Kiss1 kisspeptin of bony fish and mammalian kisspeptin analogs enhance the communicative behavior of Danio rerio induced by social isolation

Vladanka A. Goltz , Andrey А. Lebedev , Sergei O. Eresko , Marat I. Airapetov , Sarng S. Pyurveev , Evgenii R. Bychkov , Alekber A. Bayramov , Viktor A. Lebedev , Petr D. Shabanov

Reviews on Clinical Pharmacology and Drug Therapy ›› 2024, Vol. 22 ›› Issue (2) : 191 -203.

PDF (1902KB)
Reviews on Clinical Pharmacology and Drug Therapy ›› 2024, Vol. 22 ›› Issue (2) : 191 -203. DOI: 10.17816/RCF625892
Original study articles
research-article

Kiss1 kisspeptin of bony fish and mammalian kisspeptin analogs enhance the communicative behavior of Danio rerio induced by social isolation

Author information +
History +
PDF (1902KB)

Abstract

BACKGROUND: Rodents are often used as a social isolation model. This study investigated the effects of social isolation on Danio rerio. These animals form groups and social hierarchies and exhibit complex social interactions similar to rodents. The expression of some brain genes of fish reared in isolation was found to be different from individuals reared in a group.

AIM: This study aimed to investigate the effect of kisspeptins on the social behavior of Danio rerio in social isolation.

MATERIALS AND METHODS: Fish were placed in 200-mL measuring cups for 48 h. After the social isolation period, bony fish kisspeptins and mammalian kisspeptin analogs were administered, and their effects were tested. The animal was placed in 1-L individual tanks for 15 min and then in the tank with a glass partition, behind which are a group of congeners. Fish were allowed to approach or swim away from the partition. Two patterns were used to assess behavior: latency time and number of swims to the partition.

RESULTS: Compared with the control group with fish kept in social isolation, reliable differences were observed: The number of swims to the partition after isolation was 1.3 times higher than that in the control group (p < 0.05). After the administration of bony fish kisspeptins Kiss1 and Kiss2, no significant changes in the number of swims to the partition were observed. Moreover, after the administration of KS6 and KS10, the number of swims to the aquarium partition increased 1.6 times (p < 0.01) and 1.8 times (p < 0.001), respectively. After the administration of the comparison drug oxytocin, the number of swims to the aquarium partition increased 1.6 times (p < 0.01) compared with that in the untreated isolated group. The latency time of swimming to the partition increased 2.4 times in the untreated isolated group compared with the control group (p < 0.001). Latency time decreased 2.3 times in the group administered with oxytocin compared with the untreated isolated group (p < 0.001). In the group administered with Kiss1, the latency time decreased 2 times (p < 0.001) compared with that in the untreated isolated group. The latency time decreased 5 times (p < 0.001) after KS10 administration and 3.4 times (p < 0.001) after KS6 administration compared with that in the untreated isolated group.

CONCLUSIONS: Thus, social isolation in Danio rerio reduces communicative behavior. Analogs of mammalian kisspeptin, such as Kiss1, of bony fish and oxytocin normalize the communicative behavior of fish after a period of social isolation to the level of the control group.

Keywords

Danio rerio / Kiss1 / Kiss2 / KS6 / KS10 / social isolation

Cite this article

Download citation ▾
Vladanka A. Goltz, Andrey А. Lebedev, Sergei O. Eresko, Marat I. Airapetov, Sarng S. Pyurveev, Evgenii R. Bychkov, Alekber A. Bayramov, Viktor A. Lebedev, Petr D. Shabanov. Kiss1 kisspeptin of bony fish and mammalian kisspeptin analogs enhance the communicative behavior of Danio rerio induced by social isolation. Reviews on Clinical Pharmacology and Drug Therapy, 2024, 22(2): 191-203 DOI:10.17816/RCF625892

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Roy H, Ariel C, Sydney C, et al. Collective behavior emerges from genetically controlled simple behavioral motifs in zebrafish. Sci Adv. 2021;7(41):abi7460. doi: 10.1126/sciadv.abi7460

[2]

Roy H., Ariel C., Sydney C., et al. Collective behavior emerges from genetically controlled simple behavioral motifs in zebrafish // Sci Adv. 2021. Vol. 7, N 41. ID abi7460. doi: 10.1126/sciadv.abi7460

[3]

Geng Y, Peterson RT. The zebrafish subcortical social brain as a model for studying social behavior disorders. Dis Model Mech. 2019;12(8):dmm.039446. doi: 10.1242/dmm.039446

[4]

Geng Y., Peterson R.T. The zebrafish subcortical social brain as a model for studying social behavior disorders // Dis Model Mech. 2019. Vol. 12, N 8. ID dmm.039446. doi: 10.1242/dmm.039446

[5]

Cheng Y-T, Woo J, Luna-Figueroa E, et al. Social deprivation induces astrocytic TRPA1-GABA suppression of hippocampal circuits. Neuron. 2023;111(8):1301–1315.E5. doi: 10.1016/j.neuron.2023.01.015

[6]

Cheng Y.-T., Woo J., Luna-Figueroa E., et al. Social deprivation induces astrocytic TRPA1-GABA suppression of hippocampal circuits // Neuron. 2023. Vol. 111, N 8. P. 1301–1315.E5. doi: 10.1016/j.neuron.2023.01.015

[7]

Cene CW, Beckie TM, Sims M, et al. Effects of objective and perceived social isolation on cardiovascular and brain health: A scientific statement from the American heart association. J Am Heart Assoc. 2022;11(16):26493. doi: 10.1161/JAHA.122.026493

[8]

Cene C.W., Beckie T.M., Sims M., et al. Effects of objective and perceived social isolation on cardiovascular and brain health: A scientific statement from the American heart association // J Am Heart Assoc. 2022. Vol. 11, N 16. ID 26493. doi: 10.1161/JAHA.122.026493

[9]

Clay JM, Fontana BD, Proserpio C, et al. Drinking during social isolation: Investigating associations between stress, inhibitory control, boredom, drinking motives, and alcohol use. Addict Res Theory. 2022;31(1):16–28. doi: 10.1080/16066359.2022.2099543

[10]

Clay J.M., Fontana B.D., Proserpio C., et al. Drinking during social isolation: Investigating associations between stress, inhibitory control, boredom, drinking motives, and alcohol use // Addict Res Theory. 2022. Vol. 31, N 1. P. 16–28. doi: 10.1080/16066359.2022.2099543

[11]

Faustino AI, Monteiro-Tacao A, Oliveira RF. Mechanisms of social buffering of fear in zebrafish. Sci Rep. 2017;7(1):44329. doi: 10.1038/srep44329

[12]

Faustino A.I., Monteiro-Tacao A., Oliveira R.F. Mechanisms of social buffering of fear in zebrafish // Sci Rep. 2017. Vol. 7, N 1. ID 44329. doi: 10.1038/srep44329

[13]

Suriyampola PS, Shukla R, Shelton DS, et al. Zebrafish social behavior in the wild. Zebrafish. 2016;13(1):1–8. doi: 10.1089/zeb.2015.1159

[14]

Suriyampola P.S., Shukla R., Shelton D.S., et al. Zebrafish social behavior in the wild // Zebrafish. 2016. Vol. 13, N 1. P. 1–8. doi: 10.1089/zeb.2015.1159

[15]

Zheng M, Kashimori Y, Hoshino O, et al. Behavior pattern (innate action) of individuals in fish schools generating efficient collective evasion from predation. J Theor Bio. 2005;235(2):153–167. doi: 10.1016/j.jtbi.2004.12.025

[16]

Zheng M., Kashimori Y., Hoshino O., et al. Behavior pattern (innate action) of individuals in fish schools generating efficient collective evasion from predation // J Theor Bio. 2005. Vol. 235, N 2. P. 153–167. doi: 10.1016/j.jtbi.2004.12.025

[17]

Cappel JM, Forster D, Slangewal K, et al. Visual recognition of social signals by a tectothalamic neural circuit. Nature. 2022;608: 146–152. doi: 10.1038/s41586-022-04925-5

[18]

Cappel J.M., Forster D., Slangewal K., et al. Visual recognition of social signals by a tectothalamic neural circuit // Nature. 2022. Vol. 608. P. 146–152. doi: 10.1038/s41586-022-04925-5

[19]

Saverino C, Gerlai R. The social zebrafish: Behavioral responses to conspecific, heterospecific, and computer animated fish. Behav Brain Res. 2008;191(1):77–87. doi: 10.1016/j.bbr.2008.03.013

[20]

Saverino C., Gerlai R. The social zebrafish: Behavioral responses to conspecific, heterospecific, and computer animated fish // Behav Brain Res. 2008. Vol. 191, N 1. P. 77–87. doi: 10.1016/j.bbr.2008.03.013

[21]

Norton WHJ, Stumpenhorst K, Faus-Kessler T, et al. Modulation of Fgfr1a signaling in zebrafish reveals a genetic basis for the aggression-boldness syndrome. J Neurosci. 2011;31(39):13796–13807. doi: 10.1523/JNEUROSCI.2892-11.2011

[22]

Norton W.H.J., Stumpenhorst K., Faus-Kessler T., et al. Modulation of Fgfr1a signaling in zebrafish reveals a genetic basis for the aggression-boldness syndrome // J Neurosci. 2011. Vol. 31, N 39. P. 13796–13807. doi: 10.1523/JNEUROSCI.2892-11.2011

[23]

Paull GC, Filby AL, Giddins HG, et al. Dominance hierarchies in zebrafish (Danio rerio) and their relationship with reproductive success. Zebrafish. 2010;7(1):109–117. doi: 10.1089/zeb.2009.0618

[24]

Paull G.C., Filby A.L., Giddins H.G., et al. Dominance hierarchies in zebrafish (Danio rerio) and their relationship with reproductive success // Zebrafish. 2010. Vol. 7, N 1. P. 109–117. doi: 10.1089/zeb.2009.0618

[25]

Zhang T, Alonzo I, Stubben C, et al. A zebrafish model of combined saposin deficiency identifies acid sphingomyelinase as a potential therapeutic target. Dis Model Mech. 2023;16(7):dmm049995. doi: 10.1242/dmm.049995

[26]

Zhang T., Alonzo I., Stubben C., et al. A zebrafish model of combined saposin deficiency identifies acid sphingomyelinase as a potential therapeutic target // Dis Model Mech. 2023. Vol. 16, N 7. ID dmm049995. doi: 10.1242/dmm.049995

[27]

Galstyan DS, Kolesnikova TO, Kositsyn YuM, et al. Studying social behavior in zebrafish (Danio rerioo) in the tests of social interaction, social preference, behavior in the shoaling and aggression tasks. Reviews on Clinical Pharmacology and Drug Therapy. 2022;20(2): 135–147. EDN: BYQBGL doi: 10.17816/RCF202135-147

[28]

Галстян Д.С., Колесникова Т.О., Косицин Ю.М., и др. Моделирование социального поведения с использованием зебраданио (Danio rerio) в тестах социального взаимодействия и предпочтения // Обзоры по клинической фармакологии и лекарственной терапии. 2022. Т. 20, № 2. С. 135–147. EDN: BYQBGL doi: 10.17816/RCF202135-147

[29]

Ribeiro D, Nunes RA, Gligsberg M, et al. Oxytocin receptor signaling modulates novelty recognition but not social preference in zebrafish. J Neuroendocrinol. 2020;32(4):12834. doi: 10.1111/jne.12834

[30]

Ribeiro D., Nunes R.A., Gligsberg M., et al. Oxytocin receptor signaling modulates novelty recognition but not social preference in zebrafish // J Neuroendocrinol. 2020. Vol. 32, N 4. ID 12834. doi: 10.1111/jne.12834

[31]

Lukas M, Toth I, Veenema AH, Neumann ID. Oxytocin mediates rodent social memory within the lateral septum and the medial amygdala depending on the relevance of the social stimulus: male juvenile versus female adult conspecifics. Psychoneuroendocrinology. 2013;38(6):916–926. doi: 10.1016/j.psyneuen.2012.09.018

[32]

Lukas M., Toth I., Veenema A.H., Neumann I.D. Oxytocin mediates rodent social memory within the lateral septum and the medial amygdala depending on the relevance of the social stimulus: male juvenile versus female adult conspecifics // Psychoneuroendocrinology. 2013. Vol. 38, N 6. P. 916–926. doi: 10.1016/j.psyneuen.2012.09.018

[33]

Gemmer A, Mirkes K, Anneser L, et al. Oxytocin receptors influence the development and maintenance of social behavior in zebrafish (Danio rerio). Sci Rep. 2022;12(1):4322. doi: 10.1038/s41598-022-07990-y

[34]

Gemmer A., Mirkes K., Anneser L., et al. Oxytocin receptors influence the development and maintenance of social behavior in zebrafish (Danio rerio) // Sci Rep. 2022. Vol. 12, N 1. ID 4322. doi: 10.1038/s41598-022-07990-y

[35]

Akinrinade I, Kareklas K, Teles MC, et al. Evolutionarily conserved role of oxytocin in social fear contagion in zebrafish. Science. 2023;379(6638):1232–1237. doi: 10.1126/science.abq5158

[36]

Akinrinade I., Kareklas K., Teles M.C., et al. Evolutionarily conserved role of oxytocin in social fear contagion in zebrafish // Science. 2023. Vol. 379, N 6638. P. 1232–1237. doi: 10.1126/science.abq5158

[37]

Lesscher HMB, Spoelder M, Rotte MD, et al. Early social isolation augments alcohol consumption in rats. Behav Pharmacol. 2015;26(7–2):673–680. doi: 10.1097/FBP.0000000000000165

[38]

Lesscher H.M.B., Spoelder M., Rotte M.D., et al. Early social isolation augments alcohol consumption in rats // Behav Pharmacol. 2015. Vol. 26, N 7–2. P. 673–680. doi: 10.1097/FBP.0000000000000165

[39]

Shams S, Amlani S, Buske C, et al. Developmental social isolation affects adult behavior, social interaction, and dopamine metabolite levels in zebrafish. Dev Psychobiol. 2018;60(1):43–56. doi: 10.1002/dev.21581

[40]

Shams S., Amlani S., Buske C., et al. Developmental social isolation affects adult behavior, social interaction, and dopamine metabolite levels in zebrafish // Dev Psychobiol. 2018. Vol. 60, N 1. P. 43–56. doi: 10.1002/dev.21581

[41]

Du W, Chen X, Shi M, et al. Ethanol affects behavior and HPA axis activity during development in zebrafish larvae. Sci Rep. 2020;10(1):21402. doi: 10.1038/s41598-020-78573-y

[42]

Du W., Chen X., Shi M., et al. Ethanol affects behavior and HPA axis activity during development in zebrafish larvae // Sci Rep. 2020. Vol. 10, N 1. ID 21402. doi: 10.1038/s41598-020-78573-y

[43]

Anneser L, Alcantara IC, Gemmer A, et al. The neuropeptide Pth2 dynamically senses others via mechanosensation. Nature. 2020;588(7836):653–657. doi: 10.1038/s41586-020-2988-z

[44]

Anneser L., Alcantara I.C., Gemmer A., et al. The neuropeptide Pth2 dynamically senses others via mechanosensation // Nature. 2020. Vol. 588, N 7836. P. 653–657. doi: 10.1038/s41586-020-2988-z

[45]

Tunbak H, Vazquez-Prada M, Michael Ryan T, et al. Whole-brain mapping of socially isolated zebrafish reveals that lonely fish are not loners. eLife. 2020;5(9):e55863. doi: 10.7554/eLife.55863

[46]

Tunbak H., Vazquez-Prada M., Michael Ryan T., et al. Whole-brain mapping of socially isolated zebrafish reveals that lonely fish are not loners // eLife. 2020. Vol. 5, N 9. ID e55863. doi: 10.7554/eLife.55863

[47]

Alef R, Blaser ER. Social group during housing and testing modulates the effect of ethanol on zebrafish (Danio rerio) behavior. Behav Process. 2023;209(1):104877. doi: 10.1016/j.beproc.2023.104877

[48]

Alef R., Blaser E.R. Social group during housing and testing modulates the effect of ethanol on zebrafish (Danio rerio) behavior // Behav Process. 2023. Vol. 209, N 1. ID 104877. doi: 10.1016/j.beproc.2023.104877

[49]

de Matos Mansur B, dos Santos BR, de Mattos Dias CAG, et al. Effects of the number of subjects on the dark/light preference of Zebrafish (Danio rerio). Zebrafish. 2014;11(6):977. doi: 10.1089/zeb.2014.0977

[50]

de Matos Mansur B., dos Santos B.R., de Mattos Dias C.A.G., et al. Effects of the number of subjects on the dark/light preference of Zebrafish (Danio rerio) // Zebrafish. 2014. Vol. 11, N 6. ID 977. doi: 10.1089/zeb.2014.0977

[51]

Suriyampola PS, Iruri-Tucker AA, Padilla-Veléz L, et al. Small increases in group size improve small shoals’ response to water flow in zebrafish. J Zool. 2022;16(4):271–281. doi: 10.1111/jzo.12952

[52]

Suriyampola P.S., Iruri-Tucker A.A., Padilla-Veléz L., et al. Small increases in group size improve small shoals’ response to water flow in zebrafish // J Zool. 2022. Vol. 16, N 4. P. 271–281. doi: 10.1111/jzo.12952

[53]

Neri D, Ruberto T, Mwaffo V, et al. Social environment modulates anxiogenic effects of caffeine in zebrafish. Behav Pharmacol. 2019;30(1):45–48. doi: 10.1097/FBP.0000000000000415

[54]

Neri D., Ruberto T., Mwaffo V., et al. Social environment modulates anxiogenic effects of caffeine in zebrafish // Behav Pharmacol. 2019. Vol. 30, N 1. P. 45–48. doi: 10.1097/FBP.0000000000000415

[55]

Canzian J, Franscescon F, Müller TE, et al. Stress increases susceptibility to pentylenetetrazole-induced seizures in adult zebrafish. Epilepsy Behav. 2021;114(A):107557. doi: 10.1016/j.yebeh.2020.107557

[56]

Canzian J., Franscescon F., Müller T.E., et al. Stress increases susceptibility to pentylenetetrazole-induced seizures in adult zebrafish // Epilepsy Behav. 2021. Vol. 114, N A. ID 107557. doi: 10.1016/j.yebeh.2020.107557

[57]

Robinson GE, Fernald RD, Clayton DF. Genes and social behavior. Science. 2008;322(5903):896–900. doi: 10.1126/science.1159277

[58]

Robinson G.E., Fernald R.D., Clayton D.F. Genes and social behavior // Science. 2008. Vol. 322, N 5903. P. 896–900. doi: 10.1126/science.1159277

[59]

Lee CJ, Paull GC, Tyler CR, et al. Effects of environmental enrichment on survivorship, growth, sex ratio and behaviour in laboratory maintained zebrafish Danio rerio. J Fish Biol. 2019;94(1):86–95. doi: 10.1111/jfb.13865

[60]

Lee C.J., Paull G.C., Tyler C.R., et al. Effects of environmental enrichment on survivorship, growth, sex ratio and behaviour in laboratory maintained zebrafish Danio rerio // J Fish Biol. 2019. Vol. 94, N 1. P. 86–95. doi: 10.1111/jfb.13865

[61]

Goltz VA, Lebedev AA, Blazhenko AA, et al. Study of the effects of kisspeptin analogs on the behavior of Danio rerio. Reviews on Clinical Pharmacology and Drug Therapy. 2023;21(2):159–169. EDN: GUKYQD doi: 10.17816/RCF321976

[62]

Гольц В.А., Лебедев А.А., Блаженко А.А., и др. Анксиолитическое действие аналогов кисспептина у Danio rerio // Обзоры по клинической фармакологии и лекарственной терапии. 2023. Т. 21, № 2. С. 159–169. EDN: GUKYQD doi: 10.17816/RCF321976

[63]

Goltz VA, Lebedev AA, Blazhenko AA, et al. Comparison of anxiolytic effects of mammalian and bony fish kisspeptins in Danio rerio. Psychopharmacology and Biological Narcology. 2023;14(2):85–96. EDN: DQCZZE doi: 10.17816/phbn501442

[64]

Гольц В.А., Лебедев А.А., Блаженко А.А., и др. Сравнение анксиолитического действия кисспептинов млекопитающих и костистых рыб у Danio rerio // Психофармакология и биологическая наркология. 2023. Т. 14, № 2. С. 85–96. EDN: DQCZZE doi: 10.17816/phbn501442

[65]

Lebedev AA, Blazhenko AA, Goltz VA, et al. Effects of kisspeptin analogues on the behavior of Danio rerio. Reviews on Clinical Pharmacology and Drug Therapy. 2022;20(2):201–210. EDN: ZESWNB doi: 10.17816/RCF202201-210

[66]

Лебедев А.А., Блаженко А.А., Гольц В.А., и др. Действие аналогов кисспептина на поведение Danio rerio // Обзоры по клинической фармакологии и лекарственной терапии. 2022. Т. 20, № 2. С. 201–210. EDN: ZESWNB doi: 10.17816/RCF202201-210

[67]

Fone KCF, Porkess MV. Behavioural and neurochemical effects of post-weaning social isolation in rodents-relevance to developmental neuropsychiatric disorders. Neurosci Biobehav Rev. 2008;32(6):1087–1102. doi: 10.1016/j.neubiorev.2008.03.003

[68]

Fone K.C.F., Porkess M.V. Behavioural and neurochemical effects of post-weaning social isolation in rodents-relevance to developmental neuropsychiatric disorders // Neurosci Biobehav Rev. 2008. Vol. 32, N 6. P. 1087–1102. doi: 10.1016/j.neubiorev.2008.03.003

[69]

Levine JB, Leeder AD, Parekkadan B, et al. Isolation rearing impairs wound healing and is associated with increased locomotion and decreased immediate early gene expression in the medial prefrontal cortex of juvenile rats. Neuroscience. 2008;151(2):589–603. doi: 10.1016/j.neuroscience.2007.10.014

[70]

Levine J.B., Leeder A.D., Parekkadan B., et al. Isolation rearing impairs wound healing and is associated with increased locomotion and decreased immediate early gene expression in the medial prefrontal cortex of juvenile rats // Neuroscience. 2008. Vol. 151, N 2. P. 589–603. doi: 10.1016/j.neuroscience.2007.10.014

[71]

Lomanowska AM, Boivin M, Hertzman C, Fleming AS. Parenting begets parenting: A neurobiological perspective on early adversity and the transmission of parenting styles across generations. Neuroscience. 2017;342:120–139. doi: 10.1016/j.neuroscience.2015.09.029

[72]

Lomanowska A.M., Boivin M., Hertzman C., Fleming A.S. Parenting begets parenting: A neurobiological perspective on early adversity and the transmission of parenting styles across generations // Neuroscience. 2017. Vol. 342. P. 120–139. doi: 10.1016/j.neuroscience.2015.09.029

[73]

Lapiz MDS, Mateo Y, Parker T, Marsden C. Effects of noradrenaline depletion in the brain on response on novelty in isolation-reared rats. Psychopharmacology (Berl). 2000;152(3):312–320. doi: 10.1007/s002130000534

[74]

Lapiz M.D.S., Mateo Y., Parker T., Marsden C. Effects of noradrenaline depletion in the brain on response on novelty in isolation-reared rats // Psychopharmacology (Berl). 2000. Vol. 152, N 3. P. 312–320. doi: 10.1007/s002130000534

[75]

Lukkes JL, Mokin MV, Scholl JL, Forster GL. Adult rats exposed to early-life social isolation exhibit increased anxiety and conditioned fear behavior, and altered hormonal stress responses. Horm Behav. 2009;55(1):248–256. doi: 10.1016/j.yhbeh.2008.10.014

[76]

Lukkes J.L., Mokin M.V., Scholl J.L., Forster G.L. Adult rats exposed to early-life social isolation exhibit increased anxiety and conditioned fear behavior, and altered hormonal stress responses // Horm Behav. 2009. Vol. 55, N 1. P. 248–256. doi: 10.1016/j.yhbeh.2008.10.014

[77]

Yasuda H, Harauma A, Kato M, et al. Artificially reared mice exhibit anxiety-like behavior in adulthood. Exp Anim. 2016;65(3): 267–274. doi: 10.1538/expanim.15-0115.

[78]

Yasuda H., Harauma A., Kato M., et al. Artificially reared mice exhibit anxiety-like behavior in adulthood // Exp Anim. 2016. Vol. 65, N 3. P. 267–274. doi: 10.1538/expanim.15-0115.

[79]

Amiri S, Haj-Mirzaian A, Amini-Khoei H, et al. Protective effects of gabapentin against the seizure susceptibility and comorbid behavioral abnormalities in the early socially isolated mice. Eur J Pharmacol. 2017;797:106–114. doi: 10.1016/j.ejphar.2017.01.024

[80]

Amiri S., Haj-Mirzaian A., Amini-Khoei H., et al. Protective effects of gabapentin against the seizure susceptibility and comorbid behavioral abnormalities in the early socially isolated mice // Eur J Pharmacol. 2017. Vol. 797. P. 106–114. doi: 10.1016/j.ejphar.2017.01.024

[81]

Aponte A, Petrunich-Rutherford ML. Acute net stress of young adult zebrafish (Danio rerio) is not sufficient to increase anxiety-like behavior and whole-body cortisol. PeerJ. 2019;7:e7469. doi: 10.7717/peerj.7469

[82]

Aponte A., Petrunich-Rutherford M.L. Acute net stress of young adult zebrafish (Danio rerio) is not sufficient to increase anxiety-like behavior and whole-body cortisol // PeerJ. 2019. Vol. 7. ID e7469. doi: 10.7717/peerj.7469

[83]

Bocharova OA, Bocharov EV, Kucheryanu VG, Karpova RV. Dopaminergic system: stress, depression, cancer (part 1). Russian Journal of Biotherapy. 2019;18(3):6–14. EDN: IFPWWT doi: 10.17650/1726-9784-2019-18-3-6-14

[84]

Бочарова О.А., Бочаров Е.В., Кучеряну В.Г., Карпова Р.В. Дофаминергическая система: стресс, депрессия, рак (часть 1) // Российский биотерапевтический журнал. 2019. Т. 18, № 3. С. 6–14. EDN: IFPWWT doi: 10.17650/1726-9784-2019-18-3-6-14

[85]

Safonov VK, Ababkov VA, Verevochkin SV, et al. Biological and psychological determinants in response to situations of social stress. Bulletin of the South Ural State University. Series “Psychology”. 2013;6(3):82–89. EDN: RCAMBR

[86]

Сафонов В.К., Абабков В.А., Веревочкин С.В., и др. Биологические и психологические детерминанты реагирования на ситуации социального стресса // Вестник Южно-Уральского государственного университета. Серия: Психология. 2013. Т. 6, № 3. С. 82–89. EDN: RCAMBR

[87]

Boucher P, Plusquellec P. Acute stress assessment from excess cortisol secretion: fundamentals and perspectives. Front Endocrinol. 2019;10:749. doi: 10.3389/fendo.2019.00749

[88]

Boucher P., Plusquellec P. Acute stress assessment from excess cortisol secretion: fundamentals and perspectives // Front Endocrinol. 2019. Vol. 10. ID 749. doi: 10.3389/fendo.2019.00749

[89]

Ramsay JM, Feist GW, Varga ZM, et al. Whole-body cortisol response of zebrafish to acute net handling stress. Aquaculture. 2009;297(1–4):157–162. doi: 10.1016/j.aquaculture.2009.08.035

[90]

Ramsay J.M., Feist G.W., Varga Z.M., et al. Whole-body cortisol response of zebrafish to acute net handling stress // Aquaculture. 2009. Vol. 297, N 1–4. P. 157–162. doi: 10.1016/j.aquaculture.2009.08.035

[91]

Bychkov ER, Karpova IV, Tsikunov SG, et al. The effect of acute mental stress on the exchange of monoamines in the mesocortical and nigrostriatal systems of the rat brain. Pediatrician (St. Petersburg). 2021;12(6):35–42. EDN: VFATQN doi: 10.17816/PED12635-42

[92]

Бычков Е.Р., Карпова И.В., Цикунов С.Г., и др. Действие острого психического стресса на обмен моноаминов в мезокортикальной и нигростриатной системах головного мозга крыс // Педиатр. 2021. Т. 12, № 6. С. 35–42. EDN: VFATQN doi: 10.17816/PED12635-42

[93]

Blazhenko AA, Khokhlov PP, Bychkov ER, et al. Cortisol concentration in muscle tissue of the model organism Danio rerio after stress exposure and administration of ghrelin anatgonists. In: Proceedings of the V Russian conferences in medicinal chemistry with international participation: “Medchem-Russia 2021”. Volgograd. 2021. doi: 10.19163/MedChemRussia2021-2021-349 (In Russ.)

[94]

Блаженко А.А., Хохлов П.П., Бычков Е.Р., и др. Концентрация кортизола в мышечной ткани модельного организма Danio rerio после стрессового воздействия и введения анатгонистов грелина. В кн.: Материалы V Российской конференции по медицинской химии с международным участием: «Medchem-Russia 2021». Волгоград. 2021. doi: 10.19163/MedChemRussia2021-2021-349

[95]

Blazhenko AA, Khokhlov PP, Lebedev AA, et al. Ghrelin levels in different brain regions in Danio rerio exposured to stress. Psychopharmacology and Biological Narcology. 2022;13(3):37–42. EDN: BFOJYK doi: 10.17816/phbn267375

[96]

Блаженко А.А., Хохлов П.П., Лебедев А.А., и др. Содержание грелина в разных отделах головного мозга у Danio rerio после стрессорного воздействия // Психофармакология и биологическая наркология. 2022. Т. 13, № 3. С. 37–42. EDN: BFOJYK doi: 10.17816/phbn267375

[97]

Blazhenko AA, Khokhlov PP, Lebedev AA, et al. Investigation of brain ghrelin systems in Danio rerio. In: Gubareva LI, Shabanov PD, editors. Proceedings of the II International dedicated to the 100th anniversary of I.A. Drzhevetskaya. Stavropol, 2022. P. 82–85. doi: 10.38006/9612-62-6.2022.82.85 (In Russ.)

[98]

Блаженко А.А., Хохлов П.П., Лебедев А.А., и др. Исследование систем грелина головного мозга у Danio rerio. В кн.: Материалы II Международной конференции, посвященной 100-летию И.А. Држевецкой / под ред. Л.И. Губаревой, П.Д. Шабанова. Ставрополь, 2022. С. 82–85. doi: 10.38006/9612-62-6.2022.82.85

[99]

Blazhenko AA, Reikhardt BA, Khokhlov PP, et al. The changes of protein kinases activities in the brain structures after ghrelin antagonists administration in previously stressed Danio rerio. Reviews on Clinical Pharmacology and Drug Therapy. 2022;20(2):211–217. EDN: MBVYZC doi: 10.17816/RCF202211-217

[100]

Блаженко А.А., Рейхардт Б.А., Хохлов П.П., и др. Изменение протеинкиназной активности в головном мозге Danio rerio после стрессорного воздействия // Обзоры по клинической фармакологии и лекарственной терапии. 2022. Т. 20, № 2. С. 211–217. EDN: MBVYZC doi: 10.17816/RCF202211-217

RIGHTS & PERMISSIONS

ECO-vector LLC

AI Summary AI Mindmap
PDF (1902KB)

115

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/