Cyclotides. Prospects for using violet oxytocin-like substances to create a new generation of pharmacological agents

Sergei N. Proshin , Vladimir V. Grishin , Alina Ashotovna Dedyan

Reviews on Clinical Pharmacology and Drug Therapy ›› 2024, Vol. 22 ›› Issue (3) : 237 -255.

PDF (1357KB)
Reviews on Clinical Pharmacology and Drug Therapy ›› 2024, Vol. 22 ›› Issue (3) : 237 -255. DOI: 10.17816/RCF625482
Reviews
research-article

Cyclotides. Prospects for using violet oxytocin-like substances to create a new generation of pharmacological agents

Author information +
History +
PDF (1357KB)

Abstract

This review article focuses on the use of violets and their derivatives as medicinal agents. Special attention is given to the historical aspects of using the healing properties of violets, as well as the analysis of substances derived from these plants for pharmaceutical production. The article specifically discusses oxytocin-like substances found in violets, particularly cyclotides. Cyclotides are globular microproteins with a unique head-to-tail cyclized backbone stabilized by three disulfide bonds forming a cystine knot. The chemical characteristics of cyclotides make them suitable for use as recombinant scaffolds in the design and development of ligands for G protein-coupled receptors, which are part of the modern generation of drugs. The development of ligands for bradykinin and κ-opioid receptors, which are in demand in modern pharmacology, is described in detail.

Keywords

violets / cyclotides / G proteins / bradykinin receptors / κ-opioid receptors

Cite this article

Download citation ▾
Sergei N. Proshin, Vladimir V. Grishin, Alina Ashotovna Dedyan. Cyclotides. Prospects for using violet oxytocin-like substances to create a new generation of pharmacological agents. Reviews on Clinical Pharmacology and Drug Therapy, 2024, 22(3): 237-255 DOI:10.17816/RCF625482

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Bubenchikov RA, Drozdova IL. Flavonoids of Violet tricolor. Farmatsiya. 2004;(2):11–12. (In Russ.)

[2]

Бубенчиков Р.А., Дроздова И.Л. Флавоноиды фиалки трехцветной // Фармация. 2004. № 2. С. 11–12.

[3]

Lovkova MYa, Rabinovich AM, Ponomareva SM, et al. Why plants heal. Moscow: Nauka; 1989. 256 p. (In Russ.)

[4]

Ловкова М.Я., Рабинович А.М., Пономарева С.М., и др. Почему растения лечат. Москва: Наука, 1989. 256 с.

[5]

Martynov АМ, Dargaeva ТD. Phenol compounds and water-soluble polysaccharides of Viola Patrinii ging. Siberian medical journal (Irkutsk). 2009;90(7):216–218. EDN: KXTJDP

[6]

Мартынов А.М., Даргаева Т.Д. Фенольные соединения и водорастворимые полисахариды фиалки Патрэна // Сибирский медицинский журнал (Иркутск). 2009. Т. 90, № 7. С. 216–218.EDN: KXTJDP

[7]

Martynov AM, Chuparina EV. Composition of polysaccharide complexes, macro- and microelements in Viola uniflora (Violaceae). Rastitelnye resursy. 2009;45(4):67–73. EDN: OIQQNH

[8]

Мартынов А.М., Чупарина Е.В. Содержание и состав полисахаридных комплексов, макро- и микроэлементов Viola uniora (Violaceae) // Растительные ресурсы. 2009. Т. 45, № 4. С. 67–73. EDN: OIQQNH

[9]

Martynov AM, Sobenin AM. Phenol connections and amino acids viola Langsdorffii (Fischer ex ging.). Problems of biological, medical and pharmaceutical chemistry. 2008;(4):37–39. EDN: KAJTDD

[10]

Мартынов А.М., Собенин А.М. Фенольные соединения и аминокислоты травы фиалки Лангсдорфа // Вопросы биологической, медицинской и фармацевтической химии. 2008. № 4. С. 37–39. EDN: KAJTDD

[11]

Martynov AM, Chuparina EV, Dargaeva TD, Saybel OL. Investigation of phenol compounds and element composition herba Viola biflora L., growing in east Siberia. Problems of biological, medical and pharmaceutical chemistry. 2009;(4):58–60. EDN: LACTUH

[12]

Мартынов А.М., Чупарина Е.В., Даргаева Т.Д., Сайбель О.Л. Изучение фенольных соединений и элементного состава фиалки двухцветковой (Viola biora L.), произрастающей в Сибири //Вопросы биологической, медицинской и фармацевтической химии. 2009. № 4. С. 58–60. EDN: LACTUH

[13]

Palov M. Encyclopedia of medicinal plants. Transl. from Germ. M. Pavlov. Moscow: Mir; 1998. 467 p. (In Russ.)

[14]

Палов М. Энциклопедия лекарственных растений / пер. с нем. М. Павлов. Москва: Мир, 1998. 467 с.

[15]

Radzinsky VE. Medicinal plants in obstetrics and gyneco¬logy. Moscow: Eksmo; 2008. 320 p. (In Russ.)

[16]

Радзинский В.Е. Лекарственные растения в акушерстве и гинекологии. Москва: Эксмо, 2008. 320 с.

[17]

Sokolov PD, editor. Plant resources of the USSR: Flowering plants, their chemical composition and use: The families Paeoniaceae – Thymelaeaceae. Leningrad: Nauka; 1986. P. 20–29. (In Russ.)

[18]

Растительные ресурсы СССР: Цветковые растения, их химический состав и использование: Семейства Paeoniaceae – Thymelaeaceae / под ред. П.Д. Соколова. Ленинград: Наука, 1986. С. 20–29.

[19]

Sokolov SYa. Phytotherapy and phytopharmacology.Moscow: MIA; 2000. 976 p. (In Russ.)

[20]

Соколов С.Я. Фитотерапия и фитофармакология. Москва: МИА, 2000. 976 с.

[21]

Budantsev AL, editor. Plant resources of Russia and neighboring countries: Flowering plants, their chemical composition and utilization. Ch. II. Supplement to 1–7 vol. Saint Petersburg; 1996.P. 157–157. (In Russ.)

[22]

Растительные ресурсы России и сопредельных государств: Цветковые растения, их химический состав и использование. Ч. II. Дополнение к 1–7 т. / под ред. А.Л. Буданцева. Санкт-Петербург, 1996. С. 157–157.

[23]

Abecasis GR, Auton A, Brooks LD, et al. An integrated map of genetic variation from 1,092 human genomes. Nature. 2012;491(7422):56–65. doi: 10.1038/nature11632

[24]

Abecasis G.R., Auton A., Brooks L.D., et al. An integrated map of genetic variation from 1,092 human genomes // Nature. 2012.Vol. 491, N 7422. P. 56–65. doi: 10.1038/nature11632

[25]

Abdul Ghani H, Henriques ST, Huang YH, et al. Structural and functional characterization of chimeric cyclotides from the Möbius and trypsin inhibitor subfamilies. Biopolymers. 2017;108(1):e22927. doi: 10.1002/bip.22927

[26]

Abdul Ghani H., Henriques S.T., Huang Y.H., et al. Structural and functional characterization of chimeric cyclotides from the Möbius and trypsin inhibitor subfamilies // Biopolymers. 2017. Vol. 108, N 1. ID e22927. doi: 10.1002/bip.22927

[27]

Aboye TL, Clark RJ, Burman R, et al. Interlocking disulfides in circular proteins: toward efficient oxidative folding of cyclotides. Antioxid Redox Signal. 2011;14(1):77–86. doi: 10.1089/ars.2010.3112

[28]

Aboye T.L., Clark R.J., Burman R., et al. Interlocking disulfides in circular proteins: toward efficient oxidative folding of cyclotides // Antioxid Redox Signal. 2011. Vol. 14, N 1. P. 77–86.doi: 10.1089/ars.2010.3112

[29]

Arnison PG, Bibb MJ, Bierbaum G, et al. Ribosomally synthesized and post-translationally modified peptide natural products: overview and recommendations for a universal nomenclature.Nat Prod Rep. 2013;30(1):108–112. doi: 10.1039/c2np20085f

[30]

Arnison P.G., Bibb M.J., Bierbaum G., et al. Ribosomally synthesized and post-translationally modified peptide natural products: overview and recommendations for a universal nomenclature // Nat Prod Rep. 2013. Vol. 30, N 1. P. 108–112. doi: 10.1039/c2np20085f

[31]

Aslam L, Kaur R, Sharma V, et al. Isolation and characterization of cyclotides from the leaves of Viola odorata L. using peptidomic and bioinformatic approach. Biotech. 2021;11(5):211.doi: 10.1007/s13205-021-02763-2

[32]

Aslam L., Kaur R., Sharma V., et al. Isolation and characterization of cyclotides from the leaves of Viola odorata L. using peptidomic and bioinformatic approach // Biotech. 2021. Vol. 11, N 5. ID 211. doi: 10.1007/s13205-021-02763-2

[33]

Borra R, Camarero JA. Recombinant expression of backbone-cyclized polypeptides. Biopolymers. 2013;100(5):502–509.doi: 10.1002/bip.22306

[34]

Borra R., Camarero J.A. Recombinant expression of backbone-cyclized polypeptides // Biopolymers. 2013. Vol. 100, N 5. P. 502–509. doi: 10.1002/bip.22306

[35]

Calixto JB, Medeiros R, Fernandes ES, et al. Kinin B1 receptors: key G-protein-coupled receptors and their role in inflammatory and painful processes. Br J Pharmacol. 2004;143(7):803–819. doi: 10.1038/sj.bjp.0706012

[36]

Calixto J.B., Medeiros R., Fernandes E.S., et al. Kinin B1 receptors: key G-protein-coupled receptors and their role in inflammatory and painful processes // Br J Pharmacol. 2004. Vol. 143, N 7. P. 803–819. doi: 10.1038/sj.bjp.0706012

[37]

Cicardi M, Banerji A, Bracho F, et al. Icatibant, a new bradykinin-receptor antagonist, in hereditary angioedema. N Engl J Med. 2010;363(15):532–537. doi: 10.1056/NEJMx100067

[38]

Cicardi M., Banerji A., Bracho F., et al. Icatibant, a new bradykinin-receptor antagonist, in hereditary angioedema // N Engl J Med. 2010. Vol. 363, N 15. P. 532–537. doi: 10.1056/NEJMx100067

[39]

Cemazar M, Daly NL, Häggblad S, et al. Knots in rings.The circular knotted protein Momordica cochinchinensis trypsin inhibitor-II folds via a stable two-disulfide intermediate. J Biol Chem. 2006;281(12):8224–8232. doi: 10.1074/jbc.M513399200

[40]

Cemazar M., Daly N.L., Häggblad S., et al. Knots in rings. The circular knotted protein Momordica cochinchinensis trypsin inhibitor-II folds via a stable two-disulfide intermediate // J Biol Chem. 2006. Vol. 281, N 12. P. 8224–8232.doi: 10.1074/jbc.M513399200

[41]

Chaudhuri D, Aboye T, Camarero JA. Using backbone-cyclized Cys-rich polypeptides as molecular scaffolds to target protein-protein interactions. Biochem J. 2019;476(1):67–83. doi: 10.1042/BCJ20180792

[42]

Chaudhuri D., Aboye T., Camarero J.A. Using backbone-cyclized Cys-rich polypeptides as molecular scaffolds to target protein-protein interactions // Biochem J. 2019. Vol. 476, N 1. P. 67–83. doi: 10.1042/BCJ20180792

[43]

Chen B, Colgrave ML, Wang C, Craik DJ. Cycloviolacin H4, a hydrophobic cyclotide from Viola hederaceae. J Nat Prod. 2006;69(1): 23–28. doi: 10.1021/np050317i

[44]

Chen B., Colgrave M.L., Wang C., Craik D.J. Cycloviolacin H4, a hydrophobic cyclotide from Viola hederaceae // J Nat Prod. 2006. Vol. 69, N 1. P. 23–28. doi: 10.1021/np050317i

[45]

Claeson P, Goransson U, Johansson S, et al. Fractionation protocol for the isolation of polypeptides from plant biomass. J Nat Prod. 1998;61(1):77–81. doi: 10.1021/np970342r

[46]

Claeson P., Goransson U., Johansson S., et al. Fractionation protocol for the isolation of polypeptides from plant biomass //J Nat Prod. 1998. Vol. 61, N 1. P. 77–81. doi: 10.1021/np970342r

[47]

Colgrave ML, Craik DJ. Thermal, chemical, and enzymatic stability of the cyclotide kalata B1: the importance of the cyclic cystine knot. Biochemistry. 2004;43(20):5965–5975. doi: 10.1021/bi049711q

[48]

Colgrave M.L., Craik D.J. Thermal, chemical, and enzymatic stability of the cyclotide kalata B1: the importance of the cyclic cystine knot // Biochemistry. 2004. Vol. 43, N 20. P. 5965–5975.doi: 10.1021/bi049711q

[49]

Conlan BF, Anderson MA. Circular micro-proteins and mechanisms of cyclization. Curr Pharm Des. 2011;17(38):4318–4328. doi: 10.2174/138161211798999410

[50]

Conlan B.F., Anderson M.A. Circular micro-proteins and mechanisms of cyclization // Curr Pharm Des. 2011. Vol. 17, N 38.P. 4318–4328. doi: 10.2174/138161211798999410

[51]

Conlan BF, Gillon AD, Barbeta BL, Anderson MA. Subcellular targeting and biosynthesis of cyclotides in plant cells. Am J Bot. 2011;98(12):2018–2025. doi: 10.3732/ajb.1100382

[52]

Conlan B.F., Gillon A.D., Barbeta B.L., Anderson M.A. Subcellular targeting and biosynthesis of cyclotides in plant cells // Am J Bot. 2011. Vol. 98, N 12. P. 2018–2025. doi: 10.3732/ajb.1100382

[53]

Conlan BF, Gillon AD, Craik DJ, Anderson MA. Circular proteins and mechanisms of cyclization. Biopolymers. 2010;94(5):573–583. doi: 10.1002/bip.21422

[54]

Conlan B.F., Gillon A.D., Craik D.J., Anderson M.A. Circular proteins and mechanisms of cyclization // Biopolymers. 2010. Vol. 94, N 5. P. 573–583. doi: 10.1002/bip.21422

[55]

Conzelmann C, Muratspahić E, Tomašević N, et al. In vitro inhibition of HIV-1 by cyclotide-enriched extracts of Viola tricolor.Front Pharmacol. 2022;13:888961. doi: 10.3389/fphar.2022.888961

[56]

Conzelmann C., Muratspahić E., Tomašević N., et al. In vitro inhibition of HIV-1 by cyclotide-enriched extracts of Viola tricolor // Front Pharmacol. 2022. Vol. 13. ID 888961. doi: 10.3389/fphar.2022.888961

[57]

Craik DJ. Circling the enemy: cyclic proteins in plant defence. Trends Plant Sci. 2009;14(6):328–334.doi: 10.1016/j.tplants.2009.03.003

[58]

Craik D.J. Circling the enemy: cyclic proteins in plant defence // Trends Plant Sci. 2009. Vol. 14, N 6. P. 328–334.doi: 10.1016/j.tplants.2009.03.003

[59]

Craik DJ, Lee M-H, Rehm FBH, et al. Ribosomally-synthesised cyclic peptides from plants as drug leads and pharmaceutical scaffolds. Bioorg Med Chem. 2018;26(10):2727–2735.doi: 10.1016/j.bmc.2017.08.005

[60]

Craik D.J., Lee M.-H., Rehm F.B.H., et al. Ribosomally-synthesised cyclic peptides from plants as drug leads and pharmaceutical scaffolds // Bioorg Med Chem. 2018. Vol. 26, N 10. P. 2727–2735. doi: 10.1016/j.bmc.2017.08.005

[61]

Craik DJ, Daly NL, Bond T, Waine C. Plant cyclotides: A unique family of cyclic and knotted proteins that defines the cyclic cystine knot structural motif. J Mol Biol. 1999;294(5):1327–1331.doi: 10.1006/jmbi.1999.3383

[62]

Craik D.J., Daly N.L., Bond T., Waine C. Plant cyclotides: A unique family of cyclic and knotted proteins that defines the cyclic cystine knot structural motif // J Mol Biol. 1999. Vol. 294, N 5. P. 1327–1331. doi: 10.1006/jmbi.1999.3383

[63]

Dang TT, Chan LY, Huang Y-H, et al. Exploring the sequence diversity of cyclotides from Vietnamese Viola species. J Nat Prod. 2020;83(6):1817–1828. doi: 10.1021/acs.jnatprod.9b01218

[64]

Dang T.T., Chan L.Y., Huang Y.-H., et al. Exploring the sequence diversity of cyclotides from Vietnamese Viola species // J Nat Prod. 2020. Vol. 83, N 6. P. 1817–1828. doi: 10.1021/acs.jnatprod.9b01218

[65]

Davenport AP, Scully CCG, Graaf de C, et al. Advances in therapeutic peptides targeting G protein-coupled receptors. Nat Rev Drug Discov. 2020;19:389–413. doi: 10.1038/s41573-020-0062-z

[66]

Davenport A.P., Scully C.C.G., Graaf de C., et al. Advances in therapeutic peptides targeting G protein-coupled receptors // Nat Rev Drug Discov. 2020. Vol. 19. P. 389–413.doi: 10.1038/s41573-020-0062-z

[67]

Dawson PE, Muir TW, Clark-Lewis I, Kent SB. Synthesis of proteins by native chemical ligation. Science. 1994;266(5186): 776–779. doi: 10.1126/science.7973629

[68]

Dawson P.E., Muir T.W., Clark-Lewis I., Kent S.B. Synthesis of proteins by native chemical ligation // Science. 1994. Vol. 266, N 5186. P. 776–779. doi: 10.1126/science.7973629

[69]

Dutton JL, Renda RF, Waine C, et al. Conserved structural and sequence elements implicated in the processing of gene-encoded circular proteins. J Biol Chem. 2004;279(45):46858–4667.doi: 10.1074/jbc.M407421200

[70]

Dutton J.L., Renda R.F., Waine C., et al. Conserved structural and sequence elements implicated in the processing of gene-encoded circular proteins // J Biol Chem. 2004. Vol. 279, N 45. P. 46858–4667. doi: 10.1074/jbc.M407421200

[71]

Eichel K, Zastrow von M. Subcellular organization of GPCR signaling. Trends Pharmacol Sci. 2018;39(2):200–212.doi: 10.1016/j.tips.2017.11.009

[72]

Eichel K., Zastrow von M. Subcellular organization of GPCR signaling // Trends Pharmacol Sci. 2018. Vol. 39, N 2. P. 200–212. doi: 10.1016/j.tips.2017.11.009

[73]

Felizmenio-Quimio ME, Daly NL, Craik DJ. Circular proteins in plants: solution structure of a novel macrocyclic trypsin inhibitor from Momordica cochinchinensis. J Biol Chem. 2001;276(25):22875–22881. doi: 10.1074/jbc.M101666200

[74]

Felizmenio-Quimio M.E., Daly N.L., Craik D.J. Circular proteins in plants: solution structure of a novel macrocyclic trypsin inhibitor from Momordica cochinchinensis // J Biol Chem. 2001. Vol. 276, N 25. P. 22875–22881. doi: 10.1074/jbc.M101666200

[75]

Gorman M, Neuss N, Svoboda GH, et al. A note on the alkaloids of Vinca rosea Linn. (Catharanthus roseus G. Don.). II. Catharanthine, lochnericine, vindolinine, and vindoline. J Am Pharm Assoc. 1959;48(4):256–259. doi: 10.1002/jps.3030480419

[76]

Gorman M., Neuss N., Svoboda G.H., et al. A note on the alkaloids of Vinca rosea Linn. (Catharanthus roseus G. Don.). II. Catharanthine, lochnericine, vindolinine, and vindoline // J Am Pharm Assoc. 1959. Vol. 48, N 4. P. 256–259. doi: 10.1002/jps.3030480419

[77]

Gould A, Camarero JA. Cyclotides: Overview and biotechnological applications. ChemBioChem. 2017;18(14):1350–1363.doi: 10.1002/cbic.201700153

[78]

Gould A., Camarero J.A. Cyclotides: Overview and biotechnological applications // ChemBioChem. 2017. Vol. 18, N 14. P. 1350–1363. doi: 10.1002/cbic.201700153

[79]

Grage SL, Sani MA, Cheneval O, et al. Orientation and location of the cyclotide Kalata B1 in lipid bilayers revealed by solid-state NMR. Biophys J. 2017;112(4):630–642. doi: 10.1016/j.bpj.2016.12.040

[80]

Grage S.L., Sani M.A., Cheneval O., et al. Orientation and location of the cyclotide Kalata B1 in lipid bilayers revealed by solid-state NMR // Biophys J. 2017. Vol. 112, N 4. P. 630–642.doi: 10.1016/j.bpj.2016.12.040

[81]

Gran L. Oxytocic principles of Oldenlandia affinis. Lloydia. 1973;36(2):174–181.

[82]

Gran L. Oxytocic principles of Oldenlandia affinis // Lloydia. 1973. Vol. 36, N 2. P. 174–181.

[83]

Gran L. On the effect of a polypeptide isolated from “Kalata-Kalata” (Oldenlandia affinis DC) on the oestrogen dominated uterus. Acta Pharmacol Toxicol (Copenh). 1973;33(5):400–408.doi: 10.1111/j.1600-0773.1973.tb01541.x

[84]

Gran L. On the effect of a polypeptide isolated from «Kalata-Kalata» (Oldenlandia affinis DC) on the oestrogen dominated uterus // Acta Pharmacol Toxicol (Copenh). 1973. Vol. 33, N 5. P. 400–408. doi: 10.1111/j.1600-0773.1973.tb01541.x

[85]

Gran L, Sandberg F, Sletten KJ. Oldenlandia affinis (R&S) DC. A plant containing uteroactive peptides used in African traditional medicine. Ethnopharmacol. 2000;70(3):197–203.doi: 10.1016/s0378-8741(99)00175-0

[86]

Gran L., Sandberg F., Sletten K.J. Oldenlandia affinis (R&S) DC. A plant containing uteroactive peptides used in African traditional medicine // Ethnopharmacol. 2000. Vol. 70, N 3. P. 197–203.doi: 10.1016/s0378-8741(99)00175-0

[87]

Gransson U, Luijendijk T, Johansson S, et al. Seven novel macrocyclic polypeptides from Viola arvensis. J Nat Prod. 1999;62(2):283–286. doi: 10.1021/np9803878

[88]

Gransson U., Luijendijk T., Johansson S., et al. Seven novel macrocyclic polypeptides from Viola arvensis // J Nat Prod. 1999. Vol. 62, N 2. P. 283–286. doi: 10.1021/np9803878

[89]

Gruber CW, Cemazar M, Clark RJ, et al. A novel plant protein-disulfide isomerase involved in the oxidative folding of cystine knot defense proteins. J Biol Chem. 2007;282(28):20435–20442. doi: 10.1074/jbc.M700018200

[90]

Gruber C.W., Cemazar M., Clark R.J., et al. A novel plant protein-disulfide isomerase involved in the oxidative folding of cystine knot defense proteins // J Biol Chem. 2007. Vol. 282, N 28.P. 20435–20442. doi: 10.1074/jbc.M700018200

[91]

Gruber CW, Elliott AG, Ireland DC, et al. Distribution and evolution of circular miniproteins in flowering plants. Plant Cell. 2008;20(9):2471–2483. doi: 10.1105/tpc.108.062331

[92]

Gruber C.W., Elliott A.G., Ireland D.C., et al. Distribution and evolution of circular miniproteins in flowering plants // Plant Cell. 2008. Vol. 20, N 9. P. 2471–2483. doi: 10.1105/tpc.108.062331

[93]

Gupta A, Gomes I, Bobeck EN, et al. Collybolide is a novel biased agonist of kappa-opioid receptors with potent antipruritic activity. PNAS USA. 2016;113(21):6041–6047. doi: 10.1073/pnas.1521825113

[94]

Gupta A., Gomes I., Bobeck E.N., et al. Collybolide is a novel biased agonist of kappa-opioid receptors with potent antipruritic activity // PNAS USA. 2016. Vol. 113, N 21. P. 6041–6047.doi: 10.1073/pnas.1521825113

[95]

Harris KS, Durek T, Kaas Q, et al. Efficient backbone cyclization of linear peptides by a recombinant asparaginyl endopeptidase. Nat Commun. 2015;6:10199. doi: 10.1038/ncomms10199

[96]

Harris K.S., Durek T., Kaas Q., et al. Efficient backbone cyclization of linear peptides by a recombinant asparaginyl endopeptidase // Nat Commun. 2015. Vol. 6. ID 10199. doi: 10.1038/ncomms10199

[97]

Hashempour H, Koehbach J, Daly NL, et al. Characterizing circular peptides in mixtures: sequence fragment assembly of cyclotides from a violet plant by MALDI-TOF/TOF mass spectrometry. Amino Acids. 2013;44(2):581–595.doi: 10.1007/s00726-012-1376-x

[98]

Hashempour H., Koehbach J., Daly N.L., et al. Characterizing circular peptides in mixtures: sequence fragment assembly of cyclotides from a violet plant by MALDI-TOF/TOF mass spectrometry // Amino Acids. 2013. Vol. 44, N 2. P. 581–595. doi: 10.1007/s00726-012-1376-x

[99]

Hauser AS, Attwood MM, Rask-Andersen M, et al. Trends in GPCR drug discovery new agents, targets and indications. Nat Rev Drug Discov. 2017;16:829–834. doi: 10.1038/nrd.2017.178

[100]

Hauser A.S., Attwood M.M., Rask-Andersen M., et al. Trends in GPCR drug discovery new agents, targets and indications // Nat Rev Drug Discov. 2017. Vol. 16. P. 829–834.doi:10.1038/nrd.2017.178

[101]

Hellinger R, Koehbach J, Soltis DE, et al. Peptidomics of circular cysteine-rich plant peptides: analysis of the diversity of cyclotides from Viola tricolor by transcriptome and proteome mining. J Proteome Res. 2015;14(11):4851–4857.doi: 10.1021/acs.jproteome.5b00681

[102]

Hellinger R., Koehbach J., Soltis D.E., et al. Peptidomics of circular cysteine-rich plant peptides: analysis of the diversity of cyclotides from Viola tricolor by transcriptome and proteome mining // J Proteome Res. 2015. Vol. 14, N 11. P. 4851–4857.doi: 10.1021/acs.jproteome.5b00681

[103]

Hemu X, Zhang X, Bi X, et al. Butelase 1-mediated ligation of peptides and proteins. In: Nuijens T, Schmidt M, editors. Enzyme-mediated ligation methods. Methods in molecular biology. Vol. 2012. New York: Humana, 2019. P. 83–109. doi: 10.1007/978-1-4939-9546-2_6

[104]

Hemu X., Zhang X., Bi X., et al. Butelase 1-mediated ligation of peptides and proteins. В кн.: Enzyme-mediated ligation methods. Methods in molecular biology. Vol. 2012 / T. Nuijens, M. Schmidt, editors. New York: Humana, 2019. P. 83–109.doi: 10.1007/978-1-4939-9546-2_6

[105]

Heitz A, Hernandez J-F, Gagnon J, et al. Solution structure of the squash trypsin inhibitor MCoTI-II. A new family for cyclic knottins. Biochemistry. 2001;40(27):7973–7981. doi: 10.1021/bi0106639

[106]

Heitz A., Hernandez J.-F., Gagnon J., et al. Solution structure of the squash trypsin inhibitor MCoTI-II. A new family for cyclic knottins // Biochemistry. 2001. Vol. 40, N 27. P. 7973–7981.doi: 10.1021/bi0106639

[107]

Hilger D, Masureel M, Kobilka BK. Structure and dynamics of GPCR signaling complexes. Nat Struct Mol Biol. 2018;25:4–12. doi: 10.1038/s41594-017-0011-7

[108]

Hilger D., Masureel M., Kobilka B.K. Structure and dynamics of GPCR signaling complexes // Nat Struct Mol Biol. 2018. Vol. 25. P. 4–12. doi: 10.1038/s41594-017-0011-7

[109]

Huang Y-H, Du Q, Craik DJ. Cyclotides: Disulfide-rich peptide toxins in plants. Toxicon. 2019;172:33–38. doi: 10.1016/j.toxicon.2019.10.244

[110]

Huang Y.-H., Du Q., Craik D.J. Cyclotides: Disulfide-rich peptide toxins in plants // Toxicon. 2019. Vol. 172. P. 33–38.doi: 10.1016/j.toxicon.2019.10.244

[111]

Huang H, Player MR. Bradykinin B1 receptor antagonists as potential therapeutic agents for pain. J Med Chem. 2010;53(15):5383–5386. doi: 10.1021/jm1000776

[112]

Huang H., Player M.R. Bradykinin B1 receptor antagonists as potential therapeutic agents for pain // J Med Chem. 2010. Vol. 53, N 15. P. 5383–5386. doi: 10.1021/jm1000776

[113]

Jacob B, Vogelaar A, Cadenas E, Camarero JA. Using the cyclotide scaffold for targeting biomolecular interactions in drug development. Molecules. 2022;27(19):6430. doi: 10.3390/molecules27196430

[114]

Jacob B., Vogelaar A., Cadenas E., Camarero J.A. Using the cyclotide scaffold for targeting biomolecular interactions in drug development // Molecules. 2022. Vol. 27, N 19. ID 6430.doi: 10.3390/molecules27196430

[115]

Jia X, Kwon S, Wang CA, et al. Semienzymatic cyclization of disulfide-rich peptides using Sortase A. J Biol Chem. 2014;289(10):6627–6638. doi: 10.1074/jbc.M113.539262

[116]

Jia X., Kwon S., Wang C.A., et al. Semienzymatic cyclization of disulfide-rich peptides using Sortase A // J Biol Chem. 2014.Vol. 289, N 10. P. 6627–6638. doi: 10.1074/jbc.M113.539262

[117]

Jin A-H, Muttenthaler M, Dutertre S, et al. Conotoxins: chemistry and biology. Chem Rev.2019;119(21):11510–11516.doi: 10.1021/acs.chemrev.9b00207

[118]

Jin A.-H., Muttenthaler M., Dutertre S., et al. Conotoxins: chemistry and biology // Chem Rev. 2019. Vol. 119, N 21. P. 11510–11516. doi: 10.1021/acs.chemrev.9b00207

[119]

Katoh T, Goto Y, Reza MS, Suga H. Ribosomal synthesis of backbone macrocyclic peptides. Chem Commun (Camb). 2011;47(36):9946–9958. doi: 10.1039/c1cc12647d

[120]

Katoh T., Goto Y., Reza M.S., Suga H. Ribosomal synthesis of backbone macrocyclic peptides // Chem Commun (Camb). 2011.Vol. 47, N 36. P. 9946–9958. doi: 10.1039/c1cc12647d

[121]

Khoshkam Z, Zarrabi M, Sepehrizadeh Z, et al. Reporting a transcript from Iranian Viola tricolor, which may encode a novel cyclotide-like precursor: Molecular and in silico studies. Comput Biol Chem. 2020;84:107168. doi: 10.1016/j.compbiolchem.2019.107168

[122]

Khoshkam Z., Zarrabi M., Sepehrizadeh Z., et al. Reporting a transcript from Iranian Viola tricolor, which may encode a novel cyclotide-like precursor: Molecular and in silico studies // Comput Biol Chem. 2020. Vol. 84. ID 107168. doi: 10.1016/j.compbiolchem.2019.107168

[123]

Kintzing JR, Cochran JR. Engineered knottin peptides as diagnostics, therapeutics, and drug delivery vehicles. Curr Opin Chem Biol. 2016;34:143–150. doi: 10.1016/j.cbpa.2016.08.022

[124]

Kintzing J.R., Cochran J.R. Engineered knottin peptides as diagnostics, therapeutics, and drug delivery vehicles // Curr Opin Chem Biol. 2016. Vol. 34. P. 143–150. doi:10.1016/j.cbpa.2016.08.022

[125]

Kuduk SD, Bock MG. Bradykinin B1 receptor antagonists as novel analgesics: a retrospective of selected medicinal chemistry developments. Curr Top Med Chem. 2008;8(16):1420–1430. doi: 10.2174/156802608786264263

[126]

Kuduk S.D., Bock M.G. Bradykinin B1 receptor antagonists as novel analgesics: a retrospective of selected medicinal chemistry developments // Curr Top Med Chem. 2008. Vol. 8, N 16. P. 1420–1430. doi: 10.2174/156802608786264263

[127]

Kuroda Y, Nicacio KJ, da Silva-Jr IA, et al. Isolation, synthesis and bioactivity studies of phomactin terpenoids. Nat Chem. 2018;10:938–941. doi: 10.1038/s41557-018-0084-x

[128]

Kuroda Y., Nicacio K.J., da Silva-Jr I.A., et al. Isolation, synthesis and bioactivity studies of phomactin terpenoids // Nat Chem. 2018. Vol. 10. P. 938–941. doi: 10.1038/s41557-018-0084-x

[129]

Lage K. Protein–protein interactions and genetic diseases: The interactome. Biochim Biophys Acta – Mol Basis Dis. 2014;1842(10):1971–1980. doi: 10.1016/j.bbadis.2014.05.028

[130]

Lage K. Protein–protein interactions and genetic diseases: The interactome // Biochim Biophys Acta – Mol Basis Dis. 2014. Vol. 1842, N 10. P. 1971–1980. doi: 10.1016/j.bbadis.2014.05.028

[131]

Lau JL, Dunn MK. Therapeutic peptides: Historical perspectives, current development trends, and future directions. Bioorg Med Chem. 2018;26(10):2700–2711. doi: 10.1016/j.bmc.2017.06.052

[132]

Lau J.L., Dunn M.K. Therapeutic peptides: Historical perspectives, current development trends, and future directions // Bioorg Med Chem. 2018. Vol. 26, N 10. P. 2700–2711.doi: 10.1016/j.bmc.2017.06.052

[133]

Marglin A, Merrifield RB. Chemical synthesis of peptides and proteins. Annu Rev Biochem. 1970;39:841–866.doi: 10.1146/annurev.bi.39.070170.004205

[134]

Marglin A., Merrifield R.B. Chemical synthesis of peptides and proteins // Annu Rev Biochem. 1970. Vol. 39. P. 841–866. doi: 10.1146/annurev.bi.39.070170.004205

[135]

McGregor DP. Discovering and improving novel peptide therapeutics. Curr Opin Pharmacol. 2008;8(5):616–619.doi: 10.1016/j.coph.2008.06.002

[136]

McGregor D.P. Discovering and improving novel peptide therapeutics // Curr Opin Pharmacol. 2008. Vol. 8, N 5. P. 616–619. doi: 10.1016/j.coph.2008.06.002

[137]

Mills SEE, Nicolson KP, Smith BH. Chronic pain: a review of its epidemiology and associated factors in population-based studies. Br J Anaesth. 2019;123(2):e273–e283. doi: 10.1016/j.bja.2019.03.023

[138]

Mills S.E.E., Nicolson K.P., Smith B.H. Chronic pain: a review of its epidemiology and associated factors in population-based studies // Br J Anaesth. 2019. P. 123, N 2. P. e273–e283.doi: 10.1016/j.bja.2019.03.023

[139]

Muratspahic´ E, Freissmuth M, Gruber CW. Nature-derived peptides: a growing niche for GPCR ligand discovery. Trends Pharmacol Sci. 2019;40(5):309–312. doi: 10.1016/j.tips.2019.03.004

[140]

Muratspahic´ E., Freissmuth M., Gruber C.W. Nature-derived peptides: a growing niche for GPCR ligand discovery // Trends Pharmacol Sci. 2019. Vol. 40, N 5. P. 309–312. doi:10.1016/j.tips.2019.03.004

[141]

Mylne JS, Wang CK, van der Weerden NL, Craik DJ. Cyclotides are a component of the innate defense of Oldenlandia affinis.Biopolymers. 2010;94(5):635–646. doi: 10.1002/bip.21419

[142]

Mylne J.S., Wang C.K., van der Weerden N.L., Craik D.J. Cyclotides are a component of the innate defense of Oldenlandia affinis //Biopolymers. 2010. Vol. 94, N 5. P. 635–646. doi: 10.1002/bip.21419

[143]

Newman DJ, Cragg GM. Natural products as sources of new drugs from 1981 to 2014. J Nat Prod. 2016;79(3):629–632. doi: 10.1021/acs.jnatprod.5b01055

[144]

Newman D.J., Cragg G.M. Natural products as sources of new drugs from 1981 to 2014 // J Nat Prod. 2016. Vol. 79, N 3. P. 629–632. doi: 10.1021/acs.jnatprod.5b01055

[145]

Nguyen GK, Lian Y, Pang EWH, et al. Discovery of linear cyclotides in monocot plant Panicum laxum of Poaceae family provides new insights into evolution and distribution of cyclotides in plants. J Biol Chem. 2013;288(5):3370–3380. doi: 10.1074/jbc.M112.415356

[146]

Nguyen G.K., Lian Y., Pang E.W.H., et al. Discovery of linear cyclotides in monocot plant Panicum laxum of Poaceae family provides new insights into evolution and distribution of cyclotides in plants // J Biol Chem. 2013. Vol. 288, N 5. P. 3370–3380. doi: 10.1074/jbc.M112.415356

[147]

Nguyen GKT, Wang S, Qiu Y, et al. Butelase 1 is an Asx-specific ligase enabling peptide macrocyclization and synthesis. Nat Chem Biol. 2014;10(9):732–738. doi: 10.1038/nchembio.1586

[148]

Nguyen G.K.T., Wang S., Qiu Y., et al. Butelase 1 is an Asx-specific ligase enabling peptide macrocyclization and synthesis // Nat Chem Biol. 2014. Vol. 10, N 9. P. 732–738. doi: 10.1038/nchembio.1586

[149]

Pelegrini PB, Quirino BF, Franco OL. Plant cyclotides: an unusual class of defense compounds. Peptides. 2007;28(7): 1475–1481. doi: 10.1016/j.peptides.2007.04.025

[150]

Pelegrini P.B., Quirino B.F., Franco O.L. Plant cyclotides: an unusual class of defense compounds // Peptides. 2007. Vol. 28, N 7. P. 1475–1481. doi: 10.1016/j.peptides.2007.04.025

[151]

Plückthun A. Designed ankyrin repeat proteins (DARPins): binding proteins for research, diagnostics, and therapy. Annu Rev Pharmacol Toxicol. 2015;55:489–511. doi: 10.1146/annurev-pharmtox-010611-134654

[152]

Plückthun A. Designed ankyrin repeat proteins (DARPins): binding proteins for research, diagnostics, and therapy // Annu Rev Pharmacol Toxicol. 2015. Vol. 55. 489–511. doi: 10.1146/annurev-pharmtox-010611-134654

[153]

Pestana-Calsa MC, Ribeiro ILAC, Calsa TJr. Bioinformatics-coupled molecular approaches for unravelling potential antimicrobial peptides coding genes in Brazilian native and crop plant species. Curr Protein Pept Sci. 2010;11(3):199–209. doi: 10.2174/138920310791112138

[154]

Pestana-Calsa M.C., Ribeiro I.L.A.C., Calsa T.Jr. Bioinformatics-coupled molecular approaches for unravelling potential antimicrobial peptides coding genes in Brazilian native and crop plant species // Curr Protein Pept Sci. 2010. Vol. 11, N 3. P. 199–209. doi:10.2174/138920310791112138

[155]

Plan MR, Saska I, Cagauan AG, Craik DJ. Backbone cyclised peptides from plants show molluscicidal activity against the rice pest Pomacea canaliculata (golden apple snail). J Agric Food Chem. 2008;56(13):5237–5241. doi: 10.1021/jf800302f

[156]

Plan M.R., Saska I., Cagauan A.G., Craik D.J. Backbone cyclised peptides from plants show molluscicidal activity against the rice pest Pomacea canaliculata (golden apple snail) // J Agric Food Chem. 2008. Vol. 56, N 13. P. 5237–5241. doi: 10.1021/jf800302f

[157]

Poth AG, Chan LY, Craik DJ. Cyclotides as grafting frameworks for protein engineering and drug design applications. Biopolymers. 2013;100(5):480–491. doi: 10.1002/bip.22284

[158]

Poth A.G., Chan L.Y., Craik D.J. Cyclotides as grafting frameworks for protein engineering and drug design applications // Biopolymers. 2013. Vol. 100, N 5. P. 480–491. doi: 10.1002/bip.22284

[159]

Poth AG, Colgrave ML, Philip R, et al. Discovery of cyclotides in the Fabaceae plant family provides new insights into the cyclization, evolution, and distribution of circular proteins. ACS Chem Biol. 2011;6(4):345–355. doi: 10.1021/cb100388j

[160]

Poth A.G., Colgrave M.L., Philip R., et al. Discovery of cyclotides in the fabaceae plant family provides new insights into the cyclization, evolution, and distribution of circular proteins // ACS Chem Biol. 2011. Vol. 6, N 4. P. 345–355. doi: 10.1021/cb100388j

[161]

Poth AG, Mylne JS, Grassl J, et al. Cyclotides associate with leaf vasculature and are the products of a novel precursor in petunia (Solanaceae). J Biol Chem. 2012;287(32):27033–27046.doi: 10.1074/jbc.M112.370841

[162]

Poth A.G., Mylne J.S., Grassl J., et al. Cyclotides associate with leaf vasculature and are the products of a novel precursor in petunia (Solanaceae) // J Biol Chem. 2012. Vol. 287, N 32. P. 27033–27046. doi: 10.1074/jbc.M112.370841

[163]

Rajendran S, Slazak B, Mohotti S, et al. Tropical vibes from Sri Lanka — cyclotides from Viola betonicifolia by transcriptome and mass spectrometry analysis. Phytochemistry. 2021;187:112749. doi: 10.1016/j.phytochem.2021.112749

[164]

Rajendran S., Slazak B., Mohotti S., et al. Tropical vibes from Sri Lanka – cyclotides from Viola betonicifolia by transcriptome and mass spectrometry analysis // Phytochemistry. 2021. Vol. 187. ID 112749. doi: 10.1016/j.phytochem.2021.112749

[165]

Rehm FBH, Jackson MA, De Geyter E, et al. Papain-like cysteine proteases prepare plant cyclic peptide precursors for cyclization. PNAS USA. 2019;116(16):7831–7836.doi: 10.1073/pnas.1901807116

[166]

Rehm F.B.H., Jackson M.A., De Geyter E., et al. Papain-like cysteine proteases prepare plant cyclic peptide precursors for cyclization // PNAS USA. 2019. Vol. 116, N 16. P. 7831–7836.doi: 10.1073/pnas.1901807116

[167]

Saether O, Craik DJ, Campbell ID, et al. Elucidation of the primary and three-dimensional structure of the uterotonic polypeptide kalata B1. Biochemistry. 1995;34(13):4147–4158.doi: 10.1021/bi00013a002

[168]

Saether O., Craik D.J., Campbell I.D., et al. Elucidation of the primary and three-dimensional structure of the uterotonic polypeptide kalata B1 // Biochemistry. 1995. Vol. 34, N 13. P. 4147–4158. doi: 10.1021/bi00013a002

[169]

Sarmiento C, Camarero JA. Biotechnological applications of protein splicing. Curr Protein Pept Sci. 2019;20(5):408–424.doi: 10.2174/1389203720666190208110416

[170]

Sarmiento C., Camarero J.A. Biotechnological applications of protein splicing // Curr Protein Pept Sci. 2019. Vol. 20, N 5. P. 408–424. doi: 10.2174/1389203720666190208110416

[171]

Saska I, Gillon AD, Hatsugai N, et al. An asparaginyl endopeptidase mediates in vivo protein backbone cyclization. J Biol Chem. 2007;282(40):29721–29729. doi: 10.1074/jbc.M705185200

[172]

Saska I., Gillon A.D., Hatsugai N., et al. An asparaginyl endopeptidase mediates in vivo protein backbone cyclization // J Biol Chem. 2007. Vol. 282, N 40. P. 29721–29729. doi: 10.1074/jbc.M705185200

[173]

Schoepke HA, Kra YR, Otto AH. Compounds with hemolytic activity from Viola tricolor and Viola arvensis. Sci Pharm. 1993;61(2):145–153.

[174]

Schoepke H.A., Kra Y.R., Otto A.H. Compounds with hemolytic activity from Viola tricolor and Viola arvensis // Sci Pharm. 1993. Vol. 61, N 2. P. 145–153.

[175]

Schmidtko A, Lotsch J, Freynhagen R, Geisslinger G. Ziconotide for treatment of severe chronic pain. Lancet. 2010;375(9725):1569–1574. doi: 10.1016/S0140-6736(10)60354-6

[176]

Schmidtko A., Lotsch J., Freynhagen R., Geisslinger G. Ziconotide for treatment of severe chronic pain // Lancet. 2010. Vol. 375, N 9725. P. 1569–1574. doi: 10.1016/S0140-6736(10)60354-6

[177]

Slazak B, Haugmo T, Badyra B, Göransson U. The life cycle of cyclotides: biosynthesis and turnover in plant cells. Plant Cell Rep. 2020;39(10):1359–1367. doi: 10.1007/s00299-020-02569-1

[178]

Slazak B., Haugmo T., Badyra B., Göransson U. The life cycle of cyclotides: biosynthesis and turnover in plant cells // Plant Cell Rep. 2020. Vol. 39, N 10. P. 1359–1367. doi: 10.1007/s00299-020-02569-1

[179]

Svangard E, Goransson U, Hocaoglu Z, et al. Cytotoxic cyclotides from Viola. J Nat Prod. 2004;67(2):144–147. doi: 10.1021/np030101l

[180]

Svangard E., Goransson U., Hocaoglu Z., et al. Cytotoxic cyclotides from Viola tricolor // J Nat Prod. 2004. Vol. 67, N 2. P. 144–147. doi: 10.1021/np030101l

[181]

Svangard E, Burman R, Gunasekera S, et al. Mechanism of action of cytotoxic cyclotides: cycloviolacin O2 disrupts lipid membranes.J Nat Prod. 2007;70(4):643–647. doi: 10.1021/np070007v

[182]

Svangard E., Burman R., Gunasekera S., et al. Mechanism of action of cytotoxic cyclotides: cycloviolacin O2 disrupts lipid membranes // J Nat Prod. 2007. Vol. 70, N 4. P. 643–647.doi: 10.1021/np070007v

[183]

Svangard E, Goransson U, Smith D, et al. Primary and 3-D modelled structures of two cyclotides from Viola odorata. J Phytochemistry. 2003;64(1):135–142. doi: 10.1016/S0031-9422(03)00218-8

[184]

Svangard E., Goransson U., Smith D., et al. Primary and 3-D modelled structures of two cyclotides from Viola odorata // J Phytochemistry. 2003. Vol. 64, N 1. P. 135–142. doi: 10.1016/S0031-9422(03)00218-8

[185]

Tang TMS, Luk LYP. Asparaginyl endopeptidases: enzymo¬logy, applications and limitations. Org Biomol Chem. 2021;19(23):5048–5062. doi: 10.1039/d1ob00608h

[186]

Tang T.M.S., Luk L.Y.P. Asparaginyl endopeptidases: enzymology, applications and limitations // Org Biomol Chem. 2021. Vol. 19, N 23. P. 5048–5062. doi: 10.1039/d1ob00608h

[187]

Thongyoo P, Roqué-Rosell N, Leatherbarrow RJ, Tate EW. Chemical and biomimetic total syntheses of natural and engineered MCoTI cyclotides. Org Biomol Chem. 2008;6(8):1462–1470.doi: 10.1039/b801667d

[188]

Thongyoo P., Roqué-Rosell N., Leatherbarrow R.J., Tate E.W. Chemical and biomimetic total syntheses of natural and engineered MCoTI cyclotides // Org Biomol Chem. 2008. Vol. 6, N 8. P. 1462–1470. doi: 10.1039/b801667d

[189]

Troeira Henriques S, Craik DJ. Cyclotide structure and function: The role of membrane binding and permeation. Biochemistry. 2017;56(5):669–682. doi: 10.1021/acs.biochem.6b01212

[190]

Troeira Henriques S., Craik D.J. Cyclotide structure and function: The role of membrane binding and permeation // Biochemistry. 2017. Vol. 56, N 5. P. 669–682. doi: 10.1021/acs.biochem.6b01212

[191]

Tu Y. The discovery of artemisinin (qinghaosu) and gifts from Chinese medicine. Nat Med. 2011;17:1217–1220.doi: 10.1038/nm.2471

[192]

Tu Y. The discovery of artemisinin (qinghaosu) and gifts from Chinese medicine // Nat Med. 2011. Vol. 17. P. 1217–1220.doi: 10.1038/nm.2471

[193]

de Veer SJ, Kan MW, Craik DJ. Cyclotides: from structure to function. Chem Rev. 2019;119(24):12375–12381.doi: 10.1021/acs.chemrev.9b00402

[194]

de Veer S.J., Kan M.W., Craik D.J. Cyclotides: from structure to function // Chem Rev. 2019. Vol. 119, N 24. P. 12375–12381. doi: 10.1021/acs.chemrev.9b00402

[195]

Venkatesan J, Roy D. Cyclic cysteine knot and its strong implication on the structure and dynamics of cyclotides. Proteins. 2023;91(2):256–267. doi: 10.1002/prot.26426

[196]

Venkatesan J., Roy D. Cyclic cysteine knot and its strong implication on the structure and dynamics of cyclotides // Proteins. 2023. Vol. 91, N 2. P. 256–267. doi: 10.1002/prot.26426

[197]

Wang CKL, Colgrave ML, Gustafson KR, et al. Anti-HIV cyclotides from the Chinese medicinal herb Viola yedoensis. J Nat Prod. 2008;71(1):47–52. doi: 10.1021/np070393g

[198]

Wang C.K.L., Colgrave M.L., Gustafson K.R., et al. Anti-HIV cyclotides from the Chinese medicinal herb Viola yedoensis // J Nat Prod. 2008. Vol. 71, N 1. P. 47–52. doi: 10.1021/np070393g

[199]

Wong CTT, Rowlands DK, Wong C-H, et al. Orally active peptidic bradykinin B1 receptor antagonists engineered from a cyclotide scaffold for inflammatory pain treatment. Angew Chem Int Ed Engl. 2012;5(23):5620–5624. doi: 10.1002/anie.201200984

[200]

Wong C.T.T., Rowlands D.K., Wong C.-H., et al. Orally active peptidic bradykinin B1 receptor antagonists engineered from a cyclotide scaffold for inflammatory pain treatment // Angew Chem Int Ed Engl. 2012. Vol. 5, N 23. P. 5620–5624.doi: 10.1002/anie.201200984

[201]

Zhang J, Liao B, Craik DJ, et al. Identification of two suites of cyclotide precursor genes from metallophyte Viola baoshanensis: cDNA sequence variation, alternative RNA splicing and potential cyclotide diversity. Gene. 2009;431(1–2):23–32.doi: 10.1016/j.gene.2008.11.005

[202]

Zhang J., Liao B., Craik D.J., et al. Identification of two suites of cyclotide precursor genes from metallophyte Viola baoshanensis: cDNA sequence variation, alternative RNA splicing and potential cyclotide diversity // Gene. 2009. Vol. 431, N 1–2. P. 23–32. doi: 10.1016/j.gene.2008.11.005

RIGHTS & PERMISSIONS

Eco-Vector

AI Summary AI Mindmap
PDF (1357KB)

135

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/