Targeted delivery of the domestic anticancer drug from the group of aziridine triazines (literature review)
Olesya A. Belyaeva , Dmitrii A. Kachanov , Alexander N. Stukov , Grigory V. Tochilnikov , Andrey V. Pavlysh , Yuliya G. Zmitrichenko , Valerii A. Alexandrov , Tatiana Yu. Semiglazova , Aleksey M. Belyaev
Reviews on Clinical Pharmacology and Drug Therapy ›› 2024, Vol. 22 ›› Issue (2) : 131 -144.
Targeted delivery of the domestic anticancer drug from the group of aziridine triazines (literature review)
Currently, the targeted delivery of anticancer drugs can significantly increase the effectiveness of therapy, reduce the side effects of systemic chemotherapy, and improve the quality of patients with cancer. This review aimed to summarize data about the domestic antitumor drug 2,4-bis(1-aziridinyl)-6-(2,2-dimethyl-5-hydroxymethyl-1,3-dioxan-5-yl)amino-1,3,5-thriazine (dioxadet), its nanoforms, possibilities of its use in the clinic, and main antitumor nanodrugs clinically introduced in recent years. Library databases (eLibrary, PubMed, CyberLeninka, ResearchGate, Springer, Wiley Online Library, and Elsevier) were searched for relevant information. The literature review summarizes data on the preclinical trials of dioxadet and provides information on its nanoforms, such as nanogels, nanodiamonds, silica particles, and copolymers with lactic and caproic acids. New drug nanoforms open up opportunities to reduce drug side effects and systemic toxicity, maintain optimal therapeutic concentrations, increase the drug circulation time in the blood, and control its release. The possibility of using chemopreparation cytotoxic doses is the main advantage of new nanodrugs. To date, approximately 20 antitumor nanodrugs have been introduced in clinical practice, and some nanodrugs are undergoing preclinical trials or are in various phases of clinical trials. Thus, the development of a new effective nanoform, i.e., dioxadet, makes it possible to ensure targeted drug delivery in higher cytotoxic doses to target cells, increase selective action, and reduce cytostatic toxicity to normal cells.
aziridinylthriazine (nanogel, nanodiamonds, copolymers) / anticancer nanodrugs
| [1] |
Orlova OL, Nikolaeva LL, Korol LA, et al. Modern onco drug for internal use. Pharmacy and Pharmacology. 2018;6(5):440–461. EDN: YNFURN doi: 10.19163/2307-9266-2018-6-5-440-461 |
| [2] |
Орлова О.Л., Николаева Л.Л., Король Л.А., и др. Современные онкопрепараты для внутреннего применения // Фармация и фармакология. 2018. Т. 6, № 5. С. 440–461. EDN: YNFURN doi: 10.19163/2307-9266-2018-6-5-440-461 |
| [3] |
Gao X, Cui Y, Levenson RM, et al. In vivo cancer targeting and imaging with semiconductor quantum dots. Nat Biotechnol. 2004;22(8):969–976. doi: 10.1038/nbt994 |
| [4] |
Gao X., Cui Y., Levenson R.M., et al. In vivo cancer targeting and imaging with semiconductor quantum dots // Nat Biotechnol. 2004. Vol. 22, N 8. P. 969–976. doi: 10.1038/nbt994 |
| [5] |
Gaucher G, Dufresne M-H, Sant VP, et al. Block copolymer micelles: preparation, characterization and application in drug delivery. J Control Release. 2005;109(1–3):169–188. doi: 10.1016/j.jconrel.2005.09.034 |
| [6] |
Gaucher G., Dufresne M.-H., Sant V.P., et al. Block copolymer micelles: preparation, characterization and application in drug delivery // J Control Release. 2005. Vol. 109, N 1–3. P. 169–188. doi: 10.1016/j.jconrel.2005.09.034 |
| [7] |
Borisov AE, Gershanovich ML, Zemlyanoy VP, et al. Use of dioxadet for hepatic artery chemoembolisation in primary and metastatic liver cancer. Problems in oncology. 1998;44(6):714–717. (In Russ.) |
| [8] |
Борисов А.Е., Гершанович М.Л., Земляной В.П., и др. Использование диоксадэта для химиоэмболизации печеночной артерии при первичном и метастатическом раке печени // Вопросы онкологии. 1998. Т. 44, № 6. С. 714–717. |
| [9] |
Granov AM, Gorelov AI, Gershanovich ML, et al. Results of endovascular interventions (embolisation and chemoembolisation) in the treatment of operable and advanced renal cancer. Problems in oncology. 1998;44(6):711–714. (In Russ.) |
| [10] |
Гранов A.M., Горелов А.И., Гершанович М.Л., и др. Результаты применения эндоваскулярных вмешательств (эмболизации и химиоэмболизации) в лечении операбельного и распространенного рака почки // Вопросы онкологии. 1998. Т. 44, № 6. С. 711–714. |
| [11] |
Sherer C, Snape TJ. Heterocyclic scaffolds as promising anticancer agents against tumours of the central nervous system: Exploring the scope of indole and carbazole derivatives. Eur J Med Chem. 2015;97:552–560. doi: 10.1016/j.ejmech.2014.11.007 |
| [12] |
Sherer C., Snape T.J. Heterocyclic scaffolds as promising anticancer agents against tumours of the central nervous system: Exploring the scope of indole and carbazole derivatives // Eur J Med Chem. 2015. Vol. 97. P. 552–560. doi: 10.1016/j.ejmech.2014.11.007 |
| [13] |
Kharb R. Updates on receptors targeted by heterocyclic scaffolds: New horizon in anticancer drug development. Anticancer Agents Med Chem. 2021;21(11):1338–1349. doi: 10.2174/1871520620666200619181102 |
| [14] |
Kharb R. Updates on receptors targeted by heterocyclic scaffolds: New horizon in anticancer drug development // Anticancer Agents Med Chem. 2021. Vol. 21, N 11. P. 1338–1349. doi: 10.2174/1871520620666200619181102 |
| [15] |
Martins P, Jesus J, Santos S, et al. Heterocyclic anticancer compounds: recent advances and the paradigm shift towards the use of nanomedicine’s toolbox. Molecules. 2015;20(9):16852–16891. doi: 10.3390/molecules200916852 |
| [16] |
Martins P., Jesus J., Santos S., et al. Heterocyclic anticancer compounds: recent advances and the paradigm shift towards the use of nanomedicine’s tool box // Molecules. 2015. Vol. 20, N 9. P. 16852–16891. doi: 10.3390/molecules200916852 |
| [17] |
Singla P, Luxami V, Paul K. Triazine as a promising scaffold for its versatile biological behavior. Eur J Med Chem. 2015;102:39–57. doi: 10.1016/j.ejmech.2015.07.037 |
| [18] |
Singla P., Luxami V., Paul K. Triazine as a promising scaffold for its versatile biological behavior // Eur J Med Chem. 2015. Vol. 102. P. 39–57. doi: 10.1016/j.ejmech.2015.07.037 |
| [19] |
Cascioferro S, Parrino B, Spanò V, et al. 1,3,5-Triazines: A promising scaffold for anticancer drugs development. Eur J Med Chem. 2017;142:523–549. doi: 10.1016/j.ejmech.2017.09.035 |
| [20] |
Cascioferro S., Parrino B., Spanò V., et al. 1,3,5-Triazines: A promising scaffold for anticancer drugs development // Eur J Med Chem. 2017. Vol. 142. P. 523–549. doi: 10.1016/j.ejmech.2017.09.035 |
| [21] |
Ivin BA, Kreis BO, Korsakov MV, et al. Results of the study of ethyleniminotriazines. Problems in oncology. 1990;36(1):6–11. EDN: XBDBJH (In Russ.) |
| [22] |
Ивин Б.А., Крайз Б.О., Корсаков М.В., и др. Итоги изучения этилениминотриазинов // Вопросы онкологии. 1990. Т. 36, № 1. С. 6–11. EDN: XBDBJH |
| [23] |
Gershanovich ML, Filov VA, Kotova DG, et al. Results of a co-operative clinical study of the phase II antitumour drug dioxadat. Problems in oncology. 1998;44(2):216–220. (In Russ.) |
| [24] |
Гершанович М.Л., Филов В.А., Котова Д.Г., и др. Результаты кооперированного клинического изучения противоопухолевого препарата Диоксадэт по II фазе // Вопросы онкологии. 1998. Т. 44, № 2. С. 216–220. |
| [25] |
Bespalov VG, Stukov AN, Konkov SA, et al. Antitumour activity of ethyleniminotriazine in preclinical studies. Medline Express. 2011;2(3):53–57. (In Russ.) |
| [26] |
Беспалов В.Г., Стуков А.Н., Коньков С.А., и др. Противоопухолевая активность этилениминотриазина в доклинических исследованиях // Медлайн экспресс. 2011. Т. 2, № 3. С. 53–57. |
| [27] |
Bespalov VG, Belyaeva OA, Panchenko AV, et al. Comparative study of antitumour effects of cytostatics on the model of ascites ovarian tumour. Medline Express. 2011;2(3):48–52. (In Russ.) |
| [28] |
Беспалов В.Г., Беляева О.А., Панченко А.В., и др. Сравнительное изучение противоопухолевых эффектов цитостатиков на модели асцитной опухоли яичника // Медлайн экспресс. 2011. Т. 2, № 3. С. 48–52. |
| [29] |
Voeikov R, Abakumova T, Grinenko N, et al. Dioxadet-loaded nanogels as a potential formulation for glioblastoma treatment. J Pharm Investig. 2017;47(1):75–83. doi:10.1007/s40005-016-0294-4 |
| [30] |
Voeikov R., Abakumova T., Grinenko N., et al. Dioxadet-loaded nanogels as a potential formulation for glioblastoma treatment // J Pharm Investig. 2017. Vol. 47, N 1. P. 75–83. doi:10.1007/s40005-016-0294-4 |
| [31] |
Korsakov MV, Filov VA, Kreis BO, et al. Model selection and estimation of parameters of pharmacokinetics of dioscadetine. Pharmaceutical Chemistry Journal. 1985;19(10):1175–1179. (In Russ.) |
| [32] |
Корсаков М.В., Филов В.А., Крайз Б.О., и др. Выбор модели и оценка параметров фармакокинетики диоскадэта // Химико-фармацевтический журнал. 1985. Т. 19, № 10. С. 1175–1179. |
| [33] |
Stukov AN, Korsakov MV, Khrapova TN, et al. Effect of dioxadet on tumours transplanted into the brain. Problems in oncology. 1986;32(10):64–67. (In Russ.) |
| [34] |
Стуков А.Н., Корсаков М.В., Храпова Т.Н., и др. Влияние диоксадэта на опухоли, перевитые в головной мозг // Вопросы онкологии. 1986. Т. 32, № 10. С. 64–67. |
| [35] |
Ivin BA, Kreis BO, Malyugina LL, et al. Synthesis, structure, antitumour activity and toxicity of ethyleniminotriazines in experiment and clinic. In: Drug therapy of tumours in experiment and clinic. Leningrad: Prof. N.N. Petrov Research Institute of Oncology, 1983. P. 6–59. |
| [36] |
Ивин Б.А., Крайз Б.О., Малюгина Л.Л., и др. Синтез, строение, противоопухолевая активность и токсичность этилениминотриазинов в эксперименте и клинике. В кн.: Лекарственная терапия опухолей в эксперименте и клинике. Ленинград: НИИ онкологии им. проф. Н.Н. Петрова, 1983. С. 6–59. |
| [37] |
Filov VA, Stukov AN, Malyugina LL, Ivin BA. Study of antitumor activity and toxicity of dioxadet. Experimental oncology. 1996;18(1):84–86. EDN: MOTFCR |
| [38] |
Ивин Б.А., Малюгина Л.Л., Филов В.А., Стуков А.Н. Изучение противоопухолевой активности и токсичности диоксадэта // Экспериментальная онкология. 1996.Т. 18, № 1. С. 84–86. EDN: MOTFCR |
| [39] |
Bespalov VG, Kireeva GS, Belyaeva OA, et al. Experimental study of antitumour activity and effects on leukocyte count of intraperitoneal administration and Hyperthermic Intraperitoneal Chemoperfusion (HIPEC) with dioxadet in a rat model of ovarian cancer. J Chemother. 2016;28(3):203–209. doi: 10.1179/1973947815y.0000000040 |
| [40] |
Bespalov V.G., Kireeva G.S., Belyaeva O.A., et al. Experimental study of antitumour activity and effects on leukocyte count of intraperitoneal administration and Hyperthermic Intraperitoneal Chemoperfusion (HIPEC) with dioxadet in a rat model of ovarian cancer // J Chemother. 2016. Vol. 28, N 3. P. 203–209. doi: 10.1179/1973947815y.0000000040 |
| [41] |
Borisov AE, Gershanovich ML, Zemlyanoy VP, et al. Use of dioxadet in chemoembolisation of hepatic artery in primary and metastatic liver cancer. Problems in oncology. 1998;44(6):714–717. (In Russ.) |
| [42] |
Борисов А.Е., Гершанович М.Л., Земляной В.П., и др. Использование диоксадета при химиоэмболизации печеночной артерии при первичном и метастатическом раке печени // Вопросы онкологии. 1998. Т. 44. С. 714–717. |
| [43] |
Zhao Z, Ukidve A, Kim J, Mitragotri S. Targeting strategies for tissue-specific drug delivery. Cell. 2020;181(1):151–167. doi: 10.1016/j.cell.2020.02.001 |
| [44] |
Zhao Z., Ukidve A., Kim J., Mitragotri S. Targeting strategies for tissue-specific drug delivery // Cell. 2020. Vol. 181, N 1. P. 151–167. doi: 10.1016/j.cell.2020.02.001 |
| [45] |
Sanna V, Sechi M. Therapeutic potential of targeted nanoparticles and perspective on nanotherapies. ACS Med Chem Lett. 2020;11(6):1069–1073. doi: 10.1021/acsmedchemlett.0c00075. |
| [46] |
Sanna V., Sechi M. Therapeutic potential of targeted nanoparticles and perspective on nanotherapies // ACS Med Chem Lett. 2020. Vol. 11, N 6. P. 1069–1073. doi: 10.1021/acsmedchemlett.0c00075. |
| [47] |
Raj S, Kumar D. Biochemical toxicology: Heavy metals and nanomaterials. In: Ince M, Ince OK, Ondrasek G, editors. Biochemical toxicology — heavy metals and nanomaterials. London: IntechOpen; 2020. 230 p. doi: 10.5772/intechopen.90928 |
| [48] |
Raj S., Kumar D. Biochemical toxicology: Heavy metals and nanomaterials. В кн.: Biochemical toxicology — heavy metals and nanomaterials / Ince M., Ince O.K., Ondrasek G., editors. London: IntechOpen, 2020. 230 p. doi: 10.5772/intechopen.90928 |
| [49] |
Nirmala MJ, Kizhuveetil U, Johnson A, et al. Cancer nanomedicine: a review of nano-therapeutics and challenges ahead. R Soc Chem. 2023;13(13):8606–8629. doi: 10.1039/d2ra07863e |
| [50] |
Nirmala M.J., Kizhuveetil U., Johnson A., et al. Cancer nanomedicine: a review of nano-therapeutics and challenges ahead // R Soc Chem. 2023. Vol. 13, N 13. P. 8606–8629. doi: 10.1039/d2ra07863e |
| [51] |
Senapati S, Mahanta AK, Kumar S, Maiti P. Controlled drug delivery vehicles for cancer treatment and their performance. Signal Transduct Target Ther. 2018;3(7):1038. doi: 10.1038/s41392-017-0004-3 |
| [52] |
Senapati S., Mahanta A.K., Kumar S., Maiti P. Controlled drug delivery vehicles for cancer treatment and their performance // Signal Transduct Target Ther. 2018. Vol. 3, N 7. ID 1038. doi: 10.1038/s41392-017-0004-3 |
| [53] |
Singh AK. Engineered nanoparticles: structure, properties and mechanisms of toxicity. Boston: Academic Press; 2016. 544 p. doi: 10.1016/C2013-0-18974-X |
| [54] |
Singh A.K. Engineered nanoparticles: structure, properties and mechanisms of toxicity. Boston: Academic Press, 2016. 544 p. doi: 10.1016/C2013-0-18974-X |
| [55] |
Al-Zoubi MS, Al-Zoubi RM. Nanomedicine tactics in cancer treatment: Challenge and hope. Crit Rev Oncol Hematol. 2022;174:103677. doi: 10.1016/j.critrevonc.2022.103677 |
| [56] |
Al-Zoubi M.S., Al-Zoubi R.M. Nanomedicine tactics in cancer treatment: Challenge and hope // Crit Rev Oncol Hematol. 2022. Vol. 174. ID 103677. doi: 10.1016/j.critrevonc.2022.103677 |
| [57] |
Beltran-Gracia E, Lopez-Camacho A, Higuera-Ciapara I, et al. Nanomedicine review: clinical developments in liposomal applications. Cancer Nanotechnol. 2019;10(1):11. doi: 10.1186/s12645-019-0055-y |
| [58] |
Beltran-Gracia E., Lopez-Camacho A., Higuera-Ciapara I., et al. Nanomedicine review: clinical developments in liposomal applications // Cancer Nanotechnol. 2019. Vol. 10, N 1. ID 11. doi: 10.1186/s12645-019-0055-y |
| [59] |
Rommasi F, Esfandiari N. Liposomal nanomedicine: Applications for drug delivery in cancer therapy. Nanoscale Res Lett. 2021;16(1):95. doi: 10.1186/s11671-021-03553-8 |
| [60] |
Rommasi F., Esfandiari N. Liposomal nanomedicine: Applications for drug delivery in cancer therapy // Nanoscale Res Lett. 2021. Vol. 16, N 1. ID95. doi: 10.1186/s11671-021-03553-8 |
| [61] |
Karabasz A, Bzowska M, Szczepanowicz K. Biomedical applications of multifunctional polymeric nanocarriers: A review of current literature. Int J Neurol. 2020;15:8673–8696. doi: 10.2147/IJN.S231477 |
| [62] |
Karabasz A., Bzowska M., Szczepanowicz K. Biomedical applications of multifunctional polymeric nanocarriers: A review of current literature // Int J Neurol. 2020. Vol. 15. P. 8673–8696. doi: 10.2147/IJN.S231477 |
| [63] |
Kedrova AG, Krasilnikov SE, Astakhov DA, Kosyy VV. Micellar paclitaxel in the treatment of patients with tumors of the female reproductive system. Tumors of female reproductive system. 2019;15(3): 37–43. EDN: QHILRK doi: 10.17650/1994-4098-2019-15-3-37-43 |
| [64] |
Кедрова А.Г., Красильников С.Э., Астахов Д.А., Косый В.В. Мицеллярный паклитаксел в лечении больных с опухолями женской репродуктивной системы // Опухоли женской репродуктивной системы. 2019. Т. 15, № 3. С. 37–43. EDN: QHILRK doi: 10.17650/1994-4098-2019-15-3-37-43 |
| [65] |
Kim T-Y, Kim D-W, Chung J-Y, et al. Phase I and pharmacokinetic study of Genexol-PM, a cremophor-free, polymeric micelle-formulated paclitaxel, in patients with advanced malignancies. Clin Cancer Res. 2004;10(11):3708–3716. doi: 10.1158/1078-0432.ccr-03-0655 |
| [66] |
Kim T.-Y., Kim D.-W., Chung J.-Y., et al. Phase I and pharmacokinetic study of Genexol-PM, a cremophor-free, polymeric micelle-formulated paclitaxel, in patients with advanced malignancies // Clin Cancer Res. 2004. Vol. 10, N 11. P. 3708–3716. doi: 10.1158/1078-0432.ccr-03-0655 |
| [67] |
Kim SC, Kim DW, Shim YH, et al. In vivo evaluation of polymeric micellar paclitaxel formulation: toxicity and efficacy. J Control Release. 2001;72(1–3):191–202. doi: 10.1016/s0168-3659(01)00275-9 |
| [68] |
Kim S.C., Kim D.W., Shim Y.H., et al. In vivo evaluation of polymeric micellar paclitaxel formulation: toxicity and efficacy // J Control Release. 2001. Vol. 72, N 1–3. P. 191–202. doi: 10.1016/s0168-3659(01)00275-9 |
| [69] |
Quoc TH, Jin M. P1.01–31 Weekly regimen of PAXUS-PM, a novel cremophorfree, with carboplatin in patients with advanced non-small-cell lung cancer in Vietnam. J Thor Oncol. 2018;13(10S): 471–472. doi: 10.1016/j.jtho.2018.08.587 |
| [70] |
Quoc T.H., Jin M. P1.01–31 Weekly regimen of PAXUS-PM, a novel cremophorfree, with carboplatin in patients with advanced non-small-cell lung cancer in Vietnam // J Thor Oncol. 2018. Vol. 13, N 10S. P. 471–472. doi: 10.1016/j.jtho.2018.08.587 |
| [71] |
aprin AD, Starinsky BB, Shakhzadova AO. Malignant neoplasms in Russia in 2021 (morbidity and mortality). Moscow: P.A. Herzen MNIOI — branch of NMC Radiology of the Ministry of Health of Russia; 2022. 252 p. (In Russ.) |
| [72] |
Каприн А.Д., Старинский В.В., Шахзадова А.О. Злокачественные новообразования в России в 2021 году (заболеваемость и смертность). Москва: МНИОИ им. П.А. Герцена — филиал ФГБУ «НМИЦ радиологии» Минздрава России, 2022. 252 с. |
| [73] |
PDQ Adult Treatment Editorial Board. Ovarian, fallopian tube, and peritoneal cancer: Statistics. Available from: https://www.ncbi.nlm.nih.gov/books/NBK66007/ |
| [74] |
PDQ Adult Treatment Editorial Board. Ovarian, fallopian tube, and peritoneal cancer: Statistics. Режим доступа: https://www.ncbi.nlm.nih.gov/books/NBK66007/ |
| [75] |
Lu J, Liong M, Li Z, et al. Biocompatibility, biodistribution, and drug-delivery efficiency of mesoporous silica nanoparticles for cancer therapy in animals. Small. 2010;6(16):1794–1805. doi: 10.1002/smll.201000538. |
| [76] |
Lu J., Liong M., Li Z., et al. Biocompatibility, biodistribution, and drug-delivery efficiency of mesoporous silica nanoparticles for cancer therapy in animals // Small. 2010. Vol. 6, N 16. P. 1794–1805. doi: 10.1002/smll.201000538. |
| [77] |
Bagwe RP, Hilliard LR, Tan W. Surface modification of silica nanoparticles to reduce aggregation and nonspecific binding. Langmuir. 2006;22(9):4357–4362. doi: 10.1021/la052797j |
| [78] |
Bagwe R.P., Hilliard L.R., Tan W. Surface modification of silica nanoparticles to reduce aggregation and nonspecific binding // Langmuir. 2006. Vol. 22, N 9. P. 4357–4362. doi: 10.1021/la052797j |
| [79] |
Lin W, Huang Y-w, Zhou X-D, Ma Y. In vitro toxicity of silica nanoparticles in human lung cancer cells. Toxicol Appl Pharmacol. 2006;217(3):252–259. doi: 10.1016/j.taap.2006.10.004 |
| [80] |
Lin W., Huang Y.-w., Zhou X.-D., Ma Y. In vitro toxicity of silica nanoparticles in human lung cancer cells // Toxicol Appl Pharmacol. 2006. Vol. 217, N 3. P. 252–259. doi: 10.1016/j.taap.2006.10.004 |
| [81] |
Berdichevsky GM, Lopatina AS. Effect of conjugates of nanodiamonds with cytostatics doxorubicin and dioxadet on the functional activity of platelets. Actual problems of biomedicine. In: Vlasov TD, editor. Proceedings of the XXVII All-Russian conferences conferences of young scientists with international participation. Saint Petersburg; 2021 March 25–26. Saint Petersburg: Pavlov University; 2021. P. 209. (In Russ.) |
| [82] |
Бердичевский Г.М., Лопатина А.С. Влияние конъюгатов наноалмазов с цитостатиками доксорубицином и диоксадэтом на функциональную активность тромбоцитов. Актуальные проблемы биомедицины. В кн.: Материалы XXVII Всероссийской конференции молодых ученых с международным участием / под ред. Т.Д. Власова. Санкт-Петербург; 25–26 марта 2021 г. Санкт-Петербург: РИЦ ПСПбГМУ, 2021. С. 209. |
| [83] |
Berdichevskiy GM, Vasina LV, Ageev SV, et al. A comprehensive study of biocompatibility of detonation nanodiamonds. J Mol Liq. 2021;323:115763–115777. doi: 10.1016/j.molliq.2021.115763 |
| [84] |
Berdichevskiy G.M., Vasina L.V., Ageev S.V., et al. A comprehensive study of biocompatibility of detonation nanodiamonds // J Mol Liq. 2021. Vol. 323. P. 115763–115777. doi: 10.1016/j.molliq.2021.115763 |
| [85] |
Berdichevskiy GM, Vasina LV, Galkin MA, et al. Investigation of the effect of detonation nanodiamonds and their conjugates with doxorubicin and dioxadet on the mitochondrial membrane. The Bulletin of Irkutsk State University. Series Biology. Ecology. 2022;41:3–18. EDN: JYURTG doi: 10.26516/2073-3372.2022.41.3 |
| [86] |
Бердичевский Г.М., Васина Л.В., Галкин М.А., и др. Изучение влияния детонационных наноалмазов и их конъюгатов с доксорубицином и диоксадэтом на мембрану митохондрий // Известия Иркутского государственного университета. Серия «Биология. Экология». 2022. Т. 41. С. 3–18. EDN: JYURTG doi: 10.26516/2073-3372.2022.41.3 |
| [87] |
Berdichevsky GM. Investigation of cytotoxic properties of conjugates of nanodiamonds with antitumour drugs (doxorubicin and dioxadet). In: Matveeva IV, Abalenikhina YV, Marsyanova SA, editors. Proceedings of the All-Russian conferences with international participations: “Biochemical scientific readings in memory of academician of the Russian Academy of Sciences E.A. Stroev”. Ryazan; 2022 Jan 26–27. Ryazan; 2022. P. 102. (In Russ.) |
| [88] |
Бердичевский Г.М. Исследование цитотоксических свойств конъюгатов наноалмазов с противоопухолевыми препаратами (доксорубицин и диоксадэт). В кн.: Сборник материалов Всероссийской научно-практической конференции с международным участием: «Биохимические научные чтения памяти академика РАН Е.А. Строева» / под ред. И.В. Матвеевой, Ю.В. Абаленихиной, Ю.А. Марсяновой. Рязань; 26–27 января 2022 г. Рязань, 2022. С. 102. |
| [89] |
Fan D, Cao Y, Cao M, et al. Nanomedicine in cancer therapy. Signal Transduct Target Ther. 2023;8:293. doi: 10.1038/s41392-023-01536-y |
| [90] |
Fan D., Cao Y., Cao M., et al. Nanomedicine in cancer therapy // Signal Transduct Target Ther. 2023. Vol. 8. ID 293. doi: 10.1038/s41392-023-01536-y |
| [91] |
Bronich TK. Polymeric nanogels: new biomaterials for cancer drug delivery. Bulletin of Kazan Technological University. 2014;17(3):175–178. EDN: RXMGBP (In Russ.) |
| [92] |
Бронич Т.К. Полимерные наногели: новые биоматериалы для доставки лекарств от рака // Вестник Казанского технологического университета. 2014. Т. 17, № 3. С. 175–178. EDN: RXMGBP |
| [93] |
Voeikov RV, Nukolova NV, Aleksashkin AD, et al. Loading of nanogels with antitumour drugs and study of their physicochemical properties. In: Andreyev AI, Andriyanov AV, Antipova EA, editors. International youth scientific forum “Lomonosov-2014”. Moscow: MAKS Press; 2014. (In Russ.) |
| [94] |
Воейков Р.В., Нуколова Н.В., Алексашкин А.Д., и др. Загрузка наногелей противоопухолевыми препаратами и изучение их физико-химических свойств. В кн.: Международный молодежный научный форум «Ломоносов-2014» / под ред. А.И. Андреева, А.В. Андриянова, Е.А. Антипова. Москва: МАКС Пресс, 2014. |
| [95] |
Yokoyama M, Miyauchi M, Yamada N, Okano T. Characterization and anticancer activity of the micelle-forming polymeric anticancer drug adryamicin-conjugated poly(ethylene glycol)-poly(aspartic acid) block copolymer. Cancer Res. 1990;50:1700–1703. |
| [96] |
Yokoyama M., Miyauchi M., Yamada N., Okano T. Characterization and anticancer activity of the micelle-forming polymeric anticancer drug adryamicin-conjugated poly(ethylene glycol)-poly(aspartic acid) block copolymer // Cancer Res. 1990. Vol. 50. P. 1700–1703. |
| [97] |
Yokoyama M, Okano T, Sakurai Y, et al. Introduction of cisplatin into polymeric micelle. J Control Release. 1996;39(2–3): 351–356. doi: 10.1016/0168-3659(95)00165-4 |
| [98] |
Yokoyama M., Okano T., Sakurai Y., et al. Introduction of cisplatin into polymeric micelle // J Control Release. 1996. Vol. 39, N 2–3. P. 351–356. doi: 10.1016/0168-3659(95)00165-4 |
| [99] |
Bennis S, Chapey C, Couvreur P, Robert J. Enhanced cytotoxicity of doxorubicin encapsulated in polyisohexylcyanoacrylate nanospheres against multidrug-resistant tumour cells in culture. Eur J Cancer. 1994;30(1):89–93. doi: 10.1016/S0959-8049(05)80025-5 |
| [100] |
Bennis S., Chapey C., Couvreur P., Robert J. Enhanced cytotoxicity of doxorubicin encapsulated in polyisohexylcyanoacrylate nanospheres against multidrug-resistant tumour cells in culture // Eur J Cancer. 1994. Vol. 30, N 1. P. 89–93. doi: 10.1016/S0959-8049(05)80025-5 |
| [101] |
Tokunaga Y, Nakashima M, Shibata S, et al Antitumor effects of 4-pyridoxate diamine hydroxy platinum, a novel cisplatin derivative, against malignant gliomas in vitro and in vivo: a comparison with cisplatin. Pharm Sci. 1997;3:353–356. |
| [102] |
Tokunaga Y., Nakashima M., Shibata S., et al Antitumor effects of 4-pyridoxate diamine hydroxy platinum, a novel cisplatin derivative, against malignant gliomas in vitro and in vivo: a comparison with cisplatin // Pharm Sci. 1997. Vol. 3. P. 353–356. |
| [103] |
Lu Y-J, Wei K-C, Ma C-CM, et al. Dual targeted delivery of doxorubicin to cancer cells using folate-conjugated magnetic multi-walled carbon nanotubes. Colloids Surf Biointerfaces. 2012;89:1–9. doi: 10.1016/j.colsurfb.2011.08.001 |
| [104] |
Lu Y.-J., Wei K.-C., Ma C.-C.M., et al. Dual targeted delivery of doxorubicin to cancer cells using folate-conjugated magnetic multi-walled carbon nanotubes // Colloids Surf Biointerfaces. 2012. Vol. 89. P. 1–9. doi: 10.1016/j.colsurfb.2011.08.001 |
| [105] |
Khiati S, Luvino D, Oumzil K, et al. Nucleoside lipid-based nanoparticles for cisplatin delivery. ACS Nano. 2011;5(11):8649–8655. doi: 10.1021/nn202291k |
| [106] |
Khiati S., Luvino D., Oumzil K., et al. Nucleoside lipid-based nanoparticles for cisplatin delivery // ACS Nano. 2011. Vol. 5, N 11. P. 8649–8655. doi: 10.1021/nn202291k |
| [107] |
Sinitsyna E, Bagaeva I, Gandalipov E, et al. Nanomedicines bearing an alkylating cytostatic drug from the group of 1,3,5-Triazine derivatives: Development and characterization. Pharmaceutics. 2022;14(11):2506. doi: 10.3390/pharmaceutics14112506 |
| [108] |
Sinitsyna E., Bagaeva I., Gandalipov E., et al. Nanomedicines bearing an alkylating cytostatic drug from the group of 1,3,5-triazine derivatives: Development and characterization // Pharmaceutics. 2022. Vol. 14, N 11. ID2506. doi: 10.3390/pharmaceutics14112506 |
| [109] |
Wang Y, Zheng Y, Zhang L, et al. Stability of nanosuspensions in drug delivery. J Control Release. 2013;172(3):1126–1141. doi: 10.1016/j.jconrel.2013.08.006 |
| [110] |
Wang Y., Zheng Y., Zhang L., et al. Stability of nanosuspensions in drug delivery // J Control Release. 2013. Vol. 172, N 3. P. 1126–1141. doi: 10.1016/j.jconrel.2013.08.006 |
| [111] |
Shenoy DB, Amiji MM. Poly(ethylene oxide)-modified poly(ε-caprolactone) nanoparticles for targeted delivery of tamoxifen in breast cancer. Int J Pharm. 2005;293(1–2):261–270. doi: 10.1016/j.ijpharm.2004.12.010 |
| [112] |
Shenoy D.B., Amiji M.M. Poly(ethylene oxide)-modified poly (ε-caprolactone) nanoparticles for targeted delivery of tamoxifen in breast cancer // Int J Pharm. 2005. Vol. 293, N 1–2. P. 261–270. doi: 10.1016/j.ijpharm.2004.12.010 |
ECO-vector LLC
/
| 〈 |
|
〉 |