Pharmacological efficacy and potential of the use of nitazoxanide, a thiazolide drug with a wide spectrum of action
Vladimir V. Rusanovsky , Anastasia A. Savelyeva , Zara G. Tadtaeva , Egor S. Astudin , Alexandr E. Krivoshein , Alexandr A. Akimov , Natalia A. Kuritsina
Reviews on Clinical Pharmacology and Drug Therapy ›› 2024, Vol. 22 ›› Issue (1) : 81 -96.
Pharmacological efficacy and potential of the use of nitazoxanide, a thiazolide drug with a wide spectrum of action
The article is devoted to the possibility and prospects of using nitazoxanide in a wide range of diseases. Based on literature data, the authors evaluate the pharmacological effectiveness and substantiate the potential of using nitazoxanide in bacterial, helminthic, protean, viral and oncological diseases. This information is of interest and can be used to decide on the need to conduct clinical trials of nitazoxanide in Russia. A systematic search for current information was conducted in four databases until December 1, 2023: PubMed, EMBASE, Web of Science and Cochrane Library. The work included preclinical studies in vitro and in vivo, as well as randomized clinical trials comparing the pharmacological effectiveness of nitazoxanide and placebo. The broad-spectrum thiazolide drug nitazoxanide has antibacterial, antiprotozoal, anthelmintic, antiviral and antitumor activity. This is achieved through its pharmacological properties, namely: regulation of the cell cycle, apoptosis, cell proliferation and migration; activation of innate immunity; influence on the synthesis and activation of cell proteins, some of which are links in cellular signaling pathways; binding to proteins of viruses, bacteria, protozoa and helminths with disruption of their vital functions; immunomodulating effect by regulating the activity of pro- and anti-inflammatory cytokines. The article systematizes and summarizes current information on the pharmacodynamics of nitazoxanide, as well as the results of preclinical and clinical studies of the drug, and discusses further prospects.
nitazoxanide / thiazolides / thiazoxanide / antiviral / anthelmintics / antiprotozoal / antibacterial / antitumor
| [1] |
Patent US 3950351. 1976 Apr 13. Rossignol JF, Cavier R. New derivatives of 2-benzamido-5-nitro thiazoles. Phavic Sprl, assignee. |
| [2] |
Patent US 3950351. 1976 Apr 13. Rossignol J.F., Cavier R. New derivatives of 2-benzamido-5-nitro thiazoles. Phavic Sprl, assignee. |
| [3] |
Smart T. NTZ trials for cryptosporidiosis. GMHC Treat Issues. 1995;9(9):14. |
| [4] |
Smart T. NTZ trials for cryptosporidiosis // GMHC Treat Issues. 1995. Vol. 9, N. 9. P. 14. |
| [5] |
Rossignol JF, Maisonneuve H. Nitazoxanide in the treatment of Taenia saginata and Hymenolepis nana infections. Am J Trop Med Hyg. 1984;33(3):511–512. doi: 10.4269/ajtmh.1984.33.511 |
| [6] |
Rossignol J.F., Maisonneuve H. Nitazoxanide in the treatment of Taenia saginata and Hymenolepis nana infections // Am J Trop Med Hyg. 1984. Vol. 33, N. 3. P. 511–512. doi: 10.4269/ajtmh.1984.33.511 |
| [7] |
Roehr B. Another failed promise? NTZ gets the nix. J Int Assoc Physicians AIDS Care. 1998;4(8):26–29. |
| [8] |
Roehr B. Another failed promise? NTZ gets the nix // J Int Assoc Physicians AIDS Care. 1998. Vol. 4, N. 8. P. 26–29. |
| [9] |
Diaz E, Mondragon J, Ramirez E, Bernal R. Epidemiology and control of intestinal parasites with nitazoxanide in children in Mexico. Am J Trop Med Hyg. 2003;68(4):384–385. |
| [10] |
Diaz E., Mondragon J., Ramirez E., Bernal R. Epidemiology and control of intestinal parasites with nitazoxanide in children in Mexico // Am J Trop Med Hyg. 2003. Vol. 68, N. 4. P. 384–385. |
| [11] |
Lateef M, Zargar SA, Khan AR, et al. Successful treatment of niclosamide- and praziquantel-resistant beef tapeworm infection with nitazoxanide. Int J Infect Dis. 2008;12(1):80–82. doi: 10.1016/j.ijid.2007.04.017 |
| [12] |
Lateef M., Zargar S.A., Khan A.R., et al. Successful treatment of niclosamide- and praziquantel-resistant beef tapeworm infection with nitazoxanide // Int J Infect Dis. 2008. Vol. 12, N. 1. P. 80–82. doi: 10.1016/j.ijid.2007.04.017 |
| [13] |
Rafiullah F, Kanwal S, Majeed UM, et al. Successful use of nitazoxanide in the treatment of recurrent Clostridium difficile infection. BMJ Case Rep. 2011;2011:bcr0420114123. doi: 10.1136/bcr.04.2011.4123 |
| [14] |
Rafiullah F., Kanwal S., Majeed U.M., et al. Successful use of nitazoxanide in the treatment of recurrent Clostridium difficile infection // BMJ Case Rep. 2011. Vol. 2011. P. bcr0420114123. doi: 10.1136/bcr.04.2011.4123 |
| [15] |
Laxminarayan R, Duse A, Wattal C, et al. Antibiotic resistance-the need for global solutions. Lancet Infect Dis. 2013;13(12):1057–1098. doi: 10.1016/S1473-3099(13)70318-9 |
| [16] |
Laxminarayan R., Duse A., Wattal C., et al. Antibiotic resistance-the need for global solutions // Lancet Infect Dis. 2013. Vol. 13, N. 12. P. 1057–1098. doi: 10.1016/S1473-3099(13)70318-9 |
| [17] |
Rodriguez-Morales AJ, Martinez-Pulgarin DF, Muñoz-Urbano M, et al. Bibliometric assessment of the global scientific production of nitazoxanide. Cureus. 2017;9(5): e1204. doi: 10.7759/cureus.1204 |
| [18] |
Rodriguez-Morales A.J., Martinez-Pulgarin D.F., Muñoz-Urbano M., et al. Bibliometric assessment of the global scientific production of nitazoxanide // Cureus. 2017. Vol. 9, N. 5. P. e1204. doi: 10.7759/cureus.1204 |
| [19] |
Hemphill A, Mueller J, Esposito M. Nitazoxanide, a broad-spectrum thiazolide anti-infective agent for the treatment of gastrointestinal infections. Expert Opin Pharmacother. 2006;7(7):953–964. doi: 10.1517/14656566.7.7.953 |
| [20] |
Hemphill A., Mueller J., Esposito M. Nitazoxanide, a broad-spectrum thiazolide anti-infective agent for the treatment of gastrointestinal infections // Expert Opin Pharmacother. 2006. Vol. 7, N. 7. P. 953–964. doi: 10.1517/14656566.7.7.953 |
| [21] |
Di Santo N, Ehrisman J. A functional perspective of nitazoxanide as a potential anticancer drug. Mutat Res. 2014;768:16–21. doi: 10.1016/j.mrfmmm.2014.05.005 |
| [22] |
Di Santo N., Ehrisman J. A functional perspective of nitazoxanide as a potential anticancer drug // Mutat Res. 2014. Vol. 768. P. 16–21. doi: 10.1016/j.mrfmmm.2014.05.005 |
| [23] |
alinia.com [internet]. Alinia (nitazoxanide) [cited 10 oct. 2023]. Available from: https://www.alinia.com/healthcare-professionals/ |
| [24] |
alinia.com [интернет]. Alinia (nitazoxanide). Режим доступа: https://www.alinia.com/healthcare-professionals/ Дата обращения: 10.10.2023. |
| [25] |
Shakya A, Bhat HR, Ghosh SK. Update on nitazoxanide: a multifunctional chemotherapeutic agent. Curr Drug Discov Technol. 2018;15(3):201–213. doi: 10.2174/1570163814666170727130003 |
| [26] |
Shakya A., Bhat H.R., Ghosh S.K. Update on Nitazoxanide: a multifunctional chemotherapeutic agent // Curr Drug Discov Technol. 2018. Vol. 15, N. 3. P. 201–213. doi: 10.2174/1570163814666170727130003 |
| [27] |
Cedillo-Rivera R, Chávez B, González-Robles A, et al. In vitro effect of nitazoxanide against Entamoeba histolytica, Giardia intestinalis and Trichomonas vaginalis trophozoites. J Eukaryot Microbiol. 2002;49(3):201–208. doi: 10.1111/j.1550-7408.2002.tb00523.x |
| [28] |
Cedillo-Rivera R., Chávez B., González-Robles A., et al. In vitro effect of nitazoxanide against Entamoeba histolytica, Giardia intestinalis and Trichomonas vaginalis trophozoites // J Eukaryot Microbiol. 2002. Vol. 49, N. 3. P. 201–208. doi: 10.1111/j.1550-7408.2002.tb00523.x |
| [29] |
Hashan MR, Elhusseiny KM, Huu-Hoai L, et al. Effect of nitazoxanide on diarrhea: A systematic review and network meta-analysis of randomized controlled trials. Acta Trop. 2020;210:105603. doi: 10.1016/j.actatropica.2020.105603 |
| [30] |
Hashan M.R., Elhusseiny K.M., Huu-Hoai L., et al. Effect of nitazoxanide on diarrhea: A systematic review and network meta-analysis of randomized controlled trials // Acta Trop. 2020. Vol. 210. P. 105603. doi: 10.1016/j.actatropica.2020.105603 |
| [31] |
Moron-Soto M, Gutierrez L, Sumano H, et al. Efficacy of nitazoxanide to treat natural Giardia infections in dogs. Parasit Vectors. 2017;10(1):52. doi: 10.1186/s13071-017-1998-7 |
| [32] |
Moron-Soto M., Gutierrez L., Sumano H., et al. Efficacy of nitazoxanide to treat natural Giardia infections in dogs // Parasit Vectors. 2017. Vol. 10, N. 1. P. 52. doi: 10.1186/s13071-017-1998-7 |
| [33] |
Bailey JM, Erramouspe J. Nitazoxanide treatment for giardiasis and cryptosporidiosis in children. Ann Pharmacother. 2004;38(4): 634–640. doi: 10.1345/aph.1D451 |
| [34] |
Bailey J.M., Erramouspe J. Nitazoxanide treatment for giardiasis and cryptosporidiosis in children // Ann Pharmacother. 2004. Vol. 38, N. 4. P. 634–640. doi: 10.1345/aph.1D451 |
| [35] |
Doumbo O, Rossignol JF, Pichard E, et al. Nitazoxanide in the treatment of cryptosporidial diarrhea and other intestinal parasitic infections associated with acquired immunodeficiency syndrome in tropical Africa. Am J Trop Med Hyg. 1997;56(6):637–639. doi: 10.4269/ajtmh.1997.56.637 |
| [36] |
Doumbo O., Rossignol J.F., Pichard E., et al. Nitazoxanide in the treatment of cryptosporidial diarrhea and other intestinal parasitic infections associated with acquired immunodeficiency syndrome in tropical Africa // Am J Trop Med Hyg. 1997. Vol. 56, N. 6. P. 637–639. doi: 10.4269/ajtmh.1997.56.637 |
| [37] |
Li J, Kuang H, Zhan X. Nitazoxanide in the treatment of intestinal parasitic infections in children: a systematic review and meta-analysis. Indian J Pediatr. 2020;87(1):17–25. doi: 10.1007/s12098-019-03098-w |
| [38] |
Li J., Kuang H., Zhan X. Nitazoxanide in the treatment of intestinal parasitic infections in children: a systematic review and meta-analysis // Indian J Pediatr. 2020. Vol. 87, N. 1. P. 17–25. doi: 10.1007/s12098-019-03098-w |
| [39] |
Rossignol JF, Ayoub A, Ayers MS. Treatment of diarrhea caused by Giardia intestinalis and Entamoeba histolytica or E. dispar: a randomized, double-blind, placebo-controlled study of nitazoxanide. J Infect Dis. 2001;184(3):381–384. doi: 10.1086/322038 |
| [40] |
Rossignol J.F., Ayoub A., Ayers M.S. Treatment of diarrhea caused by Giardia intestinalis and Entamoeba histolytica or E. dispar: a randomized, double-blind, placebo-controlled study of nitazoxanide // J Infect Dis. 2001. Vol. 184, N. 3. P. 381–384. doi: 10.1086/322038 |
| [41] |
Rossignol JF, Kabil SM, El-Gohary Y, Younis AM. Nitazoxanide in the treatment of amoebiasis. Trans R Soc Trop Med Hyg. 2007;101(10):1025–1031. doi: 10.1016/j.trstmh.2007.04.001 |
| [42] |
Rossignol J.F., Kabil S.M., El-Gohary Y., Younis A.M. Nitazoxanide in the treatment of amoebiasis // Trans R Soc Trop Med Hyg. 2007. Vol. 101, N. 10. P. 1025–1031. doi: 10.1016/j.trstmh.2007.04.001 |
| [43] |
Goel V, Jain A, Sharma G, et al. Evaluating the efficacy of nitazoxanide in uncomplicated amebic liver abscess. Indian J Gastroenterol. 2021;40(3):272–280. doi: 10.1007/s12664-020-01132-w |
| [44] |
Goel V., Jain A., Sharma G., et al. Evaluating the efficacy of nitazoxanide in uncomplicated amebic liver abscess // Indian J Gastroenterol. 2021. Vol. 40, N. 3. P. 272–280. doi: 10.1007/s12664-020-01132-w |
| [45] |
SmirnovLP, Borvinskaya EV, Sukhovskaya IV, Kochneva AA. Glutathione s-transferases in helminths. Trudy KarNTs RAN. 2015;(11):3–14. EDN: VBCYRT doi: 10.17076/eb213 (In Russ.) |
| [46] |
Смирнов Л.Л., Борвинская Е.В., Кочнева А.А., Суховская И.В. Глутатион-S-трансферазы у гельминтов // Труды КарНЦ РАН. 2015. № 11. C. 3–14. EDN: VBCYRT doi: 10.17076/eb213 |
| [47] |
Halloran DM. Database of glutamate-gated chloride (GluCl) subunits across 125 nematode species: patterns of gene accretion and sequence diversification. G3 (Bethesda). 2022;12(2):jkab438. doi: 10.1093/g3journal/jkab438 |
| [48] |
Halloran D.M. Database of glutamate-gated chloride (GluCl) subunits across 125 nematode species: patterns of gene accretion and sequence diversification // G3 (Bethesda). 2022. Vol. 12, N. 2. P. jkab438. doi: 10.1093/g3journal/jkab438 |
| [49] |
El-Saber Batiha G, Alqahtani A, Ilesanmi OB, et al. Avermectin derivatives, pharmacokinetics, therapeutic and toxic dosages, mechanism of action, and their biological effects. Pharmaceuticals (Basel). 2020;13(8):196. doi: 10.3390/ph13080196 |
| [50] |
El-Saber Batiha G., Alqahtani A., Ilesanmi O.B., et al. Avermectin derivatives, pharmacokinetics, therapeutic and toxic dosages, mechanism of action, and their biological effects // Pharmaceuticals (Basel). 2020. Vol. 13, N. 8. P. 196. doi: 10.3390/ph13080196 |
| [51] |
Chero JC, Saito M, Bustos JA, et al. Hymenolepis nana infection: symptoms and response to nitazoxanide in field conditions. Trans R Soc Trop Med Hyg. 2007;101(2):203–205. doi: 10.1016/j.trstmh.2006.04.004 |
| [52] |
Chero J.C., Saito M., Bustos J.A., et al. Hymenolepis nana infection: symptoms and response to nitazoxanide in field conditions // Trans R Soc Trop Med Hyg. 2007. Vol. 101, N. 2. P. 203–205. doi: 10.1016/j.trstmh.2006.04.004 |
| [53] |
Hu Y, Ellis BL, Yiu YY, et al. An extensive comparison of the effect of anthelmintic classes on diverse nematodes. PLoS One. 2013;8(7): e70702. doi: 10.1371/journal.pone.0070702 |
| [54] |
Hu Y., Ellis B.L., Yiu Y.Y., et al. An extensive comparison of the effect of anthelmintic classes on diverse nematodes // PLoS One. 2013. Vol. 8, N. 7. P. e70702. doi: 10.1371/journal.pone.0070702 |
| [55] |
Pyzocha N, Cuda A. Common intestinal parasites. Amer Fam Physician. 2023;108(5):487–493. PMID: 37983700. |
| [56] |
Pyzocha N., Cuda A. Common intestinal parasites // Amer Fam Physician. 2023. Vol. 108, N. 5. P. 487–493. PMID: 37983700 |
| [57] |
Pérez-Molina JA, Díaz-Menéndez M, Gallego JI, et al. Evaluation of nitazoxanide for the treatment of disseminated cystic echinococcosis: report of five cases and literature review. Am J Trop Med Hyg. 2011;84(2):351–356. doi: 10.4269/ajtmh.2011.10-0513 |
| [58] |
Pérez-Molina J.A., Díaz-Menéndez M., Gallego J.I., et al. Evaluation of nitazoxanide for the treatment of disseminated cystic echinococcosis: report of five cases and literature review // Am J Trop Med Hyg. 2011. Vol. 84, N. 2. P. 351–356. doi: 10.4269/ajtmh.2011.10-0513 |
| [59] |
Hoffman PS, Sisson G, Croxen MA, et al. Antiparasitic drug nitazoxanide inhibits the pyruvate oxidoreductases of Helicobacter pylori, selected anaerobic bacteria and parasites, and Campylobacter jejuni. Antimicrob Agents Chemother. 2007;51(3):868–876. doi: 10.1128/AAC.01159-06 |
| [60] |
Hoffman P.S., Sisson G., Croxen M.A., et al. Antiparasitic drug nitazoxanide inhibits the pyruvate oxidoreductases of Helicobacter pylori, selected anaerobic bacteria and parasites, and Campylobacter jejuni // Antimicrob Agents Chemother. 2007. Vol. 51, N. 3. P. 868–876. doi: 10.1128/AAC.01159-06 |
| [61] |
Shamir ER, Warthan M, Brown SP, et al. Nitazoxanide inhibits biofilm production and hemagglutination by enteroaggregative Escherichia coli strains by blocking assembly of AafA fimbriae. Antimicrob Agents Chemother. 2010;54(4):1526–1533. doi: 10.1128/AAC.01279-09 |
| [62] |
Shamir E.R., Warthan M., Brown S.P., et al. Nitazoxanide inhibits biofilm production and hemagglutination by enteroaggregative Escherichia coli strains by blocking assembly of AafA fimbriae // Antimicrob Agents Chemother. 2010. Vol. 54, N. 4. P. 1526–1533. doi: 10.1128/AAC.01279-09 |
| [63] |
de Carvalho LP, Darby CM, Rhee KY, Nathan C. Nitazoxanide disrupts membrane potential and intrabacterial PH homeostasis of mycobacterium tuberculosis. ACS Med Chem Lett. 2011;2(11):849–854. doi: 10.1021/ml200157f |
| [64] |
de Carvalho LP, Darby CM, Rhee KY, Nathan C. Nitazoxanide disrupts membrane potential and intrabacterial PH homeostasis of mycobacterium tuberculosis // ACS Med Chem Lett. 2011. Vol. 2, N. 11. P. 849–854. doi: 10.1021/ml200157f |
| [65] |
Busch A, Waksman G. Chaperone-usher pathways: diversity and pilus assembly mechanism. Philos Trans R Soc Lond B Biol Sci. 2012;367(1592):1112–1122. doi: 10.1098/rstb.2011.0206 |
| [66] |
Busch A., Waksman G. Chaperone-usher pathways: diversity and pilus assembly mechanism // Philos Trans R Soc Lond B Biol Sci. 2012. Vol. 367, N. 1592. P. 1112–1122. doi: 10.1098/rstb.2011.0206 |
| [67] |
Bailey MA, Na H, Duthie MS, et al. Nitazoxanide is active against Mycobacterium leprae. PLoS One. 2017;12(8):e0184107. doi: 10.1371/journal.pone.0184107 |
| [68] |
Bailey M.A., Na H., Duthie M.S., et al. Nitazoxanide is active against Mycobacterium leprae // PLoS One. 2017. Vol. 12, N. 8. P. e0184107. doi: 10.1371/journal.pone.0184107 |
| [69] |
Glal KAM, Abd-Elsalam SM, Mostafa TM. Nitazoxanide versus rifaximin in preventing the recurrence of hepatic encephalopathy: A randomized double-blind controlled trial. J Hepatobiliary Pancreat Sci. 2021;28(10):812–824. doi: 10.1002/jhbp.947 |
| [70] |
Glal K.A.M., Abd-Elsalam S.M., Mostafa T.M. Nitazoxanide versus rifaximin in preventing the recurrence of hepatic encephalopathy: A randomized double-blind controlled trial // J Hepatobiliary Pancreat Sci. 2021. Vol. 28, N. 10. P. 812–824. doi: 10.1002/jhbp.947 |
| [71] |
Musher DM, Logan N, Hamill RJ, et al. Nitazoxanide for the treatment of Clostridium difficile colitis. Clin Infect Dis. 2006;43(4): 421–427. doi: 10.1086/506351 |
| [72] |
Musher D.M., Logan N., Hamill R.J., et al. Nitazoxanide for the treatment of Clostridium difficile colitis // Clin Infect Dis. 2006. Vol. 43, N. 4. P. 421–427. doi: 10.1086/506351 |
| [73] |
Musher DM, Logan N, Mehendiratta V, et al. Clostridium difficile colitis that fails conventional metronidazole therapy: response to nitazoxanide. J Antimicrob Chemother. 2007;59(4):705–710. doi: 10.1093/jac/dkl553 |
| [74] |
Musher D.M., Logan N., Mehendiratta V., et al. Clostridium difficile colitis that fails conventional metronidazole therapy: response to nitazoxanide // J Antimicrob Chemother. 2007. Vol. 59, N. 4. P. 705–710. doi: 10.1093/jac/dkl553 |
| [75] |
Lanata CF, Franco M. Nitazoxanide for rotavirus diarrhoea? Lancet. 2006;368(9530):100–101. doi: 10.1016/S0140-6736(06)68981-2 |
| [76] |
Lanata C.F., Franco M. Nitazoxanide for rotavirus diarrhoea? // Lancet. 2006. Vol. 368, N. 9530. P. 100–101. doi: 10.1016/S0140-6736(06)68981-2 |
| [77] |
Guevara B, Cogdill AG. Helicobacter pylori: A review of current diagnostic and management strategies. Dig Dis Sci. 2020;65(7): 1917–1931. doi: 10.1007/s10620-020-06193-7 |
| [78] |
Guevara B., Cogdill A.G. Helicobacter pylori: A review of current diagnostic and management strategies // Dig Dis Sci. 2020. Vol. 65, N. 7. P. 1917–1931. doi: 10.1007/s10620-020-06193-7 |
| [79] |
Abd-Elsalam S, Kobtan A, El-Kalla F, et al. A 2-week Nitazoxanide-based quadruple treatment as a rescue therapy for Helicobacter pylori eradication: A single center experience. Medicine (Baltimore). 2016;95(24): e3879. doi: 10.1097/MD.0000000000003879 |
| [80] |
Abd-Elsalam S., Kobtan A., El-Kalla F., et al. A 2-week Nitazoxanide-based quadruple treatment as a rescue therapy for Helicobacter pylori eradication: A single center experience // Medicine (Baltimore). 2016. Vol. 95, N. 24. P. e3879. doi: 10.1097/MD.0000000000003879 |
| [81] |
Shawky D, Salamah AM, Abd-Elsalam SM, et al. Nitazoxanide-based therapeutic regimen as a novel treatment for Helicobacter pylori infection in children and adolescents: a randomized trial. Eur Rev Med Pharmacol Sci. 2022;26(9):3132–3137. doi: 10.26355/eurrev_202205_28730 |
| [82] |
Shawky D., Salamah A.M., Abd-Elsalam S.M., et al. Nitazoxanide-based therapeutic regimen as a novel treatment for Helicobacter pylori infection in children and adolescents: a randomized trial // Eur Rev Med Pharmacol Sci. 2022. Vol. 26, N. 9. P. 3132–3137. doi: 10.26355/eurrev_202205_28730 |
| [83] |
Rossignol JF, El-Gohary YM. Nitazoxanide in the treatment of viral gastroenteritis: a randomized double-blind placebo-controlled clinical trial. Aliment Pharmacol Ther. 2006;24(10):1423–1430. doi: 10.1111/j.1365-2036.2006.03128.x |
| [84] |
Rossignol J.F., El-Gohary Y.M. Nitazoxanide in the treatment of viral gastroenteritis: a randomized double-blind placebo-controlled clinical trial // Aliment Pharmacol Ther. 2006. Vol. 24, N. 10. P. 1423–1430. doi: 10.1111/j.1365-2036.2006.03128.x |
| [85] |
Teran CG, Teran-Escalera CN, Villarroel P. Nitazoxanide vs. probiotics for the treatment of acute rotavirus diarrhea in children: a randomized, single-blind, controlled trial in Bolivian children. Int J Infect Dis. 2009;13(4):518–523. doi: 10.1016/j.ijid.2008.09.014 |
| [86] |
Teran C.G., Teran-Escalera C.N., Villarroel P. Nitazoxanide vs. probiotics for the treatment of acute rotavirus diarrhea in children: a randomized, single-blind, controlled trial in Bolivian children // Int J Infect Dis. 2009. Vol. 13, N. 4. P. 518–523. doi: 10.1016/j.ijid.2008.09.014 |
| [87] |
Dang W, Xu L, Ma B, et al. Nitazoxanide inhibits human norovirus replication and synergizes with ribavirin by activation of cellular antiviral response. Antimicrob Agents Chemother. 2018;62(11): e00707–e00718. doi: 10.1128/aac. 00707-18 |
| [88] |
Dang W., Xu L., Ma B., et al. Nitazoxanide inhibits human norovirus replication and synergizes with ribavirin by activation of cellular antiviral response // Antimicrob Agents Chemother. 2018. Vol. 62, N. 11. P. e00707–e00718. doi: 10.1128/aac. 00707-18 |
| [89] |
Siddiq DM, Koo HL, Adachi JA, Viola GM. Norovirus gastroenteritis successfully treated with nitazoxanide. J Infect. 2011;63(5): 394–397. doi: 10.1016/j.jinf.2011.08.002 |
| [90] |
Siddiq D.M., Koo H.L., Adachi J.A., Viola G.M. Norovirus gastroenteritis successfully treated with nitazoxanide // J Infect. 2011. Vol. 63, N. 5. P. 394–397. doi: 10.1016/j.jinf.2011.08.002 |
| [91] |
Haubrich K, Gantt S, Blydt-Hansen T. Successful treatment of chronic norovirus gastroenteritis with nitazoxanide in a pediatric kidney transplant recipient. Pediatr Transplant. 2018;22(4):e13186. doi: 10.1111/petr.13186 |
| [92] |
Haubrich K., Gantt S., Blydt-Hansen T. Successful treatment of chronic norovirus gastroenteritis with nitazoxanide in a pediatric kidney transplant recipient // Pediatr Transplant. 2018. Vol. 22, N. 4. P. e13186. doi: 10.1111/petr.13186 |
| [93] |
Morris J, Morris C. Nitazoxanide is effective therapy for norovirus gastroenteritis after chemotherapy and hematopoietic stem cell transplantation (HSCT). Biol Blood Marrow Transplant. 2015;21(2):S255–S256. doi: 10.1016/j.bbmt.2014.11.405 |
| [94] |
Morris J., Morris C. Nitazoxanide is effective therapy for norovirus gastroenteritis after chemotherapy and hematopoietic stem cell transplantation (HSCT) // Biol Blood Marrow Transplant. 2015. Vol. 21, N. 2. P. S255–S256. doi: 10.1016/j.bbmt.2014.11.405 |
| [95] |
Hargest V, Sharp B, Livingston B, et al. Astrovirus replication is inhibited by nitazoxanide in vitro and in vivo. J Virol. 2020;94(5): e01706–e0119. doi: 10.1128/JVI.01706-19 |
| [96] |
Hargest V., Sharp B., Livingston B., et al. Astrovirus replication is inhibited by nitazoxanide in vitro and in vivo // J Virol. 2020. Vol. 94, N. 5. P. e01706–e0119. doi: 10.1128/JVI.01706-19 |
| [97] |
Esquer Garrigos Z, Barth D, Hamdi AM, et al. Nitazoxanide is a therapeutic option for adenovirus-related enteritis in immunocompromised adults. Antimicrob Agents Chemother. 2018;62(12): e01937–e01118. doi: 10.1128/AAC.01937-18 |
| [98] |
Esquer Garrigos Z., Barth D., Hamdi A.M., et al. Nitazoxanide is a therapeutic option for adenovirus-related enteritis in immunocompromised adults // Antimicrob Agents Chemother. 2018. Vol. 62, N. 12. P. e01937–e01118. doi: 10.1128/AAC.01937-18 |
| [99] |
Rossignol JF. Thiazolides: a new class of antiviral drugs. Expert Opin Drug Metab Toxicol. 2009;5(6):667–674. doi: 10.1517/17425250902988487 |
| [100] |
Rossignol J.F. Thiazolides: a new class of antiviral drugs // Expert Opin Drug Metab Toxicol. 2009. Vol. 5, N. 6. P. 667–674. doi: 10.1517/17425250902988487 |
| [101] |
Korba BE, Elazar M, Lui P, et al. Potential for hepatitis C virus resistance to nitazoxanide or tizoxanide. Antimicrob Agents Chemother. 2008;52(11):4069–4071. doi: 10.1128/AAC.00078-08 |
| [102] |
Korba B.E., Elazar M., Lui P., et al. Potential for hepatitis C virus resistance to nitazoxanide or tizoxanide // Antimicrob Agents Chemother. 2008. Vol. 52, N. 11. P. 4069–4071. doi: 10.1128/AAC.00078-08 |
| [103] |
Ashiru O, Howe JD, Butters TD. Nitazoxanide, an antiviral thiazolide, depletes ATP-sensitive intracellular Ca(2+) stores. Virology. 2014;462–463:135–148. doi: 10.1016/j.virol.2014.05.015 |
| [104] |
Ashiru O., Howe J.D., Butters T.D. Nitazoxanide, an antiviral thiazolide, depletes ATP-sensitive intracellular Ca(2+) stores // Virology. 2014. Vol. 462–463. P. 135–148. doi: 10.1016/j.virol.2014.05.015 |
| [105] |
Sekiba K, Otsuka M, Funato K, et al. HBx-induced degradation of Smc5/6 complex impairs homologous recombination-mediated repair of damaged DNA. J Hepatol. 2022;76(1):53–62. doi: 10.1016/j.jhep.2021.08.010 |
| [106] |
Sekiba K., Otsuka M., Funato K., et al. HBx-induced degradation of Smc5/6 complex impairs homologous recombination-mediated repair of damaged DNA // J Hepatol. 2022. Vol. 76, N. 1. P. 53–62. doi: 10.1016/j.jhep.2021.08.010 |
| [107] |
Schollmeier A, Glitscher M, Hildt E. Relevance of hbx for hepatitis B virus-associated pathogenesis. Int J Mol Sci. 2023;24(5):4964. doi: 10.3390/ijms24054964 |
| [108] |
Schollmeier A., Glitscher M., Hildt E. Relevance of HBx for hepatitis B virus-associated pathogenesis // Int J Mol Sci. 2023. Vol. 24, N. 5. P. 4964. doi: 10.3390/ijms24054964 |
| [109] |
Sekiba K, Otsuka M, Ohno M, et al. Inhibition of HBV transcription from CCCDNA with nitazoxanide by targeting the HBX-DDB1 interaction. Cell Mol Gastroenterol Hepatol. 2019;7(2):297–312. doi: 10.1016/j.jcmgh.2018.10.010 |
| [110] |
Sekiba K., Otsuka M., Ohno M., et al. Inhibition of HBV transcription from cccDNA With nitazoxanide by targeting the HBx-DDB1 interaction // Cell Mol Gastroenterol Hepatol. 2019. Vol. 7, N. 2. P. 297–312. doi: 10.1016/j.jcmgh.2018.10.010 |
| [111] |
Nikolova K, Gluud C, Grevstad B, Jakobsen JC. Nitazoxanide for chronic hepatitis C. Cochrane Database Syst Rev. 2014;(4):CD009182. doi: 10.1002/14651858.CD009182.pub2 |
| [112] |
Nikolova K., Gluud C., Grevstad B., Jakobsen J.C. Nitazoxanide for chronic hepatitis C // Cochrane Database Syst Rev. 2014. N. 4. P. CD009182. doi: 10.1002/14651858.CD009182.pub2 |
| [113] |
Shehab HM, Elbaz TM, Deraz DM. Nitazoxanide plus pegylated interferon and ribavirin in the treatment of genotype 4 chronic hepatitis C, a randomized controlled trial. Liver Int. 2014;34(2):259–265. doi: 10.1111/liv.12267 |
| [114] |
Shehab H.M., Elbaz T.M., Deraz D.M. Nitazoxanide plus pegylated interferon and ribavirin in the treatment of genotype 4 chronic hepatitis C, a randomized controlled trial // Liver Int. 2014. Vol. 34, N. 2. P. 259–265. doi: 10.1111/liv.12267 |
| [115] |
Kolozsi WZ, El-Gohary M, Keeffe MB, et al. Treatment of chronic hepatitis B (CHB) with nitazoxanide (Ntz) alone or Ntz plus adefovir (ADV) for two years with loss of hepatitis B e antigen (HBeAg) and hepatitis B surface antigen (HbsAg). Am J Gastroenterol. 2008;103: S150–S151. doi: 10.14309/00000434-200809001-00390 |
| [116] |
Kolozsi W.Z., El-Gohary M., Keeffe M.B., et al. Treatment of chronic hepatitis B (CHB) with nitazoxanide (Ntz) Alone or Ntz Plus Adefovir (ADV) for two years with loss of hepatitis B E antigen (HBeAg) and hepatitis B surface antigen (HbsAg) // Am J Gastroenterol. 2008. Vol. 103. P. S150–S151. doi: 10.14309/00000434-200809001-00390 |
| [117] |
Rossignol JF, Bréchot C. A pilot clinical trial of nitazoxanide in the treatment of chronic hepatitis B. Hepatol Commun. 2019;3(6): 744–747. doi: 10.1002/hep4.1339 |
| [118] |
Rossignol J.F., Bréchot C. A Pilot Clinical Trial of Nitazoxanide in the Treatment of Chronic Hepatitis B // Hepatol Commun. 2019. Vol. 3, N. 6. P. 744–747. doi: 10.1002/hep4.1339 |
| [119] |
Jasenosky LD, Cadena C, Mire CE, et al. The FDA-approved oral drug nitazoxanide amplifies host antiviral responses and inhibits Ebola virus. iScience. 2019;19:1279–1290. doi: 10.1016/j.isci.2019.07.003 |
| [120] |
Jasenosky L.D., Cadena C., Mire C.E., et al. The FDA-approved oral drug nitazoxanide amplifies host antiviral responses and inhibits ebola virus // iScience. 2019. Vol. 19. P. 1279–1290. doi: 10.1016/j.isci.2019.07.003 |
| [121] |
Matsumiya T, Stafforini DM. Function and regulation of retinoic acid-inducible gene-I. Crit Rev Immunol. 2010;30(6):489–513. doi: 10.1615/critrevimmunol.v30.i6.10 |
| [122] |
Matsumiya T., Stafforini D.M. Function and regulation of retinoic acid-inducible gene-I // Crit Rev Immunol. 2010. Vol. 30, N. 6. P. 489–513. doi: 10.1615/critrevimmunol.v30.i6.10 |
| [123] |
Zou PF, Tang JC, Li Y, et al. MAVS splicing variants associated with TRAF3 and TRAF6 in NF-κB and IRF3 signaling pathway in large yellow croaker Larimichthys crocea. Dev Comp Immunol. 2021;121:104076. doi: 10.1016/j.dci.2021.104076 |
| [124] |
Zou P.F., Tang J.C., Li Y., et al. MAVS splicing variants associated with TRAF3 and TRAF6 in NF-κB and IRF3 signaling pathway in large yellow croaker Larimichthys crocea // Dev Comp Immunol. 2021. Vol. 121. P. 104076. doi: 10.1016/j.dci.2021.104076 |
| [125] |
Tilmanis D, van Baalen C, Oh DY, et al. The susceptibility of circulating human influenza viruses to tizoxanide, the active metabolite of nitazoxanide. Antiviral Res. 2017;147:142–148. doi: 10.1016/j.antiviral.2017.10.002 |
| [126] |
Tilmanis D., van Baalen C., Oh D.Y., et al. The susceptibility of circulating human influenza viruses to tizoxanide, the active metabolite of nitazoxanide // Antiviral Res. 2017. Vol. 147. P. 142–148. doi: 10.1016/j.antiviral.2017.10.002 |
| [127] |
Haffizulla J, Hartman A, Hoppers M, et al.; US Nitazoxanide Influenza Clinical Study Group. Effect of nitazoxanide in adults and adolescents with acute uncomplicated influenza: a double-blind, randomised, placebo-controlled, phase 2b/3 trial. Lancet Infect Dis. 2014;14(7):609–618. doi: 10.1016/S1473-3099(14)70717-0 |
| [128] |
Haffizulla J., Hartman A., Hoppers M., et al.; US Nitazoxanide Influenza Clinical Study Group. Effect of nitazoxanide in adults and adolescents with acute uncomplicated influenza: a double-blind, randomised, placebo-controlled, phase 2b/3 trial // Lancet Infect Dis. 2014. Vol. 14, N. 7. P. 609–618. doi: 10.1016/S1473-3099(14)70717-0 |
| [129] |
Piacentini S, La Frazia S, Riccio A, et al. Nitazoxanide inhibits paramyxovirus replication by targeting the Fusion protein folding: role of glycoprotein-specific thiol oxidoreductase ERp57. Sci Rep. 2018;8(1):10425. doi: 10.1038/s41598-018-28172-9 |
| [130] |
Piacentini S., La Frazia S., Riccio A., et al. Nitazoxanide inhibits paramyxovirus replication by targeting the Fusion protein folding: role of glycoprotein-specific thiol oxidoreductase ERp57 // Sci Rep. 2018. Vol. 8, N. 1. P. 10425. doi: 10.1038/s41598-018-28172-9 |
| [131] |
Perelygina L, Hautala T, Seppänen M, et al. Inhibition of rubella virus replication by the broad-spectrum drug nitazoxanide in cell culture and in a patient with a primary immune deficiency. Antiviral Res. 2017;147:58–66. doi: 10.1016/j.antiviral.2017.09.019 |
| [132] |
Perelygina L., Hautala T., Seppänen M., et al. Inhibition of rubella virus replication by the broad-spectrum drug nitazoxanide in cell culture and in a patient with a primary immune deficiency // Antiviral Res. 2017. Vol. 147. P. 58–66. doi: 10.1016/j.antiviral.2017.09.019 |
| [133] |
Gao G, Liu Y, Qu H, et al. Systematic identification of synergistic drug pairs targeting HIV. Nat Biotechnol. 2012;30(11):1125–1130. doi: 10.1038/nbt.2391 |
| [134] |
Gao G., Liu Y., Qu H., et al. Systematic identification of synergistic drug pairs targeting HIV // Nat Biotechnol. 2012. Vol. 30, N. 11. P. 1125–1130. doi: 10.1038/nbt.2391 |
| [135] |
Clerici M, Trabattoni D, Pacei M, et al. The anti-infective nitazoxanide shows strong immumodulating effects (155.21). J Immunol. 2011;186(S1):155.21. doi: 10.4049/jimmunol.186.Supp.155.21 |
| [136] |
Clerici M., Trabattoni D., Pacei M., et al. The anti-infective Nitazoxanide shows strong immumodulating effects (155.21) // J Immunol. 2011. Vol. 186, N. S1. P. 155.21. doi: 10.4049/jimmunol.186.Supp.155.21 |
| [137] |
Purandare N, Gomez-Lopez N, Arenas-Hernandez M, et al. The MNRR1 activator nitazoxanide abrogates lipopolysaccharide-induced preterm birth in mice. Placenta. 2023;140:66–71. doi: 10.1016/j.placenta.2023.07.005 |
| [138] |
Purandare N., Gomez-Lopez N., Arenas-Hernandez M., et al. The MNRR1 activator nitazoxanide abrogates lipopolysaccharide-induced preterm birth in mice // Placenta. 2023. Vol. 140. P. 66–71. doi: 10.1016/j.placenta.2023.07.005 |
| [139] |
Di Santo N, Ehrisman J. Research perspective: potential role of nitazoxanide in ovarian cancer treatment. Old drug, new purpose? Cancers (Basel). 2013;5(3):1163–1176. doi: 10.3390/cancers5031163 |
| [140] |
Di Santo N., Ehrisman J. Research perspective: potential role of nitazoxanide in ovarian cancer treatment. Old drug, new purpose? // Cancers (Basel). 2013. Vol. 5, N. 3. P. 1163–1176. doi: 10.3390/cancers5031163 |
| [141] |
Wang L, Wang X, Wang CC. Protein disulfide-isomerase, a folding catalyst and a redox-regulated chaperone. Free Radic Biol Med. 2015;83:305–313. doi: 10.1016/j.freeradbiomed.2015.02.007 |
| [142] |
Wang L., Wang X., Wang C.C. Protein disulfide-isomerase, a folding catalyst and a redox-regulated chaperone // Free Radic Biol Med. 2015. Vol. 83. P. 305–313. doi: 10.1016/j.freeradbiomed.2015.02.007 |
| [143] |
Read A, Schröder M. The unfolded protein response: an overview. Biology (Basel). 2021;10(5):384. doi: 10.3390/biology10050384 |
| [144] |
Read A., Schröder M. The unfolded protein response: an overview // Biology (Basel). 2021. Vol. 10, N. 5. P. 384. doi: 10.3390/biology10050384 |
| [145] |
Moenner M, Pluquet O, Bouchecareilh M, Chevet E. Integrated endoplasmic reticulum stress responses in cancer. Cancer Res. 2007;67(2):10631–10634. doi: 10.1158/0008-5472.CAN-07-1705 |
| [146] |
Moenner M., Pluquet O., Bouchecareilh M., Chevet E. Integrated endoplasmic reticulum stress responses in cancer // Cancer Res. 2007. Vol. 67, N. 2. P. 10631–10634. doi: 10.1158/0008-5472.CAN-07-1705 |
| [147] |
Lovat PE, Corazzari M, Armstrong JL, et al. Increasing melanoma cell death using inhibitors of protein disulfide isomerases to abrogate survival responses to endoplasmic reticulum stress. Cancer Res. 2008;68(13):5363–5369. doi: 10.1158/0008-5472.CAN-08-0035 |
| [148] |
Lovat P.E., Corazzari M., Armstrong J.L., et al. Increasing melanoma cell death using inhibitors of protein disulfide isomerases to abrogate survival responses to endoplasmic reticulum stress // Cancer Res. 2008. Vol. 68, N. 13. P. 5363–5369. doi: 10.1158/0008-5472.CAN-08-0035 |
| [149] |
Dickerhof N, Kleffmann T, Jack R, McCormick S. Bacitracin inhibits the reductive activity of protein disulfide isomerase by disulfide bond formation with free cysteines in the substrate-binding domain. FEBS J. 2011;278(12):2034–2043. doi: 10.1111/j.1742-4658.2011.08119.x |
| [150] |
Dickerhof N., Kleffmann T., Jack R., McCormick S. Bacitracin inhibits the reductive activity of protein disulfide isomerase by disulfide bond formation with free cysteines in the substrate-binding domain // FEBS J. 2011. Vol. 278, N. 12. P. 2034–2043. doi: 10.1111/j.1742-4658.2011.08119.x |
| [151] |
Müller J, Naguleswaran A, Müller N, Hemphill A. Neospora caninum: Functional inhibition of protein disulfide isomerase by the broad-spectrum anti-parasitic drug nitazoxanide and other thiazolides. Exp Parasitol. 2008;118(1):80–88. doi: 10.1016/j.exppara.2007.06.008 |
| [152] |
Müller J., Naguleswaran A., Müller N., Hemphill A. Neospora caninum: Functional inhibition of protein disulfide isomerase by the broad-spectrum anti-parasitic drug nitazoxanide and other thiazolides // Exp Parasitol. 2008. Vol. 118, N. 1. P. 80–88. doi: 10.1016/j.exppara.2007.06.008 |
| [153] |
Lane D, Matte I, Rancourt C, Piché A. Prognostic significance of IL-6 and IL-8 ascites levels in ovarian cancer patients. BMC Cancer. 2011;11:210. doi: 10.1186/1471-2407-11-210 |
| [154] |
Lane D., Matte I., Rancourt C., Piché A. Prognostic significance of IL-6 and IL-8 ascites levels in ovarian cancer patients // BMC Cancer. 2011. Vol. 11. P. 210. doi: 10.1186/1471-2407-11-210 |
| [155] |
Naugler WE, Karin M. The wolf in sheep' s clothing: The role of interleukin-6 in immunity, inflammation and cancer. Trends Mol Med. 2008;14(3):109–119. doi: 10.1016/j.molmed.2007.12.007 |
| [156] |
Naugler W.E., Karin M. The wolf in sheep&apos. Vol. s clothing: The role of interleukin-6 in immunity, inflammation and cancer // Trends Mol Med. 2008. Vol. 14, N. 3. P. 109–119. doi: 10.1016/j.molmed.2007.12.007 |
| [157] |
Hong SK, Kim HJ, Song CS, et al. Nitazoxanide suppresses IL-6 production in LPS-stimulated mouse macrophages and TG-injected mice. Int Immunopharmacol. 2012;13(1):23–27. doi: 10.1016/j.intimp.2012.03.002 |
| [158] |
Hong S.K., Kim H.J., Song C.S., et al. Nitazoxanide suppresses IL-6 production in LPS-stimulated mouse macrophages and TG-injected mice // Int Immunopharmacol. 2012. Vol. 13, N. 1. P. 23–27. doi: 10.1016/j.intimp.2012.03.002 |
| [159] |
Sun H, Ou T, Hu J, et al. Nitazoxanide impairs mitophagy flux through ROS-mediated mitophagy initiation and lysosomal dysfunction in bladder cancer. Biochem Pharmacol. 2021;190:114588. doi: 10.1016/j.bcp.2021.114588 |
| [160] |
Sun H., Ou T., Hu J., et al. Nitazoxanide impairs mitophagy flux through ROS-mediated mitophagy initiation and lysosomal dysfunction in bladder cancer // Biochem Pharmacol. 2021. Vol. 190. P. 114588. doi: 10.1016/j.bcp.2021.114588 |
| [161] |
Ding WX, Yin XM. Mitophagy: mechanisms, pathophysiological roles, and analysis. Biol Chem. 2012;393(7):547–564. doi: 10.1515/hsz-2012-0119 |
| [162] |
Ding W.X., Yin X.M. Mitophagy: mechanisms, pathophysiological roles, and analysis // Biol Chem. 2012. Vol. 393, N. 7. P. 547–564. doi: 10.1515/hsz-2012-0119 |
| [163] |
Ezeriņa D, Takano Y, Hanaoka K, et al. N-Acetyl cysteine functions as a fast-acting antioxidant by triggering intracellular H2S and sulfane sulfur production. Cell Chem Biol. 2018;25(4):447–459.e4. doi: 10.1016/j.chembiol.2018.01.011 |
| [164] |
Ezeriņa D., Takano Y., Hanaoka K., et al. N-acetyl cysteine functions as a fast-acting antioxidant by triggering intracellular H2S and sulfane sulfur production // Cell Chem Biol. 2018. Vol. 25, N. 4. P. 447–459.e4. doi: 10.1016/j.chembiol.2018.01.011 |
| [165] |
Mauthe M, Orhon I, Rocchi C, et al. Chloroquine inhibits autophagic flux by decreasing autophagosome-lysosome fusion. Autophagy. 2018;14(8):1435–1455. doi: 10.1080/15548627.2018.1474314 |
| [166] |
Mauthe M., Orhon I., Rocchi C., et al. Chloroquine inhibits autophagic flux by decreasing autophagosome-lysosome fusion // Autophagy. 2018. Vol. 14, N. 8. P. 1435–1455. doi: 10.1080/15548627.2018.1474314 |
| [167] |
Nguyen TT, Ung TT, Kim NH, Jung YD. Role of bile acids in colon carcinogenesis. World J Clin Cases. 2018;6(13):577–588. doi: 10.12998/wjcc.v6.i13.577 |
| [168] |
Nguyen T.T., Ung T.T., Kim N.H., Jung Y.D. Role of bile acids in colon carcinogenesis // World J Clin Cases. 2018. Vol. 6, N. 13. P. 577–588. doi: 10.12998/wjcc.v6.i13.577 |
| [169] |
NTZ Increases β-catenin Citrullination to Suppress WNT Signaling. Cancer Discov. 2018;8(1):OF19. doi: 10.1158/2159-8290.CD-RW2017-214 |
| [170] |
NTZ Increases β-catenin Citrullination to Suppress WNT Signaling // Cancer Discov. 2018. Vol. 8, N. 1. P. OF19. doi: 10.1158/2159-8290.CD-RW2017-214 |
| [171] |
Yu J, Yang K, Zheng J, et al. Synergistic tumor inhibition of colon cancer cells by nitazoxanide and obeticholic acid, a farnesoid X receptor ligand. Cancer Gene Ther. 2021;28(6):590–601. doi: 10.1038/s41417-020-00239-8 |
| [172] |
Yu J., Yang K., Zheng J., et al. Synergistic tumor inhibition of colon cancer cells by nitazoxanide and obeticholic acid, a farnesoid X receptor ligand // Cancer Gene Ther. 2021. Vol. 28, N. 6. P. 590–601. doi: 10.1038/s41417-020-00239-8 |
| [173] |
Emran TB, Shahriar A, Mahmud AR, et al. Multidrug resistance in cancer: understanding molecular mechanisms, immunoprevention and therapeutic approaches. Front Oncol. 2022;12:891652. doi: 10.3389/fonc.2022.891652 |
| [174] |
Emran T.B., Shahriar A., Mahmud A.R., et al. Multidrug resistance in cancer: understanding molecular mechanisms, immunoprevention and therapeutic approaches // Front Oncol. 2022. Vol. 12. P. 891652. doi: 10.3389/fonc.2022.891652 |
| [175] |
Hodges LM, Markova SM, Chinn LW, et al. Very important pharmacogene summary: ABCB1 (MDR1, P-glycoprotein). Pharmacogenet Genomics. 2011;21(3):152–161. doi: 10.1097/FPC.0b013e3283385a1c |
| [176] |
Hodges L.M., Markova S.M., Chinn L.W., et al. Very important pharmacogene summary: ABCB1 (MDR1, P-glycoprotein) // Pharmacogenet Genomics. 2011. Vol. 21, N. 3. P. 152–161. doi: 10.1097/FPC.0b013e3283385a1c |
| [177] |
Cargnello M, Roux PP. Activation and function of the MAPKs and their substrates, the MAPK-activated protein kinases. Microbiol Mol Biol Rev. 2011;75(1):50–83. doi: 10.1128/MMBR.00031-10 |
| [178] |
Cargnello M., Roux P.P. Activation and function of the MAPKs and their substrates, the MAPK-activated protein kinases // Microbiol Mol Biol Rev. 2011. Vol. 75, N. 1. P. 50–83. doi: 10.1128/MMBR.00031-10 |
| [179] |
Hemmati-Dinarvand M, Ahmadvand H, Seghatoleslam A. Nitazoxanide and cancer drug resistance: targeting Wnt/β-catenin signaling pathway. Arch Med Res. 2022;53(3):263–270. doi: 10.1016/j.arcmed.2021.12.001 |
| [180] |
Hemmati-Dinarvand M., Ahmadvand H., Seghatoleslam A. Nitazoxanide and cancer drug resistance: targeting Wnt/β-catenin signaling pathway // Arch Med Res. 2022. Vol. 53, N. 3. P. 263–270. doi: 10.1016/j.arcmed.2021.12.001 |
| [181] |
Li H, Zeng J, Shen K. PI3K/AKT/mTOR signaling pathway as a therapeutic target for ovarian cancer. Arch Gynecol Obstet. 2014;290(6):1067–1078. doi: 10.1007/s00404-014-3377-3 |
| [182] |
Li H., Zeng J., Shen K. PI3K/AKT/mTOR signaling pathway as a therapeutic target for ovarian cancer // Arch Gynecol Obstet. 2014. Vol. 290, N. 6. P. 1067–1078. doi: 10.1007/s00404-014-3377-3 |
| [183] |
Ye C, Wei M, Huang H, et al. Nitazoxanide inhibits osteosarcoma cells growth and metastasis by suppressing AKT/mTOR and Wnt/β-catenin signaling pathways. Biol Chem. 2022;403(10): 929–943. doi: 10.1515/hsz-2022-0148 |
| [184] |
Ye C., Wei M., Huang H., et al. Nitazoxanide inhibits osteosarcoma cells growth and metastasis by suppressing AKT/mTOR and Wnt/β-catenin signaling pathways // Biol Chem. 2022. Vol. 403, N. 10. P. 929–943. doi: 10.1515/hsz-2022-0148 |
| [185] |
Karlsson H, Fryknäs M, Senkowski W, et al. Selective radiosensitization by nitazoxanide of quiescent clonogenic colon cancer tumour cells. Oncol Lett. 2022;23(4):123. doi: 10.3892/ol.2022.13243 |
| [186] |
Karlsson H., Fryknäs M., Senkowski W., et al. Selective radiosensitization by nitazoxanide of quiescent clonogenic colon cancer tumour cells // Oncol Lett. 2022. Vol. 23, N. 4. P. 123. doi: 10.3892/ol.2022.13243 |
| [187] |
Lü Z, Li X, Li K, et al. Nitazoxanide and related thiazolides induce cell death in cancer cells by targeting the 20S proteasome with novel binding modes. Biochem Pharmacol. 2022;197:114913. doi: 10.1016/j.bcp.2022.114913 |
| [188] |
Lü Z., Li X., Li K., et al. Nitazoxanide and related thiazolides induce cell death in cancer cells by targeting the 20S proteasome with novel binding modes // Biochem Pharmacol. 2022. Vol. 197. P. 114913. doi: 10.1016/j.bcp.2022.114913 |
| [189] |
Coux O, Tanaka K, Goldberg AL. Structure and functions of the 20S and 26S proteasomes. Annu Rev Biochem. 1996;65:801–847. doi: 10.1146/annurev.bi.65.070196.004101 |
| [190] |
Coux O., Tanaka K., Goldberg A.L. Structure and functions of the 20S and 26S proteasomes // Annu Rev Biochem. 1996. Vol. 65. P. 801–847. doi: 10.1146/annurev.bi.65.070196.004101 |
| [191] |
Ghaleb AM, Nandan MO, Chanchevalap S, et al. Krüppel-like factors 4 and 5: the yin and yang regulators of cellular proliferation. Cell Res. 2005;15(2):92–96. doi: 10.1038/sj.cr.7290271 |
| [192] |
Ghaleb A.M., Nandan M.O., Chanchevalap S., et al. Krüppel-like factors 4 and 5: the yin and yang regulators of cellular proliferation // Cell Res. 2005. Vol. 15, N. 2. P. 92–96. doi: 10.1038/sj.cr.7290271 |
| [193] |
MYBL2 MYB proto-oncogene like 2 [Homo sapiens (human)] Gene ID: 4605, updated on 10-Oct-2023 |
| [194] |
Huang Q, Liu M, Zhang D, et al. Nitazoxanide inhibits acetylated KLF5-induced bone metastasis by modulating KLF5 function in prostate cancer. BMC Med. 2023;21(1):68. doi: 10.1186/s12916-023-02763-4 |
| [195] |
Huang Q., Liu M., Zhang D., et al. Nitazoxanide inhibits acetylated KLF5-induced bone metastasis by modulating KLF5 function in prostate cancer // BMC Med. 2023. Vol. 21, N. 1. P. 68. doi: 10.1186/s12916-023-02763-4 |
ECO-vector LLC
/
| 〈 |
|
〉 |