon nanotube radiotracers. PNAS USA. 2006;103(9):3357–3362. doi: 10.1073/pnas.0509009103

[132]

Singh R., Pantarotto D., Lacerda L., et al. Tissue biodistribution and blood clearance rates of intravenously administered carbon nanotube radiotracers // PNAS USA. 2006. Vol. 103, N 9. P. 3357–3362. doi: 10.1073/pnas.0509009103

[133]

Ding W, Minamikawa H, Kameta N, et al. Effects of PEGylation on the physicochemical properties and in vivo distribution of organic nanotubes. Int J Nanomedicine. 2014;9(1):5811–5823. doi: 10.2147/IJN.S75604

[134]

Ding W., Minamikawa H., Kameta N., et al. Effects of PEGylation on the physicochemical properties and in vivo distribution of organic nanotubes // Int J Nanomedicine. 2014. Vol. 9, N 1. P. 5811–5823. doi: 10.2147/IJN.S75604

[135]

McDevitt MR, Chattopadhyay D, Jaggi JS, et al. PET imaging of soluble yttrium-86-labeled carbon nanotubes in mice. PLoS One. 2007;2(9):e907. doi: 10.1371/journal.pone.0000907

[136]

McDevitt M.R., Chattopadhyay D., Jaggi J.S., et al. PET imaging of soluble yttrium-86-labeled carbon nanotubes in mice // PLoS One. 2007. Vol. 2, N 9. ID e907. doi: 10.1371/journal.pone.0000907

[137]

Liu Z, Cai W, He L, et al. In vivo biodistribution and highly efficient tumour targeting of carbon nanotubes in mice. Nat Nanotechnol. 2007;2(1):47–52. doi: 10.1038/nnano.2006.170

[138]

Liu Z., Cai W., He L., et al. In vivo biodistribution and highly efficient tumour targeting of carbon nanotubes in mice // Nat Nanotechnol. 2007. Vol. 2, N 1. P. 47–52. doi: 10.1038/nnano.2006.170

[139]

Cheng J, Shiral Fernando KA, Veca LM, et al. Reversible accumulation of PEGylated single-walled carbon nanotubes in the mammalian nucleus. ACS Nano. 2008;2(10):2085–2094. doi: 10.1021/nn800461u

[140]

Cheng J., Shiral Fernando K.A., Veca L.M., et al. Reversible accumulation of PEGylated single-walled carbon nanotubes in the mammalian nucleus // ACS Nano. 2008. Vol. 2, N 10. P. 2085–2094. doi: 10.1021/nn800461u

[141]

Harik VM. Geometry of carbon nanotubes and mechanisms of phagocytosis and toxic effects. Toxicol Lett. 2017;273:69–85. doi: 10.1016/j.toxlet.2017.03.016

[142]

Harik V.M. Geometry of carbon nanotubes and mechanisms of phagocytosis and toxic effects // Toxicol Lett. 2017. Vol. 273. P. 69–85. doi: 10.1016/j.toxlet.2017.03.016

[143]

Ali-Boucetta H, Kostarelos K. Pharmacology of carbon nanotubes; toxicokinetics, excretion and tissue accumulation. Adv Drug Deliv Rev. 2013;65(15):2111–2119. doi: 10.1016/j.addr.2013.10.004

[144]

Ali-Boucetta H., Kostarelos K. Pharmacology of carbon nanotubes; toxicokinetics, excretion and tissue accumulation // Adv Drug Deliv Rev. 2013. Vol. 65, N 15. P. 2111–2119. doi: 10.1016/j.addr.2013.10.004

[145]

Cherukuri P, Gannon CJ, Leeuw TK, et al. Mammalian pharmacokinetics of carbon nanotubes using intrinsic near-infrared fluorescence. PNAS USA. 2006;103(50):18882–18886. doi: 10.1073/pnas.0609265103

[146]

Cherukuri P., Gannon C.J., Leeuw T.K., et al. Mammalian pharmacokinetics of carbon nanotubes using intrinsic near-infrared fluorescence // PNAS USA. 2006. Vol. 103, N 50. P. 18882–18886. doi: 10.1073/pnas.0609265103

[147]

Yang ST, Guo W, Lin Y, et al. Biodistribution of pristine single-walled carbon nanotubes in vivo. J Phys Chem C. 2007;111(48): 17761–17764. doi: 10.1166/jnn.2004.146

[148]

Yang S.T., Guo W., Lin Y., et al. Biodistribution of pristine single-walled carbon nanotubes in vivo // J Phys Chem C. 2007. Vol. 111, N 48. P. 17761–17764. doi: 10.1166/jnn.2004.146

[149]

Al-Jamal KT, Nunes A, Methven L, et al. Degree of chemical functionalization of carbon nanotubes determines tissue distribution and excretion profile. Angew Chem Int Ed Engl. 2012;51(26): 6389–6393. doi: 10.1002/anie.201201991

[150]

Al-Jamal K.T., Nunes A., Methven L., et al. Degree of chemical functionalization of carbon nanotubes determines tissue distribution and excretion profile // Angew Chem Int Ed Engl. 2012. Vol. 51, N 26. P. 6389–6393. doi: 10.1002/anie.201201991

[151]

Chen M, Qin X, Zeng G. Biodegradation of carbon nanotubes, graphene, and their derivatives. Trends Biotechnol. 2017;35(9):836–846. doi: 10.1016/j.tibtech.2016.12.001

[152]

Chen M., Qin X., Zeng G. Biodegradation of carbon nanotubes, graphene, and their derivatives // Trends Biotechnol. 2017. Vol. 35, N 9. P. 836–846. doi: 10.1016/j.tibtech.2016.12.001

[153]

Chaika V, Pikula K, Vshivkova T, et al. The toxic influence and biodegradation of carbon nanofibers in freshwater invertebrates of the families Gammaridae, Ephemerellidae, and Chironomidae. Toxicol Rep. 2020;7:947–954. doi: 10.1016/j.toxrep.2020.07.011

[154]

Chaika V., Pikula K., Vshivkova T., et al. The toxic influence and biodegradation of carbon nanofibers in freshwater invertebrates of the families Gammaridae, Ephemerellidae, and Chironomidae // To¬xicol Rep. 2020. Vol. 7. P. 947–954. doi: 10.1016/j.toxrep.2020.07.011

[155]

Kostarelos K. Fibrillar pharmacology. Nature Materials. 2010;9(10):793–795. doi: 10.1038/nmat2871

[156]

Kostarelos K. Fibrillar pharmacology // Nature Materials. 2010. Vol. 9(10). P. 793–795. doi: 10.1038/nmat2871

[157]

Thakare VS, Das M, Jain AK, et al. Carbon nanotubes in cancer theragnosis. Nanomedicine (Lond). 2010;5(8):1277–1301. doi: 10.2217/nnm.10.95

[158]

Thakare V.S., Das M., Jain A.K., et al. Carbon nanotubes in cancer theragnosis // Nanomedicine (Lond). 2010. Vol. 5, N 8. P. 1277–1301. doi: 10.2217/nnm.10.95

[159]

Piotrovskiy LB, Kudryavtseva TA, Litasova EV. Properties and bio¬logical potential of single wall carbon nanohorns (SWCNH). Reviews on Clinical Pharmacology and Drug Therapy. 2020;18(3): 185–195. EDN: OHPOQN doi: 10.17816/RCF183185-195

[160]

Пиотровский Л.Б., Кудрявцева Т.А., Литасова Е.В. Свойства и биологический потенциал одностенных углеродных нанохорнов (SWCNH) // Обзоры по клинической фармакологии и лекарственной терапии. 2020. Т. 18, № 3. С. 185–195. EDN: OHPOQN doi: 10.17816/RCF183185-195

[161]

Shi Y, Peng D, Wang D, et al. Biodistribution survey of oxidized single-wall carbon nanohorns following different administration routes by using label-free multispectral optoacoustic tomography. Int J Nanomedicine. 2019;14:9809–9821. doi: 10.2147/IJN.S215648

[162]

Shi Y., Peng D., Wang D., et al. Biodistribution survey of oxidized single-wall carbon nanohorns following different administration routes by using label-free multispectral optoacoustic tomography // Int J Nanomedicine. 2019. Vol. 14. P. 9809–9821. doi: 10.2147/IJN.S215648

[163]

Zhang M, Yamaguchi T, Iijima S, Yudasaka M. Size-dependent biodistribution of carbon nanohorns in vivo. Nanomedicine. 2013;9(5):657–64. doi: 10.1016/j.nano.2012.11.011

[164]

Zhang M., Yamaguchi T., Iijima S., Yudasaka M. Size-dependent biodistribution of carbon nanohorns in vivo // Nanomedicine. 2013. Vol. 9, N 5. P. 657–64. doi: 10.1016/j.nano.2012.11.011

[165]

Zhang M, Jasim DA, Ménard-Moyon C, et al. Radiolabeling, whole-body single photon emission computed tomography/computed tomography imaging, and pharmacokinetics of carbon nanohorns in mice. Int J Nanomedicine. 2016;11:3317–3330. doi: 10.2147/IJN.S103162

[166]

Zhang M., Jasim D.A., Ménard-Moyon C., et al. Radiolabeling, whole-body single photon emission computed tomography/computed tomography imaging, and pharmacokinetics of carbon nanohorns in mice // Int J Nanomedicine. 2016. Vol. 11. P. 3317–3330. doi: 10.2147/IJN.S103162

[167]

Matsumura S, Yuge R, Sato S, et al. Ultrastructural localization of intravenously injected carbon nanohorns in tumor. Int J Nanomedicine. 2014;9:3499–3508. doi: 10.2147/IJN.S62688

[168]

Matsumura S., Yuge R., Sato S., et al. Ultrastructural localization of intravenously injected carbon nanohorns in tumor // Int J Nanomedicine. 2014. Vol. 9. P. 3499–3508. doi: 10.2147/IJN.S62688

[169]

Tahara Y, Miyawaki J, Zhang M, et al. Histological assessments for toxicity and functionalization-dependent biodistribution of carbon nanohorns. Nanotechnology. 2011;22(26):265106. doi: 10.1088/0957-4484/22/26/265106

[170]

Tahara Y., Miyawaki J., Zhang M., et al. Histological assessments for toxicity and functionalization-dependent biodistribution of carbon nanohorns // Nanotechnology. 2011. Vol. 22, N 26. ID 265106. doi: 10.1088/0957-4484/22/26/265106

[171]

Zhang M, Tahara Y, Yang M, et al. Quantification of whole body and excreted carbon nanohorns intravenously injected into mice. Adv Healthc Mater. 2014;3(2):239–244. doi: 10.1002/adhm.201300192

[172]

Zhang M., Tahara Y., Yang M., et al. Quantification of whole body and excreted carbon nanohorns intravenously injected into mice // Adv Healthc Mater. 2014. Vol. 3, N 2. P. 239–244. doi: 10.1002/adhm.201300192

[173]

Miyawaki J, Matsumura S, Yuge R, et al. Biodistribution and ultrastructural localization of single-walled carbon nanohorns determined in vivo with embedded Gd2O3 labels. ACS Nano. 2009;3(6):1399–1406. doi: 10.1021/nn9004846

[174]

Miyawaki J., Matsumura S., Yuge R., et al. Biodistribution and ultrastructural localization of single-walled carbon nanohorns determined in vivo with embedded Gd2O3 labels // ACS Nano. 2009. Vol. 3, N 6. P. 1399–1406. doi: 10.1021/nn9004846

[175]

Zhang M, Yang M, Bussy C, et al. Biodegradation of carbon nanohorns in macrophage cells. Nanoscale. 2015;7(7):2834–2840. doi: 10.1039/c4nr06175f

[176]

Zhang M., Yang M., Bussy C., et al. Biodegradation of carbon nanohorns in macrophage cells // Nanoscale. 2015. Vol. 7, N 7. P. 2834–2840. doi: 10.1039/c4nr06175f

[177]

Novoselov KS, Geim AK, Morozov SV, et al. Electric field effect in atomically thin carbon films. Science. 2004;306(5696): 666–669. doi: 10.1126/science.1102896

[178]

Novoselov K.S., Geim A.K., Morozov S.V., et al. Electric field effect in atomically thin carbon films // Science. 2004. Vol. 306, N 5696. P. 666–669. doi: 10.1126/science.1102896

[179]

Chen L, Li J, Chen Z, et al. Toxicological evaluation of graphene-family nanomaterials. J Nanosci Nanotechnol. 2020;20(4):1993–2006. doi: 10.1166/jnn.2020.17364

[180]

Chen L., Li J., Chen Z., et al. Toxicological evaluation of graphene-family nanomaterials // J Nanosci Nanotechnol. 2020. Vol. 20, N 4. P. 1993–2006. doi: 10.1166/jnn.2020.17364

[181]

Jasim DA, Ménard-Moyon C, Bégin D, et al. Tissue distribution and urinary excretion of intravenously administered chemically functionalized graphene oxide sheets. Chem Sci. 2015;6(7): 3952–3964. doi: 10.1039/c5sc00114e

[182]

Jasim D.A., Ménard-Moyon C., Bégin D., et al. Tissue distribution and urinary excretion of intravenously administered chemically functionalized graphene oxide sheets // Chem Sci. 2015. Vol. 6, N 7. P. 3952–3964. doi: 10.1039/c5sc00114e

[183]

Priyadarsini S, Mohanty S, Mukherjee S, et al. Graphene and graphene oxide as nanomaterials for medicine and biology application. Journal of Nanostructure in Chemistry. 2018;8(2):123–137. doi: 10.1007/s40097-018-0265-6

[184]

Priyadarsini, S., Mohanty, S., Mukherjee, S., et al. Graphene and graphene oxide as nanomaterials for medicine and biology application // Journal of Nanostructure in Chemistry. 2018. Vol. 8(2). P. 123–137. doi: 10.1007/s40097-018-0265-6

[185]

Wick P, Louw-Gaume AE, Kucki M, et al. Classification framework for graphene-based materials. Angew Chem Int Ed. 2014;53(30):7714–7718. doi: 10.1002/anie.201403335

[186]

Wick P., Louw-Gaume A.E., Kucki M., et al. Classification framework for graphene-based materials // Angew Chem IntEd. 2014. Vol. 53, N 30. P. 7714–7718. doi: 10.1002/anie.201403335

[187]

Reina G, González-Domínguez JM, Criado A, et al. Promises, facts and challenges for graphene in biomedical applications. Chem Soc Rev. 2017;46(15):4400–4416. doi: 10.1039/c7cs00363c

[188]

Reina G., González-Domínguez J.M., Criado A., et al. Promises, facts and challenges for graphene in biomedical applications // Chem Soc Rev. 2017. Vol. 46, N 15. P. 4400–4416. doi: 10.1039/c7cs00363c

[189]

Yang K, Wan J, Zhang S, et al. In vivo pharmacokinetics, long-term biodistribution, and toxicology of PEGylated graphene in mice. ACS Nano. 2011;5(1):516–522. doi: 10.1021/nn1024303

[190]

Yang K., Wan J., Zhang S., et al. In vivo pharmacokinetics, long-term biodistribution, and toxicology of PEGylated graphene in mice // ACS Nano. 2011. Vol. 5, N 1. P. 516–522. doi: 10.1021/nn1024303

[191]

Mao L, Hu M, Pan B, et al. Biodistribution and toxicity of radio-labeled few layer graphene in mice after intratracheal instillation. Part Fibre Toxicol. 2016;13:7. doi: 10.1186/s12989-016-0120-1

[192]

Mao L., Hu M., Pan B., et al. Biodistribution and toxicity of radio-labeled few layer graphene in mice after intratracheal instillation // Part Fibre Toxicol. 2016. Vol. 13. ID 7. doi: 10.1186/s12989-016-0120-1

[193]

Liu J-H, Yang S-T, Wang H, et al. Effect of size and dose on the biodistribution of graphene oxide in mice. Nanomedicine. 2012;7(12):1801–1812. doi: 10.2217/nnm.12.60

[194]

Liu J.-H., Yang S.-T., Wang H., et al. Effect of size and dose on the biodistribution of graphene oxide in mice // Nanomedicine. 2012. Vol. 7, N 12. P. 1801–1812. doi: 10.2217/nnm.12.60

[195]

Girish CM, Sasidharan A, Gowd GS, et al. Confocal Raman imaging study showing macrophage mediated biodegradation of graphene in vivo. Adv Healthc Mater. 2013;2(11):1489–1500. doi: 10.1002/adhm.201200489

[196]

Girish C.M., Sasidharan A., Gowd G.S., et al. Confocal Raman imaging study showing macrophage mediated biodegradation of graphene in vivo // Adv Healthc Mater. 2013. Vol. 2, N 11. P. 1489–1500. doi: 10.1002/adhm.201200489

[197]

Lacerda L, Russier J, Pastorin G, et al. Translocation mechanisms of chemically functionalised carbon nanotubes across plasma membranes. Biomaterials. 2012;33(11):3334–3343. doi: 10.1016/j.biomaterials.2012.01.024

[198]

Lacerda L., Russier J., Pastorin G., et al. Translocation mechanisms of chemically functionalised carbon nanotubes across plasma membranes // Biomaterials. 2012. Vol. 33, N 11. P. 3334–3343. doi: 10.1016/j.biomaterials.2012.01.024

[199]

Kotchey GP, Allen BL, Vedala H, et al. The enzymatic oxidation of graphene oxide. ACS Nano. 2011;5(3):2098–2108. doi: 10.1021/nn103265h

[200]

Kotchey G.P., Allen B.L., Vedala H., et al. The enzymatic oxidation of graphene oxide // ACS Nano. 2011. Vol. 5, N 3. P. 2098–2108.doi: 10.1021/nn103265h

[201]

Lalwani G, Xing W, Sitharaman B. Enzymatic degradation of oxidized and reduced graphene nanoribbons by lignin peroxidase. J Mater Chem B Mater Biol Med. 2014;2(37):6354–6362. doi: 10.1039/C4TB00976B

[202]

Lalwani G., Xing W., Sitharaman B. Enzymatic degradation of oxidized and reduced graphene nanoribbons by lignin peroxidase // J Mater Chem B Mater Biol Med. 2014. Vol. 2, N 37. P. 6354–6362. doi: 10.1039/C4TB00976B

[203]

Jasim DA, Newman L, Rodrigues AF, et al. The impact of graphene oxide sheet lateral dimensions on their pharmacokinetic and tissue distribution profiles in mice. J Control Release. 2021;338: 330–340. doi: 10.1016/j.jconrel.2021.08.028

[204]

Jasim D.A., Newman L., Rodrigues A.F., et al. The impact of graphene oxide sheet lateral dimensions on their pharmacokinetic and tissue distribution profiles in mice // J Control Release. 2021. Vol. 338. P. 330–340. doi: 10.1016/j.jconrel.2021.08.028

[205]

Chen W, Wang B, Liang S, et al. Renal clearance of grapheme oxide: glomerular filtration or tubular secretion and selective kidney injury association with its lateral dimension. J Nanobiotechnology. 2023;21(1):51. doi: 10.1186/s12951-023-01781-x

[206]

Chen W., Wang B., Liang S., et al. Renalclearanceof grapheme oxide: glomerular filtration or tubular secretion and selective kidney injury association with its lateral dimension // J Nanobiotechnology. 2023. Vol. 21, N 1. ID 51. doi: 10.1186/s12951-023-01781-x

[207]

Tinwala H, Wairkar S. Production, surface modification and biomedical applications of nanodiamonds: A sparkling tool for theranostics. Mater Sci Eng C: Mater Biol Appl. 2019;97:913–931. doi: 10.1016/j.msec.2018.12.073

[208]

Tinwala H., Wairkar S. Production, surface modification and biomedical applications of nanodiamonds: A sparkling tool for theranostics // Mater Sci Eng C: Mater Biol Appl. 2019. Vol. 97. P. 913–931. doi: 10.1016/j.msec.2018.12.073

[209]

Yadav A, Shukla R, Flora SJS. Nanodiamonds: a versatile drug-delivery system in the recent therapeutics scenario. Crit Rev Ther Drug Carrier Syst. 2021;38(4):39–78. doi: 10.1615/CritRevTherDrugCarrierSyst.2021035845

[210]

Yadav A., Shukla R., Flora S.J.S. Nanodiamonds: a versatile drug-delivery system in the recent therapeutics scenario // CritRev Ther Drug Carrier Syst. 2021.Vol. 38, N 4. P. 39–78. doi: 10.1615/CritRevTherDrugCarrierSyst.2021035845

[211]

Vul A, Shenderova O, editors. Detonation nanodiamonds — science and applications. New York: Jenny Stanford Publishing; 2014. 346 p.

[212]

Detonation nanodiamonds — science and applications / Ed. by A. Vul, O. Shenderova. New York: Jenny Stanford Publishing, 2014. 346 p.

[213]

Boruah A, Saikia BK. Synthesis, characterization, properties, and novel applications of fluorescent nanodiamonds. J Fluoresc. 2022;32(3):863–885. doi: 10.1007/s10895-022-02898-2

[214]

Boruah A., Saikia B.K. Synthesis, characterization, properties, and novel applications of fluorescent nanodiamonds // J Fluoresc. 2022. Vol. 32, N 3. P. 863–885. doi: 10.1007/s10895-022-02898-2

[215]

Cheng C-L, Chen C-F, Shaio W-C, et al. The CH stretching features on diamonds of different origins. Diamond Relat Mater. 2005;14(9):1455–1462. doi: 10.1016/j.diamond.2005.03.003

[216]

Cheng C.-L., Chen C.-F., Shaio W.-C., et al. The CH stretching features on diamonds of different origins // Diamond Relat Mater 2005. Vol. 14, N 9. P. 1455–1462. doi: 10.1016/j.diamond.2005.03.003

[217]

Lai L, Barnard AS. Functionalized nanodiamonds for biological and medical applications. J Nanosci Nanotechnol. 2015;15(2): 989–999. doi: 10.1166/jnn.2015.9735

[218]

Lai L., Barnard A.S. Functionalized nanodiamonds for biological and medical applications // J Nanosci Nanotechnol. 2015. Vol. 15, N 2. P. 989–999. doi: 10.1166/jnn.2015.9735

[219]

Baron AV, Puzyr AP, Baron II, Bondar VS. Effects of modified detonation nanodiamonds on the biochemical composition of human blood. Bull Exp Biol Med. 2013;154(6):781–784. doi: 10.1007/s10517-013-2055-y

[220]

Baron A.V., Puzyr A.P., Baron I.I., Bondar V.S. Effects of modified detonation nanodiamonds on the biochemical composition of human blood // Bull Exp Biol Med. 2013. Vol. 154, N 6. P. 781–784. doi: 10.1007/s10517-013-2055-y

[221]

Yuan S-J, Wang C, Xu H-Z, et al. Conjugation with nanodiamonds via hydrazine bond fundamentally alters intracellular distribution and activity of doxorubicin. Int J Pharm. 2021;606:120872. doi: 10.1016/j.ijpharm.2021.120872

[222]

Yuan S.-J., Wang C., Xu H.-Z., et al. Conjugation with nanodiamonds via hydrazine bond fundamentally alters intracellular distribution and activity of doxorubicin // Int J Pharm. 2021. Vol. 606. ID 120872. doi: 10.1016/j.ijpharm.2021.120872

[223]

Tzeng Y-K, Faklaris O, Chang B-M, et al. Superresolution imaging of albumin-conjugated fluorescent nanodiamonds in cells by stimulated emission depletion. Angew Chem Int Ed. 2011;50(100);2262–2265. doi: 10.1002/anie.201007215

[224]

Tzeng Y.-K., Faklaris O., Chang B.-M., et al. Superresolution imaging of albumin-conjugated fluorescent nanodiamonds in cells by stimulated emission depletion // Angew Chem Int Ed. 2011. Vol. 50, N 10. P. 2262–2265. doi: 10.1002/anie.201007215

[225]

Mohan N, Chen C-S, Hsieh H-H, et al. In vivo imaging and toxicity assessments of fluorescent nanodiamonds in Caenorhabditis elegans. Nano Lett. 2010;10(9):3692–3699. doi: 10.1021/nl1021909

[226]

Mohan N., Chen C.-S., Hsieh H.-H., et al. In vivo imaging and toxicity assessments of fluorescent nanodiamonds in Caenorhabditis elegans // NanoLett. 2010. Vol. 10, N 9. P. 3692–3699. doi: 10.1021/nl1021909

[227]

Purtov K, Petunin A, Inzhevatkin E, et al. Biodistribution of different sized nanodiamonds in mice. J Nanosci Nanotechnol. 2015;15(2):1070–1075. doi: 10.1166/jnn.2015.9746

[228]

Purtov K., Petunin A., Inzhevatkin E., et al. Biodistribution of different sized nanodiamonds in mice // J Nanosci Nanotechnol. 2015. Vol. 15, N 2. P. 1070–1075. doi: 10.1166/jnn.2015.9746

[229]

Tsai L-W, Lin Y-C, Perevedentseva E, et al. Nanodiamonds for medical applications; interaction with blood in vitro and in vivo. Int J Mol Sci. 2016;17(7):1111. doi: 10.3390/ijms17071111

[230]

Tsai L.-W., Lin Y.-C., Perevedentseva E., et al. Nanodiamonds for medical applications; interaction with blood in vitro and in vivo // Int J Mol Sci. 2016. Vol. 17, N 7. ID 1111. doi: 10.3390/ijms17071111

[231]

van der Laan K, Hasani M, Zheng T, Schirhagl R. Nanodiamonds for in vivo applications. Small. 2018;14(19):e1703838. doi: 10.1002/smll.201703838

[232]

van der Laan K., Hasani M., Zheng T., Schirhagl R. Nanodiamonds for in vivo applications // Small. 2018. Vol. 14, N 19. ID e1703838. doi: 10.1002/smll.201703838

[233]

Zhang X, Yin J, Kang C, et al. Biodistribution and toxicity of nanodiamonds in mice after intratracheal instillation. Toxicol Lett. 2010;198(2):237–243. doi: 10.1016/j.toxlet.2010.07.001

[234]

Zhang X., Yin J., Kang C., et al. Biodistribution and toxicity of nanodiamonds in mice after intratracheal instillation // Toxicol Lett. 2010. Vol. 198, N 2. P. 237–243. doi: 10.1016/j.toxlet.2010.07.001

[235]

Inzhevatkin EV, Baron AV, Volkova MB, et al. Biodistribution of detonation synthesis nanodiamonds in mice after intravenous administration and some biochemical changes in blood plasma. Bull Exp Biol Med. 2021;172(1):77–73. doi: 10.1007/s10517-021-05335-9

[236]

Inzhevatkin E.V., Baron A.V., Volkova M.B., et al. Biodistribution of detonation synthesis nanodiamonds in mice after intravenous administration and some biochemical changes in blood plasma // Bull Exp Biol Med. 2021. Vol. 172, N 1. P. 77–73. doi: 10.1007/s10517-021-05335-9

[237]

Yuan Y, Chen YW, Liu J-H, et al. Biodistribution and fate of nanodiamonds in vivo. Diam Relat Mater. 2009;18(1):95–100. doi: 10.1016/j.diamond.2008.10.031

[238]

Yuan Y., Chen Y.W., Liu J.-H., et al. Biodistribution and fate of nanodiamonds in vivo // Diam Relat Mater.2009. Vol. 18, N 1. P. 95–100. doi: 10.1016/j.diamond.2008.10.031

[239]

Barone FC, Marcinkiewicz C, Li J, et al. Long-term biocompatibility of fluorescent diamonds-(NV)-Z ~800 nm in rats; survival, morbidity, histopathology, particle distribution and excretion studies (part IV). Int J Nanomedicine. 2019;14:1163–1175. doi: 10.2147/IJN.S189048

[240]

Barone F.C., Marcinkiewicz C., Li J., et al. Long-term biocompatibility of fluorescent diamonds-(NV)-Z ~800 nm in rats; survival, morbidity, histopathology, particle distribution and excretion stu¬dies (part IV) // Int J Nanomedicine. 2019. Vol. 14. P. 1163–1175. doi: 10.2147/IJN.S189048

[241]

Šimková V, Freislebenová H, Neuhöferová E, et al. Coated nanodiamonds interact with tubulin beta-III negative cells of adult brain tissue. Biointerphases. 2020;15(6):061009. doi: 10.1116/6.0000525

[242]

Šimková V., Freislebenová H., Neuhöferová E., et al. Coated nanodiamonds interact with tubulin beta-III negative cells of adult brain tissue // Biointerphases. 2020. Vol. 15, N 6. ID 061009. doi: 10.1116/6.0000525

[243]

Prabhakar N, Khan MH, Peurla M, et al. Intracellular trafficking of fluorescent nanodiamonds and regulation of their cellular toxicity. ACS Omega. 2017;2(6):2689–2693. doi: 10.1021/acsomega.7b00339

[244]

Prabhakar N., Khan M.H., Peurla M., et al. Intracellular trafficking of fluorescent nanodiamonds and regulation of their cellular toxicity // ACS Omega. 2017. Vol. 2, N 6. P. 2689–2693. doi: 10.1021/acsomega.7b00339

[245]

Cheng C-Y, Perevedentseva E, Tu J-S, et al. Direct and in vitro observation of growth hormone receptor molecules in A549 human lung epithelial cells by nanodiamonds labeling. Appl Phys Lett. 2007;90(16):163903. doi: 10.1063/1.2727557

[246]

Cheng C.-Y., Perevedentseva E., Tu J.-S., et al. Direct and in vitro observation of growth hormone receptor molecules in A549 human lung epithelial cells by nanodiamonds labeling // Appl Phys Lett. 2007. Vol. 90, N 16. ID 163903. doi: 10.1063/1.2727557

[247]

Chauhan S, Jain N, Nagaich U. Nanodiamonds with powerful ability for drug delivery and biomedical applications; Recent updates on in vivo study and patents. J Pharm Anal. 2020;10(1):1–12. doi: 10.1016/j.jpha.2019.09.003

[248]

Chauhan S., Jain N., Nagaich U. Nanodiamonds with powerful ability for drug delivery and biomedical applications; Recent updates on in vivo study and patents // J Pharm Anal. 2020. Vol. 10, N 1. P. 1–12. doi: 10.1016/j.jpha.2019.09.003

[249]

Morita A, Hamoh T, Martinez FPP, et al. The fate of lipid-coated and uncoated fluorescent nanodiamonds during cell division in yeast. Nanomaterials. 2020;10(3):516. doi: 10.3390/nano10030516

[250]

Morita A., Hamoh T., Martinez F.P.P., et al. The fate of lipid-coated and uncoated fluorescent nanodiamonds during cell division in yeast // Nanomaterials. 2020. Vol. 10, N 3. ID 516. doi: 10.3390/nano10030516

[251]

Hodek P, Janscák P, Anzenbacher P, et al. Metabolism of diamantane by rat liver microsomal cytochromes P-450. Xenobiotica. 1988;18(10):1109–1118. doi: 10.3109/00498258809042233

[252]

Hodek P., Janscák P., Anzenbacher P., et al. Metabolism of diamantane by rat liver microsomal cytochromes P-450 // Xenobiotica. 1988. Vol. 18, N 10. P. 1109–1118. doi: 10.3109/00498258809042233

[253]

Santos AC, Morais F, Simões A, et al. Nanotechnology for the development of new cosmetic formulations. Expert Opin Drug Deliv. 2019;16(4):313–330. doi: 10.1080/17425247.2019.1585426

[254]

Santos A.C., Morais F., Simões A., et al. Nanotechnology for the development of new cosmetic formulations // Expert Opin Drug Deliv. 2019. Vol. 16, N 4. P. 313–330. doi: 10.1080/17425247.2019.1585426

[255]

Gu M, Toh TB, Hooi L, et al. Nanodiamond-mediated delivery of a G9a inhibitor for hepatocellular carcinoma therapy. ACS Appl Mater Interfaces. 2019;11(49):45427–45441. doi: 10.1021/acsami.9b16323

[256]

Gu M., Toh T.B., Hooi L., et al. Nanodiamond-mediated delivery of a G9a inhibitor for hepatocellular carcinoma therapy // ACS Appl Mater Interfaces. 2019. Vol. 11, N 49. P. 45427–45441. doi: 10.1021/acsami.9b16323

[257]

Kumari S, Singh MK, Singh SK, et al. Nanodiamonds activate blood platelets and induce thromboembolism. Nanomedicine (London). 2014;9(3):427–440. doi: 10.2217/nnm.13.23

[258]

Kumari S., Singh M.K., Singh S.K., et al. Nanodiamonds activate blood platelets and induce thromboembolism // Nanomedicine (London). 2014. Vol. 9, N 3. P. 427–440. doi: 10.2217/nnm.13.23

[259]

Yang M, Zhang M. Biodegradation of carbon nanotubes by macrophages. Front Mater. 2019;6:225. doi: 10.3389/fmats.2019.00225

[260]

Yang M., Zhang M. Biodegradation of carbon nanotubes by macrophages // Front Mater.2019. Vol. 6. ID 225. doi: 10.3389/fmats.2019.00225

[261]

Tsuji JS, Maynard AD, Howard PC, et al. Research strategies for safety evaluation of nanomaterials. Part IV: risk assessment of nanoparticles. Toxicol Sci.2006;89(1):42–50. doi: 10.1093/toxsci/kfi339

[262]

Tsuji J.S., Maynard A.D., Howard P.C., et al. Research strategies for safety evaluation of nanomaterials. Part IV: risk assessment of nanoparticles // Toxicol Sci. 2006. Vol. 89, N 1. P. 42–50. doi: 10.1093/toxsci/kfi339

[263]

Lens M. Use of fullerenes in cosmetics. Recent Pat Biotechnol. 2009;3(2):118–123. doi: 10.2174/187220809788700166

[264]

Lens M. Use of fullerenes in cosmetics // Recent Pat Biotechnol. 2009. Vol. 3, N 2. P. 118–123. doi: 10.2174/187220809788700166

[265]

Paramasivam G, Sanmugam A, Palem VV, et al. Nanomaterials for detection of biomolecules and delivering therapeutic agents in theragnosis: A review. Int J Biol Macromol. 2023;254(Pt 2):127904. doi:10.1016/j.ijbiomac.2023.127904

[266]

Paramasivam G., Sanmugam A., Palem V.V., et al. Nanomaterials for detection of biomolecules and delivering therapeutic agents in theragnosis: A review // Int J Biol Macromol. 2023. Vol. 254, Pt 2. ID 127904. doi: 10.1016/j.ijbiomac.2023.127904

[267]

Kopcha WP, Biswas R, Sun Y, et al. Water-soluble endohedral metallofullerenes: new horizons for biomedical applications. Chem Commun. (Cambridge, England). 2023;59(91):13551–13561. doi: 10.1039/d3cc03603k

[268]

Kopcha W.P., Biswas R., Sun Y., et al. Water-soluble endohedral metallofullerenes: new horizons for biomedical applications // Chem Commun. (Cambridge, England). 2023. Vol. 59, N 91. P. 13551–13561. doi: 10.1039/d3cc03603k

[269]

Lumley JA, Desai P, Wang J, et al. The derivation of a matched molecular pairsbased ADME/tox knowled gebase for compound optimization. J Chem Inf Model. 2020;60(10):4757–4771. doi: 10.1021/acs.jcim.0c00583

[270]

Lumley J.A., Desai P., Wang J., et al. The derivation of a matched molecular pairs based ADME / tox knowled gebase for compound optimization // J Chem Inf Model. 2020. Vol. 60, N 10. P. 4757–4771. doi: 10.1021/acs.jcim.0c00583

RIGHTS & PERMISSIONS

Eco-Vector

AI Summary AI Mindmap
PDF (1728KB)

183

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/