Problem questions of prevention and precising control of diseases associated with hypoxia

Andrey V. Lyubimov

Reviews on Clinical Pharmacology and Drug Therapy ›› 2024, Vol. 22 ›› Issue (1) : 33 -39.

PDF (650KB)
Reviews on Clinical Pharmacology and Drug Therapy ›› 2024, Vol. 22 ›› Issue (1) : 33 -39. DOI: 10.17816/RCF624289
Reviews
review-article

Problem questions of prevention and precising control of diseases associated with hypoxia

Author information +
History +
PDF (650KB)

Abstract

Cardiovascular diseases are the one of the main causes of death in the 21st century. Their rating is not expected to be decreased in the near future despite all the successes in the wide distribution and using of high-tech methods of treatment. This article is devoted to the problem of introducing fundamental recent discoveries into practical medicine as part of the development of preventive, personalized and precision medicine. The author considers not used mechanisms of endogenous adaptation, prevention and preclinical diagnosis of hypoxia-associated diseases in the clinic and concludes that introducing of a new marker of adaptation to visceral hypoxemia is perspective approach in therapy of the cardiovascular diseases.

Keywords

hypoxia / preconditioning / activation / ischemia / hypoxia-induced factor

Cite this article

Download citation ▾
Andrey V. Lyubimov. Problem questions of prevention and precising control of diseases associated with hypoxia. Reviews on Clinical Pharmacology and Drug Therapy, 2024, 22(1): 33-39 DOI:10.17816/RCF624289

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Arnaudov GD. Medical terminology in five languages. Sofia: Medicine and Physical Education; 1979. 943 p. (In Russ.)

[2]

Арнаудов Г.Д. Медицинская терминология на пяти языках. София: Медицина и физкультура, 1979. 943 c.

[3]

Zarubina IV, Shabanov PD. From the S.P. Botkin’s idea of «preexposure» to preconditioning phenomenon. Perspectives for use of phenomena of ischemic and pharmacological preconditioning. Reviews on Clinical Pharmacology and Drug Therapy. 2016;14(1): 4–28. EDN: VVEOFJ doi: 10.17816/RCF1414-28

[4]

Зарубина И.В., Шабанов П.Д. От идеи С.П. Боткина о «предвоздействии» до феномена прекондиционирования. Перспективы применения феноменов ишемического и фармакологического прекондиционирования // Обзоры по клинической фармакологии и лекарственной терапии. 2016. T. 14, № 1. С. 4–28. EDN: VVEOFJ doi: 10.17816/RCF1414-28

[5]

Murry CE, Jennings RB, Reimer KA. Preconditioning with ischemia: a delay of lethal cell injury in ischemic myocardium. Circulation. 1986;74(5):1124–1236. doi: 10.1161/01.cir.74.5.1124

[6]

Murry C.E., Jennings R.B., Reimer K.A. Preconditioning with ischemia: a delay of lethal cell injury in ischemic myocardium // Circulation. 1986. Vol. 74, N. 5. P 1124–1236. doi: 10.1161/01.cir.74.5.1124

[7]

Ivanov AO, Beliayev Vf, Smurov AV, et al. The effect of periodic normobaric hypoxia on human circulatory red blood cells. Marine medicine. 2015;1(4):35–39. (In Russ.) EDN: WIMXIL doi: 10.22328/2413-5747-2015-1-4-35-39

[8]

Иванов А.О., Беляев В.Ф., Смуров А.В., и др. Влияние периодической нормобарической гипоксии на показатели эритроцитарного звена циркулирующей крови человека // Морская медицина. 2015. Т. 1, № 4. С. 35–39. EDN: WIMXIL doi: 10.22328/2413-5747-2015-1-4-35-39

[9]

Bezkishkii EN, Ivanov AO, Petrov VA, et al. Human working capacity in periodic stay in hypoxic air environments, reducing the fire hazard of sealed objects. Human ecology. 2018;(9):4–11. EDN: XZDHIL doi: 10.33396/1728-0869-2018-9-4-11

[10]

Безкишкий Э.Н., Иванов А.О., Петров В.А., и др. Работоспособность человека при периодическом пребывании в гипоксических воздушных средах, снижающих пожароопасность гермообъектов // Экология человека. 2018. № 9. С. 4–11. EDN: XZDHIL doi: 10.33396/1728-0869-2018-9-4-11

[11]

Argunova YuA, Barbarash OL. Optimizing patient preparation prior to cardiac surgery. Russian journal of cardiology and cardiovascular surgery. 2023;16(2):171–177. (In Russ.) EDN: YXAYPY doi: 10.17116/kardio202316021171

[12]

Аргунова Ю.А., Барбараш О.Л. Оптимизация подготовки пациента к кардиохирургическому вмешательству // Кардиология и сердечно-сосудистая хирургия. 2023. Т. 16, № 2. С. 171–177. EDN: YXAYPY doi: 10.17116/kardio202316021171 6

[13]

Kudryashov VS, Fateev IV, Kim AE, et al. Ischemic preconditioning: prospects of application for the correction of physical performance in military, extreme and sports medicine. Siberian scientific medical journal. 2023;43(2):74–82. (In Russ.) EDN: MSCVEW doi: 10.18699/SSMJ20230207

[14]

Кудряшов В.С., Фатеев И.В., Ким А.Е., и др. Ишемическое прекондиционирование: перспективы применения для коррекции физической работоспособности в военной, экстремальной и спортивной медицине // Сибирский научный медицинский журнал. 2023. Т. 43, № 2. С. 74–82. EDN: MSCVEW doi: 10.18699/SSMJ20230207 7

[15]

Galagudza MM. Pre- and postconditioning as ways to protect myocardium from ischemic and reperfusion injury: an experimental study [dissertation abstract]. Saint Petersburg, 2007. 39 p. (In Russ.) Available from: https://viewer.rsl.ru/ru/rsl01003068303?page=1&rotate=0&theme=white.

[16]

Галагудза М.М. Пре- и посткондиционирование как способы защиты миокарда от ишемического и реперфузионного повреждения: экспериментальное исследование: автореф. дис. … д-ра мед. наук. Санкт-Петербург, 2007. 39 c. Режим доступа: https://viewer.rsl.ru/ru/rsl01003068303?page=1&rotate=0&theme=white.

[17]

Yamshchikova AV, Fleishman AN, Martynov ID, et al. Clinical effects of ischemic preconditioning in polyneuropathy of various origins. Hygiene and sanitation. 2023;102(4):362–366. (In Russ.) EDN: JHZOHQ doi: 10.47470/0016-9900-2023-102-4-362-366

[18]

Ямщикова А.В., Флейшман А.Н., Мартынов И.Д., и др. Клинические эффекты ишемического прекондиционирования при полинейропатии различного генеза // Гигиена и санитария. 2023. Т. 102, № 4. С. 362–366. EDN: JHZOHQ doi: 10.47470/0016-9900-2023-102-4-362-366

[19]

Shljahto EV, Nifontov EM, Galagudza MM. Limitation of ischemic and reperfusion myocardial damage by means of pre- and postconditioning: molecular mechanisms and targets for pharmacotherapy. Creative cardiology. 2007;(1–2):75–101. (In Russ.) EDN: KAOPSR

[20]

Шляхто Е.В., Нифонтов Е.М., Галагудза М.М. Ограничение ишемического и реперфузионного повреждения миокарда с помощью пре- и посткондиционирования: молекулярные механизмы и мишени для фармакотерапии // Креативная кардиология. 2007. № 1–2. С. 75–101. EDN: KAOPSR

[21]

Semenza GL. O2-regulated gene expression: transcriptional control of cardiorespiratory physiology by HIF-1. J Appl Physiol. 2004;96(3):1173–1177. doi: 10.1152/japplphysiol.00770.2003

[22]

Semenza G.L. O2-regulated gene expression: transcriptional control of cardiorespiratory physiology by HIF-1 // Journal of Applied Physiology. 2004. Vol. 96, N. 3. P. 1173–1177. doi: 10.1152/japplphysiol.00770.2003

[23]

Semenza GL, Wang GL. A nuclear factor induced by hypoxia via de novo protein synthesis binds to the human erythropoietin gene enhancer at a site required for transcriptional activation. Mol Cell Biol. 1992;12(12):5447–5454. doi: 10.1128/mcb.12.12.5447-5454.1992

[24]

Semenza G.L., Wang G.L. A nuclear factor induced by hypoxia via de novo protein synthesis binds to the human erythropoietin gene enhancer at a site required for transcriptional activation // Molecular and Cellular Biology. 1992. Vol. 12, N. 12. P. 5447–5454. doi: 10.1128/mcb.12.12.5447-5454.1992

[25]

Ausserer WA, Bourrat-Floeck B, Green CJ, et al. Regulation of c-jun expression during hypoxic and low-glucose stress. Mol Cell Biol. 1994;14(8):5032–5042. doi: 10.1128/mcb.14.8.5032-5042.1994

[26]

Ausserer W.A., Bourrat-Floeck B., Green C.J., et al. Regulation of c-jun expression during hypoxic and low-glucose stress // Molecular and Cellular Biology 1994. Vol. 14, N. 8. P. 5032–5042. doi: 10.1128/mcb.14.8.5032-5042.1994

[27]

Lyubimov AV, Khokhlov PP. Participation of HIF-1 in the mechanisms of neuroadaptation to acute stressful exposure. Reviews on clinical pharmacology and drug therapy. 2021;19(2):183–188. EDN: IWCMMN doi: 10.17816/RCF192183–188

[28]

Любимов А.В., Хохлов П.П. Участие HIF-1 в механизмах нейроадаптации к острому стрессогенному воздействию // Обзоры по клинической фармакологии и лекарственной терапии. 2021. Т. 19, № 2. C. 183–188. EDN: IWCMMN doi: 10.17816/RCF192183-188

[29]

Lando D, Gorman JJ, Whitelaw ML, Peet DJ. Oxygen-dependentregulation of hypoxia-inducible factors by prolyl and asparaginyl hydroxylation. European Journal of Biochemistry. 2003;270(5):781–790. doi: 10.1046/j.1432-1033.2003.03445.x

[30]

Lando D., Gorman J.J., Whitelaw M.L., Peet D.J. Oxygen-dependentregulation of hypoxia-inducible factors by prolyl and asparaginyl hydroxylation // European Journal of Biochemistry. 2003 Vol. 270, N. 5. P. 781–790. doi: 10.1046/j.1432-1033.2003.03445.x

[31]

Murphy BJ, Andrews GK, Bittel D, et al. Activation of metallothionein gene expression by hypoxia involves metal response elements and metal transcription factor-1. Cancer Research. 1999;59(6):1315–1322.

[32]

Murphy B.J., Andrews G.K., Bittel D., et al. Activation of metallothionein gene expression by hypoxia involves metal response elements and metal transcription factor-1 // Cancer Research. 1999. Vol. 59, N. 6. P. 1315–1322.

[33]

Risau W. Mechanisms of angio+genesis. Nature. 1997; 386(6626):671–674. doi: 10.1038/386671a0

[34]

Risau W. Mechanisms of angiogenesis // Nature. 1997. Vol. 386, N. 6626. P. 671–674. doi: 10.1038/386671a0

[35]

Semenza GL. The Genomics and Genetics of Oxygen Homeostasis. Annu Rev Genomics Hum Genet. 2020;21:183–204. doi: 10.1146/annurev-genom-111119-073356

[36]

Semenza G.L. The Genomics and Genetics of Oxygen Homeostasis // Annu Rev Genomics Hum Genet. 2020. Vol. 21. P. 183–204. doi: 10.1146/annurev-genom-111119-073356

[37]

Semenza GL. Oxygen-regulated transcription factors and their role in pulmonary disease. Respir Res. 2000;1(3):159–162. doi: 10.1186/rr27

[38]

Semenza G.L. Oxygen-regulated transcription factors and their role in pulmonary disease // Respiratory Research. 2000. Vol. 1, N. 3. P. 159–162. doi: 10.1186/rr27

[39]

Wenger RH. Cellular adaptation to hypoxia: O2-sensing protein hydroxylases, hypoxia-inducible transcription factors, and O2-regulated gene expression. The FASEB Journal. 2002;16(10):1151–1162. doi: 10.1096/fj.01–0944rev

[40]

Wenger R.H. Cellular adaptation to hypoxia: O2-sensing protein hydroxylases, hypoxia-inducible transcription factors, and O2-regulated gene expression // The FASEB Journal. 2002. Vol. 16, N. 10. P. 1151–1162. doi: 10.1096/fj.01-0944rev

[41]

Gu YZ, Hogenesch JB, Bradfield CA. The PAS superfamily: sensors of environmental and developmental signals. Ann Rev Pharm Toxicol. 2000;40:519–561. doi: 10.1146/annurev.pharmtox.40.1.519

[42]

Gu Y.Z., Hogenesch J.B., Bradfield C.A. The PAS superfamily: sensors of environmental and developmental signals // Annual Review of Pharmacology and Toxicology. 2000. Vol. 40. P. 519–561. doi: 10.1146/annurev.pharmtox.40.1.519

[43]

Zhang W, Yu M, Zhang Q, et al. DFO treatment protects against depression-like behaviors and cognitive impairment in CUMS mice. Brain Res Bull. 2022;187:75–84. doi: 10.1016/j.brainresbull.2022.06.016

[44]

Zhang W., Yu M., Zhang Q., et al. DFO treatment protects against depression-like behaviors and cognitive impairment in CUMS mice // Brain Res Bull. 2022. Vol. 187. P. 75–84. doi: 10.1016/j.brainresbull.2022.06.016

[45]

Tang X, Wang P, Zhang R, et al. KLF2 regulates neutrophil activation and thrombosis in cardiac hypertrophy and heart failure progression. J Clin Invest. 2022;132(3): e147191. doi: 10.1172/JCI147191

[46]

Tang X., Wang P., Zhang R., et al. KLF2 regulates neutrophil activation and thrombosis in cardiac hypertrophy and heart failure progression // Journal of Clinical Investigation. 2022. Vol. 132, N. 3. P. e147191. doi: 10.1172/JCI147191

[47]

Janbandhu V, Tallapragada V, Patrick R, et al. Hif-1a suppresses ROS-induced proliferation of cardiac fibroblasts following myocardial infarction. Cell Stem Cell. 2022;29(2):281–297.e12. doi: 10.1016/j.stem.2021.10.009

[48]

Janbandhu V., Tallapragada V., Patrick R., et al. Hif-1a suppresses ROS-induced proliferation of cardiac fibroblasts following myocardial infarction // Cell Stem Cell. 2022. Vol. 29, N. 2. P. 281–297.e12. doi: 10.1016/j.stem.2021.10.009

RIGHTS & PERMISSIONS

ECO-vector LLC

AI Summary AI Mindmap
PDF (650KB)

205

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/