Mechanisms of vibration-induced structural myocardial remodeling

Victoria V. Vorobieva , Olga S. Levchenkova , Karina V. Lenskaya , Petr D. Shabanov

Reviews on Clinical Pharmacology and Drug Therapy ›› 2024, Vol. 22 ›› Issue (1) : 17 -32.

PDF (1299KB)
Reviews on Clinical Pharmacology and Drug Therapy ›› 2024, Vol. 22 ›› Issue (1) : 17 -32. DOI: 10.17816/RCF624185
Reviews
review-article

Mechanisms of vibration-induced structural myocardial remodeling

Author information +
History +
PDF (1299KB)

Abstract

The review analyzes literature data on structural changes in the heart of patients with vibration disease, as detected by echocardiographic methods. Particularly, it highlights concentric remodeling of the left ventricle chambers and disturbances in diastolic function. The review also discusses a 1.2-fold decrease in heart structure intensity compared to healthy individuals (p < 0.05). Furthermore, it examines changes in morphometric and bioenergetic parameters of cardiomyocytes under different experimental vibration modes (7 and 56 sessions at a frequency of 8 Hz), confirming the disruptions in the relationship between the spatial configuration of the heart cavities, contractile ability, and energy supply potential. Loss of cardiac myofibrils represents the transition from myocardial hypertrophy to decompensation, accompanied by an increase in degenerative (dystrophic) signs such as the loss of sarcomeres in cardiomyocytes. Understanding these pathological (morphological) processes requires consideration of various mediators that regulate cell metabolism, proliferation, growth, and survival, including stromal interaction molecule, calcium ATPase of the endo(sarco)plasmic reticulum, inositol-1,4,5-triphosphate receptor, protein that forms CRAC channels, and transient receptor potential canonical. The degradation system of the extracellular matrix, including matrix metalloproteinases and tissue inhibitors, plays a crucial role in structural cardiac remodeling. This system regulates the rate of mRNA synthesis on the DNA matrix by binding to specific DNA regions that control cardiac nutrition and plasticity. The review suggests that these findings can help explain some patterns of cardiac remodeling development in patients with vibration disease and determine the direction of pathogenetically based therapy. This therapy should consider not only the vibration-protective effect of drugs but also their ability to inhibit and regress myocardial remodeling.

Keywords

vibration / myocardial remodeling / prohypertrophic transcription factors / biomarkers of collagen metabolism / metalloproteinases

Cite this article

Download citation ▾
Victoria V. Vorobieva, Olga S. Levchenkova, Karina V. Lenskaya, Petr D. Shabanov. Mechanisms of vibration-induced structural myocardial remodeling. Reviews on Clinical Pharmacology and Drug Therapy, 2024, 22(1): 17-32 DOI:10.17816/RCF624185

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Dzau V, Braunwald E. Resolved and unresolved issues in the prevention and treatment of coronary artery disease: a workshop consensus statement. Am Heart J. 1991;121(4 Pt 1):1244–1263. doi: 10.1016/0002-8703(91)90694-d

[2]

Dzau V., Braunwald E. Resolved and unresolved issues in the prevention and treatment of coronary artery disease: a workshop consensus statement // Am Heart J. 1991. Vol. 121, N. 4 Pt 1. Р. 1244–1263. doi: 10.1016/0002-8703(91)90694-d

[3]

Korotenko OYu, Filimonov ES. Myocardial deformation and parameters of diastolic function of the left ventricle in workers of coal mining enterprises in the South of Kuzbass with arterial hypertension. Russian Journal of Occupational Health and Indusyrial Ecology. 2020;60(3):151–156. doi: 10.31089/1026-9428-2020-60-3-151-156

[4]

Коротенко О.Ю., Филимонов Е.С. Деформация миокарда и параметры диастолической функции левого желудочка у работников с артериальной гипертензией угледобывающих предприятий Кузбасса // Медицина труда и промышленная экология. 2020. Т. 60, № 3. С. 151–156. EDN: VJOEKO doi: 10.31089/1026-9428-2020-60-3-151-156

[5]

Tret’yakov SV, Shpagina LA, Vojtovich TV. To the question of heart remodeling in vibration disease. Russian Journal of Occupational Health and Industrial Ecology. 2003;(3):18–23. (In Russ.)

[6]

Третьяков С.В., Шпагина Л.А., Войтович Т.В. К вопросу ремоделирования сердца при вибрационной болезни // Медицина труда и промышленная экологии. 2003. № 3. С. 18–23.

[7]

Tret’yakov SV, Shpagina LA. Prospects of studying structural and functional state of cardiovascular system in vibration disease patients with arterial hypertension. Russian Journal of Occupational Health and Industrial Ecology. 2017;(12):30–34.

[8]

Третьяков С.В., Шпагина Л.А. Перспективы изучения структурно-функционального состояния сердечно-сосудистой системы у больных вибрационной болезнью в сочетании с артериальной гипертензией // Медицина труда и промышленная экология. 2017. № 12. С. 30–34. EDN: ZXHFIB

[9]

Saarkopel LM, Kir´ykov VA, Oshkoderov OA. Role of contemporary biomarkers in vibration disease diagnosis. Russian Journal of Occupational Health and Indusyrial Ecology. 2017;(2):6–11.

[10]

Сааркопель Л.М., Кирьяков В.А., Ошкодеров О.А. Роль современных биомаркеров в диагностике вибрационной болезни // Медицина труда и промышленная экология. 2017. № 2. С. 6–11.

[11]

Gorchakova TYu, Churanova AN. Current state of mortality of the working-age population in Russia and Europe. Russian Journal of Occupational Health and Indusyrial Ecology. 2020;60(11):756–759. doi: 10.31089/1026-9428-2020-60-11-756-759

[12]

Горчакова Т.Ю., Чуранова А.Н. Современное состояние смертности населения трудоспособного возраста в России и странах Европы // Медицина труда и промышленная экология. 2020. Т. 60, № 11. С. 756–759. EDN: EPVWTD doi: 10.31089/1026-9428-2020-60-11-756-759

[13]

Vorobieva VV, Shabanov PD. Cellular mechanisms of hypoxia development in the tissues of experimental animals under varying characteristics of vibration exposure. Reviews on Clinical Pharmacology and Drug Therapy. 2019;17(3):59–70. (In Russ.) doi: 10.17816/RCF17359-70

[14]

Воробьева В.В., Шабанов П.Д. Клеточные механизмы формирования гипоксии в тканях экспериментальных животных на фоне варьирования характеристик вибрационного воздействия // Обзоры по клинической фармакологии и лекарственной терапии. 2019. Т. 17, № 3. С. 59–70. EDN: QGQZKH doi: 10.17816/RCF17359-70

[15]

Kiryakov VA, Pavlovskaya NA, Lapko IV, et al. Impact of occupational vibration on molecular and cell level of human body. Russian Journal of Occupational Health and Industrial Ecology. 2018;9:34–43. doi: 10.31089/1026-9428-2018-9-34-43

[16]

Кирьяков В.А., Павловская Н.А., Лапко И.В., и др. Воздействие производственной вибрации на организм человека на молекулярно-клеточном уровне // Медицина труда и промышленная экология. 2018. № 9. С. 34–43. EDN: YJGVAD doi: 10.31089/1026-9428-2018-9-34-43

[17]

Bockeria LA, Bockeria OL, Le TG. Electrophysiological remodeling of the myocardium in heart failure and various heart diseases. Annaly aritmologii. 2010;4:41–48. (In Russ.)

[18]

Бокерия Л.А., Бокерия О.Л., Ле Т.Г. Электрофизиологическое ремоделирование миокарда при сердечной недостаточности и различных заболеваниях сердца //Анналы аритмологии. 2010.Т. 7, № 4. С. 41–48. EDN: NWFNTH

[19]

Jiang M, Fan X, Wang Y, Sun X. Effects of hypoxia in cardiac metabolic remodeling and heart failure. Exp Cell Res. 2023;432(1):113763. doi: 10.1016/j.yexcr.2023.113763

[20]

Jiang M., Fan X., Wang Y., Sun X. Effects of hypoxia in cardiac metabolic remodeling and heart failure // Exp Cell Res. 2023. Vol. 432, N. 1. P. 113763. doi: 10.1016/j.yexcr.2023.113763

[21]

Heusch G, Libby P, Gersh B, et al. Cardiovascular remodelling in coronary artery disease and heart failure. Lancet. 2014;383(9932):1933–1943. doi: 10.1016/s0140-6736(14)60107-0

[22]

Heusch G., Libby P., Gersh B., et al. Cardiovascular remodelling in coronary artery disease and heart failure // Lancet. 2014. Vol. 383, N. 9932. P. 1933–1943. doi: 10.1016/s0140-6736(14)60107-0

[23]

Shishkina LN, Klimovich MA, Kozlov MV. A new approach to analysis of participation of oxidative processes in regulation of metabolism in animal tissues. Biophysics. 2014;59(2):904–909. doi: 10.1134/S0006350914020249

[24]

Шишкина Л.Н., Климович М.А., Козлов М.В. Новый подход к анализу участия окислительных процессов в регуляции метаболизма в тканях животных // Биофизика. 2014. Т. 59, № 2. С. 308–386. EDN: SDGXKT doi: 10.1134/S0006350914020249

[25]

Poteriaeva EL, Smirnova EL, Nikiforova NG. Forecasting the formation and course of vibration disease on basis of genetic metabolic markers study. Russian Journal of Occupational Health and Industrial Ecology. 2015;(6):19–22. EDN: UBEMIT

[26]

Потеряева Е.Л., Смирнова Е.Л., Никифорова Н.Г. Прогнозирование формирования и течения вибрационной болезни на основе изучения геннометаболических факторов // Медицина труда и промышленная экология. 2015. № 6. С. 19–22. EDN: UBEMIT

[27]

Malyutina NN, Bolotova AF, Eremeev RB et al. Antioxidant status of blood in patients with vibration disease. Russian Journal of Occupational Health and Industrial Ecology. 2019;(12):978–982. EDN: ZPVTXP doi: 10.31089/1026-9428-2019-59-12-978-982

[28]

Малютина Н.Н., Болотова А.Ф., Еремеев Р.Б., и др. Антиоксидантный статус крови у пациентов с вибрационной болезнью // Медицина труда и промышленная экология. 2019. Т. 59, № 12. С. 978–982. EDN: ZPVTXP doi: 10.31089/1026-9428-2019-59-12-978-982

[29]

Vorobieva VV, Shabanov PD. Tissue specific peculiarities of vibration-induced hypoxia of the rabbit heart, liver and kidney. Reviews on Clinical Pharmacology and Drug Therapy. 2016;14(1):46–62. EDN: VVEOGN doi: 10.17816/RCF14146-62

[30]

Воробьева В.В., Шабанов П.Д. Тканеспецифические особенности вибрационно-опосредованной гипоксии сердца, печени и почки кролика // Обзоры по клинической фармакологии и лекарственной терапии. 2016. Т. 14, № 1. С. 46–62. EDN: VVEOGN doi: 10.17816/RCF14146-62

[31]

Atamantchuk AA, Kuzmina LP, Khotuleva AG, Kolyaskina MM. Polymorphism of genes of renin-angiotensin-aldosterone system in the development of hypertension in workers exposed to physical factors. Russian Journal of Occupational Health and Industrial Ecology. 2019;59(12): 972–977. EDN: RPZIZJ doi: 10.31089/1026-9428-2019-59-12-972-977

[32]

Атаманчук А.А., Кузьмина Л.П., Хотулева А.Г., Коляскина М.М. Полиморфизм генов ренин-ангиотензин-альдостероновой системы в развитии гипертонической болезни у работающих, подвергающихся воздействию физических факторов промышленности // Медицина труда и промышленная экология. 2019. Т. 59, № 12. С. 972–977. EDN: RPZIZJ doi: 10.31089/1026-9428-2019-59-12-972-977

[33]

Afanasiev SA, Kondratieva DS, Egorova MV, et al. Features the interaction of functional and metabolic remodeling of myocardium in comorbid course of ischemic heart disease and 2 type diabetes mellitus. Diabetes Mellitus. 2019;22(1):25–34. EDN: ZDDIEP doi: 10.14341/DM9735

[34]

Афанасьев С.А., Кондратьева Д.С., Егорова М.В., и др. Особенности сопряжения функционального и метаболического ремоделирования миокарда при коморбидном течении ишемической болезни сердца и сахарного диабета 2 типа // Сахарный диабет. 2019. Т. 22, № 1. С. 25–34. EDN: ZDDIEP doi: 10.14341/DM9735

[35]

Shpagina LA, Gerasimenko ON, Novikova II, et al. Clinical, functional and molecular characteristics of vibration disease in combination with arterial hypertension. Russian Journal of Occupational Health and Industrial Ecology. 2022;62(3):146–158. EDN: CNLUQW doi: 10.31089/1026-9428-2022-62-3-146-158

[36]

Шпагина Л.А., Герасименко О.Н., Новикова И.И., и др. Клинико-функциональная и молекулярная характеристика вибрационной болезни в сочетании с артериальной гипертензией // Медицина труда и промышленная экология. 2022. Т. 62, № 3. С. 146–158. EDN: CNLUQW doi: 10.31089/1026-9428-2022-62-3-146-158

[37]

Shpigel AS, Vakurova NV Neurohumoral dysregulation in vibration disease (response features of hormonal complexes to the introduction of tyroliberin). Russian Journal of Occupational Health and Industrial Ecology. 2022;61(1):29–35. EDN: DEGJGA doi: 10/31089/1026-9428-2022-62-129-35

[38]

Шпигель А.С., Вакурова Н.В. Нейрогормональная дисрегуляция при вибрационной болезни (особенности реагирования гормональных комплексов на введение тиролиберина) // Медицина труда и промышленная экология. 2022, Т. 61, № 1. С. 29–35. EDN: DEGJGA doi: 10/31089/1026-9428-2022-62-129-35

[39]

Melentev AV, Serebryakov PV, Zheglova AV. Influence of noise and vibration on nervous regulation of heart. Russian Journal of Occupational Health and Industrial Ecology. 2018;(9):19–23. EDN: YJGUST doi: 10.31089/1026-9428-2018-9-19-23

[40]

Мелентьев А.В., Серебряков П.В., Жеглова А.В. Влияние шума и вибрации на нервную регуляцию сердца // Медицина труда и промышленная экология. 2018. № 9. С. 19–23. EDN: YJGUST doi: 10.31089/1026-9428-2018-9-19-23

[41]

Yamshchikova AV, Fleishman AN, Gidayatova MO, et. al. Features of vegetative regulation in vibration disease patients, studied on basis of active orthostatic test. Russian Journal of Occupational Health and Industrial Ecology. 2018;(6):11–14. EDN: XQMXAL doi: 10.31089/1026-9428-2018-6-11-15

[42]

Ямщикова А.В., Флейшман А.Н., Гидаятова М.О., и др. Особенности вегетативной регуляции у больных вибрационной болезнью на основе активной ортостатической пробы // Медицина труда и промышленная экология. 2018. № 6. С. 11–14. EDN: XQMXAL doi: 10.31089/1026-9428-2018-6-11-15

[43]

Vorobieva VV, Levchenkova OS, Shabanov PD. Biochemical mechanisms of the energy-protective action of blockers of slow high-threshold L-type calcium channels. Reviews on Clinical Pharmacology and Drug Therapy. 2022; 20(4):395–405. (In Russ.) EDN: YECCVH doi: 10.17816/RCF204395-405

[44]

Воробьева В.В., Левченкова О.С., Шабанов П.Д. Биохимические механизмы энергопротективного действия блокаторов медленных высокопороговых кальциевых каналов L-типа // Обзоры по клинической фармакологии и лекарственной терапии. 2022. Т. 20, № 4. С. 395–405. EDN: YECCVH doi: 10.17816/RCF204395-405

[45]

Grigoriev AI, Tonevitsky AG. Molecular mechanisms of stress adaptation: immediate early genes. Russian journal of physiology. 2009;95(10):1041–1057. EDN: OIZSVD

[46]

Григорьев А.И., Тоневицкий А.Г. Молекулярные механизмы адаптации к стрессу: гены раннего ответа // Рос. физиол. журн. им. И.М. Сеченова. 2009. Т. 95, № 10. С. 1041–1057. EDN: OIZSVD

[47]

Vorobieva VV, Shabanov PD. Vibration and vibroprotectors. Vol. 6. In: Pharmacology of extreme conditions: in 12 volumes. Ed. by P.D. Shabanov. Saint Petersburg: Inform-Navigator, 2015. 416 p. (In Russ.)

[48]

Воробьева В.В., Шабанов П.Д. Вибрация и вибропротекторы. Т. 6. В кн.: Фармакология экстремальных состояний: в 12 т. / под ред. П.Д. Шабанова. Санкт-Петербург: Информ-Навигатор, 2015. 416 с.

[49]

Bondarev OI, Bugaeva MS, Mikhailova NN. Pathomorphology of heart muscle vessels in workers of the main professions of the coal industry. Russian Journal of Occupational Health and Industrial Ecology. 2019;59(6):335–341. EDN: GSSKJG doi: 10.31089/1026-9428-2019-59-6-335-341

[50]

Бондарев О.И., Бугаева М.С., Михайлова Н.Н. Патоморфология сосудов сердечной мышцы у работников основных профессий угольной промышленности // Медицина труда и промышленная экология. 2019. Т. 59, № 6. С. 335–341. EDN: GSSKJG doi: 10.31089/1026-9428-2019-59-6-335-341

[51]

Rukavishnikov VS, Bodienkova GM, Kurchevenko SI, et al. Role of neuroautoimmune integration in pathogenesis of vibration disease. Russian Journal of Occupational Health and Indusyrial Ecology. 2017;1:17–20. EDN: XYEXFZ

[52]

Рукавишников В.С., Бодиенкова Г.М., Курчевенко С.И., и др. Роль нейроаутоиммунной интеграции в патогенезе вибрационной болезни // Медицина труда и промышленная экология. 2017. № 1. С. 17–20. EDN: XYEXFZ

[53]

Vorobieva VV, Levchenkova OS, Shabanov PD. Pathophysiological mechanisms of neurological disorders in experimental animals exposed to vibration. Reviews on Clinical Pharmacology and Drug Therapy. 2020;18(3):213–224. EDN: ANNCVO doi: 10.17816/RCF183213-224

[54]

Воробьева В.В., Левченкова О.С., Шабанов П.Д. Роль биоэнергетической гипоксии в развитии нарушений со стороны нервной ткани у экспериментальных животных, подвергнутых вибрационному воздействию // Обзоры по клинической фармакологии и лекарственной терапии. 2020. Т. 18, № 3. С. 213–224. EDN: ANNCVO doi: 10.17816/RCF183213-224

[55]

Nattel S, Li D. Ionic remodeling in the heart: pathophysiological significance and new therapeutic opportunities for atrial fibrillation. Circ Res. 2000;87(6):440–447. doi: 10.1161/01.res.87.6.440

[56]

Nattel S., Li D. Ionic remodeling in the heart: pathophysiological significance and new therapeutic opportunities for atrial fibrillation // Circ Res. 2000. Vol. 87, N. 6. Р. 440–447. doi: 10.1161/01.res.87.6.440

[57]

Ginsburg KS, Bers DM. Modulation of excitation contraction coupling by isoproterenol in cardiomyocytes with controlled SR Ca2+ load and Ca2+ current trigger. J Physiol. 2004;556(Pt 2):463–480. doi: 10.1113/jphysiol.2003.055384

[58]

Ginsburg K.S., Bers D.M. Modulation of excitation contraction coupling by isoproterenol in cardiomyocytes with controlled SR Ca2+ load and Ca2+ current trigger // J Physiol. 2004. Vol. 556, Pt 2. P. 463–480. doi: 10.1113/jphysiol.2003.055384

[59]

Talukder MA, Kalyanasundaram A, Zuo L, et al. Is reduced SERCA2a expression detrimental or benefi cial to postischemic cardiac function and injury? Evidence from heterozygous SERCA2a knockout mice. Am J Physiol Heart Circ Physiol. 2008; 294(3): H1426–H1434. doi: 10.1152/ajpheart.01016.2007

[60]

Talukder M.A., Kalyanasundaram A., Zuo L., et al. Is reduced SERCA2a expression detrimental or benefi cial to postischemic cardiac function and injury? Evidence from heterozygous SERCA2a knockout mice // Am J Physiol Heart Circ Physiol. 2008. Vol. 294, N. 3. Р. 1426–1434. doi: 10.1152/ajpheart.01016.2007

[61]

Lou Q, Janardhan A, Efimov IR. Remodeling of calcium handling in human heart failure. Adv Exp Med Biol. 2012;740:1145–1174. doi: 10.1007/978-94-007-2888-2_52

[62]

Lou Q., Janardhan A., Efimov I.R. Remodeling of calcium handling in human heart failure // Adv Exp Med Biol. 2012. Vol. 740. Р. 1145–1174. doi: 10.1007/978-94-007-2888-2_52

[63]

Yano M, Yamamoto T, Ikeda Y, Matsuzaki M. Mechanisms of Disease: ryanodine receptor defects in heart failure and fatal arrhythmia. Nat Clin Pract Cardiovasc Med. 2006;3(1):43–52. doi: 10.1038/ncpcardio0419

[64]

Yano M., Yamamoto T., Ikeda Y., Matsuzaki M. Mechanisms of Disease: ryanodine receptor defects in heart failure and fatal arrhythmia // Nat Clin Pract Cardiovasc Med. 2006. Vol. 3, N. 1. Р. 43–52. doi: 10.1038/ncpcardio0419

[65]

Tkachenko SB, Beresten NF. Tissue Doppler study of myocardium. Moscow: Real’noe vremya; 2006. 215 p. (In Russ.)

[66]

Ткаченко С.Б., Берестень Н.Ф. Тканевое допплеровское исследование миокарда. Москва: Реальное время, 2006. 215 с.

[67]

Syomin FA, Khabibullina AR, Tsaturyan AK. Numerical modeling of the work of the left ventricle of the heart in the circulatory system: the effects of changes in the frequency of contractions and apical myocardial infarction. Biophysics. 2022;67(4):763–775. EDN: IULMNY doi: 10.31857/S0006302922040159

[68]

Семин Ф.А., Хабибулина А.Р., Цатурян А.К. Численное моделирование работы левого желудочка сердца в системе кровообращения: эффекты изменения частоты сокращений и апикального инфаркта миокарда // Биофизика. 2022. Т. 67, № 4. С. 763–775. EDN: IULMNY doi: 10.31857/S0006302922040159

[69]

Vorobieva VV, Shabanov PD. Morphological changes in the myocardium, liver and kidneys of rabbits after exposure of general vibration and pharmacological defense with succinate. Morphological Newsletter. 2011;(1):16–20. EDN: NMZIUV

[70]

Воробьева В.В., Шабанов П.Д. Морфологические изменения миокарда, печени и почек кролика на фоне вибрации и фармакологической защиты янтарной кислотой // Морфологические ведомости. 2011. N. 1. С. 16–20. EDN: NMZIUV

[71]

Egorova IF, Sukhacheva TV, Serov RA, et al. Cardiomyocyte structural rearrangement in patients with dilated cardiomyopathy and valvular heart disease. Arkhiv Patologii. 2012;74(4):3–7. EDN: PEIWQT

[72]

Егорова И.Ф., Сухачева Т.В., Серов Р.А., и др. Структурная перестройка кардиомиоцитов у больных с дилатационной кардиомиопатией и клапанными пороками сердца // Архив патологии. 2012. Т. 74, № 4. С. 3–7. EDN: PEIWQT

[73]

Mohrman DE, Heller L. Cardiovascular physiology. Saint Petersburg: Peter; 2000. 249 p.

[74]

Морман Д., Хеллер Л. Физиология сердечно-сосудистой системы. Санкт-Петербург. Питер, 2000. 249 с.

[75]

Braunwald E. Biomarkers in heart failure. New Engl J Med. 2008;358(20):2148–2159. doi: 10.1056/NEJMra0800239

[76]

Braunwald E. Biomarkers in heart failure // New Engl J Med. 2008. Vol. 358, N. 20. Р. 2148–2159. doi: 10.1056/NEJMra0800239

[77]

Gerdes AM. Cardiac myocyte remodeling in hypertrophy and progression to failure. J Card Fail. 2002;8(6):S264–S268. doi: 10.1054/jcaf.2002.129280

[78]

Gerdes A.M. Cardiac myocyte remodeling in hypertrophy and progression to failure // J Card Fail. 2002. Vol. 8, N. 6. P. S264–S268. doi: 10.1054/jcaf.2002.129280

[79]

Wu QQ, Xiao Y, Yuan Y, et al. Mechanisms contributing to cardiac remodelling. Clin Sci (Lond). 2017;131(18):2319–2345. doi: 10.1042/CS201711676

[80]

Wu Q.Q., Xiao Y., Yuan Y., et al. Mechanisms contributing to cardiac remodeling // Clin Sci (Lond). 2017. Vol. 131, N. 18. P. 2319–2345. doi: 10.1042/CS201711676

[81]

Levchenkova OS, Novikov VE, Parfenov EA, et al. Combined preconditioning reduces the negative influence of cerebral ischemia on the morphofunctional condition of CNS. Bulletin of Experimental Biology and Medicine. 2021;171(4):489–493. EDN: NAETUN doi: 10.1007/s10517-021-05257-6

[82]

Левченкова О.С., Новиков В.Е., Корнева Ю.С., и др. Комбинированное прекондиционирование ослабляет негативное влияние церебральной ишемии на морфофункциональное состояние ЦНС // Бюллетень экспериментальной биологии и медицины. 2021. Т. 171, № 4. С. 507–512. EDN: NAETUN doi: 10.47056/0365-9615-2021-171-4-507-512

[83]

Hein S, Arnon E, Kostin S, et al. Progression from compensated hypertrophy to failure in the pressure-overloaded human heart: structural deterioration and compensatory mechanisms. Circulation. 2003;107(7):984–991. doi: 10.1161/01.cir.0000051865.66123.b7

[84]

Hein S., Arnon E., Kostin S., et al. Progression from compensated hypertrophy to failure in the pressure-overloaded human heart: structural deterioration and compensatory mechanisms // Circulation. 2003. Vol. 107, N. 7. Р. 984–991. doi: 10.1161/01.cir.0000051865.66123.b7

[85]

Razeghi P, Young ME, Alcorn JL, et al. Metabolic gene expression in fetal and failing human heart. Circulation. 2001;104(24):2923–2931. doi: 10.1161/hc4901.1005269

[86]

Razeghi P., Young M.E., Alcorn J.L., et al. Metabolic gene expression in fetal and failing human heart // Circulation. 2001. Vol. 104, N. 24. Р. 2923–2931. doi: 0.1161/hc4901.1005269

[87]

Sutton MJJSt, Norman S. Left ventricular remodeling after myocardial infarction. Circulation. 2004;101:2981–2986 doi: 10.1161/01.cir.101.25.2981

[88]

Sutton M.J.G.St., Sharpe N. Left ventricular remodeling after myocardial infarction // Circulation. 2004. Vol. 101, N. 25. P. 2981–2986. doi: 10.1161/01.cir.101.25.2981

[89]

Spaich S, Katus HA, Backs J. Ongoing controversies surrounding cardiac remodeling: is it black and white — or rather fifty shades of gray? Front Pharmacol. 2015;6:202. doi: 10.3389/fphys.2015.00202

[90]

Spaich S., Katus H.A., Backs J. Ongoing controversies surrounding cardiac remodeling: is it black and white — or rather fifty shades of gray? // Front Pharmacol. 2015. Vol. 6. P. 202. doi: 10.3389/fphys.2015.00202

[91]

Hohendanner F, McCulloch A, Blatter L, Michailova A. Calcium and IP3 dynamics in cardiac myocytes: experimental and computational perspectives and approaches. Front Pharmacol. 2014;5:35. doi: 10.3389/fphar.2014.00035

[92]

Hohendanner F., McCulloch A., Blatter L., Michailova A. Calcium and IP3 dynamics in cardiac myocytes: experimental and computational perspectives and approaches // Front Pharmacol. 2014. Vol. 5. P. 35. doi: 10.3389/fphar.2014.00035

[93]

Klimanova EA, Sidorenko SV, Tverskoi AM, et al. Search for intracellular sensors involved in the functioning of monovalent cations as secondary messengers. Biokhimiya. 2019;84(11):1592–1609. EDN: KMNUCT doi: 10.1134/S032097251911006X

[94]

Климанова Е.А., Сидоренко С.В., Тверской А.М., и др. Поиск внутриклеточных сенсоров, вовлеченных в функционирование одновалентных катионов как вторичных мессенджеров // Биохимия. 2019. Т. 84, № 11. С. 1592–1609. EDN: KMNUCT doi: 10.1134/S032097251911006X

[95]

Guo Y. Comparative analysis reveals distinct and overlapping functions of Mef2c and Mef2d during cardiogenesis in Xenopus laevis. PLoS One. 2014;9(1):e87294. doi: 10.1371/journal.pone.0087294

[96]

Guo Y., Kühl S.J., Pfister A.S. Comparative analysis reveals distinct and overlapping functions of Mef2c and Mef2d during cardiogenesis in Xenopus laevis // PLoS One. 2014. Vol. 9, N. 1. P. e87294. doi: 10.1371/journal.pone.0087294

[97]

Meunier J, Hayashi Т. Sigma-1 receptors regulate Bcl-2 expression by reactive oxygen species-dependent transcriptional regulation of nuclear factor kappa B. J Pharmacol Exp Ther. 2010;332(2): 388–397 doi: 10.1124/jpet.109.160960

[98]

Meunier J., Hayashi Т. Sigma-1 receptors regulate Bcl-2 expression by reactive oxygen species-dependent transcriptional regulation of nuclear factor kappa B // J Pharmacol Exp Ther. 2010. Vol. 332, N. 2. P. 388–397 doi: 10.1124/jpet.109.160960

[99]

Tagashira H, Bhuiyan MS, Shinoda Y, et al. Sigma-1 receptor is involved in modification of ER-mitochondria proximity and Ca2+ homeostasis in cardiomyocytes. J Pharmacol Sci. 2023;151(2):128–133. doi: 10.1016/j.jphs.2022.12.005

[100]

Tagashira H., Bhuiyan M.S., Shinoda Y., et al. Sigma-1 receptor is involved in modification of ER-mitochondria proximity and Ca2+ homeostasis in cardiomyocytes // J Pharmacol Sci. 2023. Vol. 151, N. 2. P. 128–133. doi: 10.1016/j.jphs.2022.12.005

[101]

Gao QJ, Yang В, Chen J, et al. Sigma-1 receptor stimulation with PRE-084 ameliorates myocardial ischemia-reperfusion injury in rats. Chin Med J (Engl). 2018;131(5):539–543. doi: 10.4103/0366-6999.226076

[102]

Gao Q.J., Yang В., Chen J., et al. Sigma-1 Receptor Stimulation with PRE-084 Ameliorates Myocardial Ischemia-Reperfusion Injury in Rats // Chin Med J (Engl). 2018. Vol. 131, N. 5. P. 539–543. doi: 10.4103/0366-6999.226076

[103]

Briasoulis A, Tousoulis D, Papageorgiou N, et al. Novel therapeutic approaches targeting matrix metalloproteinases in cardiovascular disease. Curr Top Med Chem. 2012;12(10):1214–1221. doi: 10.2174/1568026611208011214

[104]

Briasoulis A., Tousoulis D., Papageorgiou N., et al. Novel therapeutic approaches targeting matrix metalloproteinases in cardiovascular disease // Curr Top Med Chem. 2012. Vol. 12, N. 10. Р. 1214–1221. doi: 10.2174/1568026611208011214

[105]

Ponikowska B, Iwanek G, Zdanowicz A, et al. Biomarkers of myocardial injury and remodeling in heart failure. J Pers Med. 2022;12(5):799. doi: 10.3390/jpm12050799

[106]

Ponikowska B., Iwanek G., Zdanowicz A., et al. Biomarkers of Myocardial Injury and Remodeling in Heart Failure // J Pers Med. 2022. Vol. 12, N. 5. P. 799. doi: 10.3390/jpm12050799

[107]

Serezshina EK, Obrezan AG Myocardial damage and remodelling biomarkers in the diagnosis of heart failure with a preserved ejection fraction. RMJ. Medical Review. 2019;3(10(1)):23–26. (In Russ.) EDN: PTQLAC

[108]

Сережина Е.К., Обрезан А.Г. Биомаркеры повреждения и ремоделирования миокарда в диагностике сердечной недостаточности с сохранной фракцией выброса // РМЖ. Медицинское обозрение. 2019. Т. 3, № 10–1. С. 23–26. EDN: PTQLAC

[109]

González A, Richards AM, de Boer RA, et al. Cardiac remodelling — Part 1: From cells and tissues to circulating biomarkers. A review from the Study Group on Biomarkers of the Heart Failure Association of the European Society of Cardiology. Eur J Heart Fail. 2022;24(6):927–943. doi: 10.1002/ejhf.2493

[110]

González A., Richards A.M., de Boer R.A., et al. Cardiac remodelling — Part 1: From cells and tissues to circulating biomarkers. A review from the Study Group on Biomarkers of the Heart Failure Association of the European Society of Cardiology // Eur J Heart Fail. 2022. Vol. 24, N. 6. P. 927–943. doi: 10.1002/ejhf.2493

[111]

Bogatyreva FM, Kaplunova VYu, Kozhevnikova MV, et al. Correlation between markers of fibrosis and myocardial remodeling in patients with various course of hypertrophic cardiomyopathy. Cardiovascular Therapy and Prevention. 2022;21(3):3140. EDN: EKFVOO doi: 10.15829/1728-8800-2022-3140

[112]

Богатырева Ф. М., Каплунова В. Ю., Кожевникова М. В. и др. Взаимосвязь маркеров фиброза и ремоделирования миокарда у пациентов с различными вариантами течения гипертрофической кардиомиопатии // Кардиоваскулярная терапия и профилактика. 2022. Т. 21, № 3. С. 3140. EDN: EKFVOO doi: 10.15829/1728-8800-2022-3140

[113]

Ilov NN, Arnaudova KS, Nechepurenko AA, et al. Role of the cardiac extracellular matrix in the onset and progression of heart failure. Russian Journal of Cardiology. 2021;26(2S):4362. EDN: ELODLF doi: 10.15829/1560-4071-2021-4362

[114]

Илов Н.Н., Арнаудова К.Ш., Нечепуренко А.А., и др. Роль внеклеточного матрикса сердца в возникновении и прогрессировании хронической сердечной недостаточности // Российский кардиологический журнал. 2021. T. 26(2S). C. 4362. EDN: ELODLF doi: 10.15829/1560-4071-2021-4362

[115]

Zambrano MA, Alcaide P. Immune cells in cardiac injury repair and remodeling. Curr Cardiol Rep. 2023;25(5):315–323. doi: 10.1007/s11886-023-01854-1

[116]

Zambrano M.A., Alcaide P. Immune cells in cardiac injury repair and remodeling // Curr Cardiol Rep. 2023. Vol. 25, N. 5. P. 315–323. doi: 10.1007/s11886-023-01854-1

[117]

O’Meara E, Zannad F. Fibrosis biomarkers predict cardiac reverse remodeling. JACC Heart Fail. 2023;11(1):73–75. doi: 10.1016/j.jchf.2022.11.011

[118]

O’Meara E, Zannad F. Fibrosis biomarkers predict cardiac reverse remodeling // JACC Heart Fail. 2023. Vol. 11, N. 1. P. 73–75. doi: 10.1016/j.jchf.2022.11.011

[119]

Cieplak P, Strongin AY. Matrix metalloproteinases — From the cleavage data to the prediction tools and beyond. Biochim Biophys Acta Mol Cell Res. 2017;1864(11 Pt A):1952–1963. doi: 10.1016/j.bbamcr.2017.03.0109

[120]

Cieplak P., Strongin A.Y. Matrix metalloproteinases — From the cleavage data to the prediction tools and beyond // Biochim Biophys Acta Mol Cell Res. 2017. Vol. 1864, N. 11 Pt A. P. 1952–1963. doi: 10.1016/j.bbamcr.2017.03.0109

[121]

Deschamps A, Spinale F. Pathways of matrix metalloproteinase induction in heart failure: Bioactive molecules and transcriptional regulation. Cardiovasc Res. 2006;69(3):666–676. doi: 10.1016/j.cardiores.2005.10.004

[122]

Deschamps A., Spinale F. Pathways of matrix metalloproteinase induction in heart failure: Bioactive molecules and transcriptional regulation // Cardiovasc Res. 2006. Vol. 69, N. 3. P. 666–676. doi: 10.1016/j.cardiores.2005.10.004

[123]

Koduri H, Ng J, Cokic I, et al. Contribution of fibrosis and the autonomic nervous system to atrial fibrillation electrograms in heart failure. Circ Arrhythm Electrophysiol. 2012;5(4):640–649. doi: 10.1161/CIRCEP.111.970095

[124]

Koduri H., Ng J., Cokic I., et al. Contribution of fibrosis and the autonomic nervous system to atrial fibrillation electrograms in heart failure // Circ Arrhythm Electrophysiol. 2012. N. 5, N. 4. P. 640–649. doi: 10.1161/CIRCEP.111.970095

[125]

Galati G, Leone O, Pasquale F, et al. Histological and histometric characterization of myocardial fibrosis in end-stage hypertrophic cardiomyopathy: a clinical-pathological study of 30 explanted hearts. Circ Heart Fail. 2016;9(9):e003090. doi: 10.1161/CIRCHEARTFAILURE.116.003090

[126]

Galati G., Leone O., Pasquale F., et al. Histological and histometric characterization of myocardial fibrosis in end-stage hypertrophic cardiomyopathy: a clinical-pathological study of 30 explanted hearts // Circ Heart Fail. 2016. Vol. 9, N. 9. P. e003090. doi: 10.1161/CIRCHEARTFAILURE.116.003090

[127]

Smirnova EL, Poteryaeva EL, Ivanova AA, et al. Association of ID polymorphism of the CASP8 gene with vibration disease. Russian Journal of Occupational Health and Industrial Ecology. 2022;62(12):809–813. (In Russ.) EDN: SRSPYJ doi: 10.31089/1026-9428-2022-62-12-809-813

[128]

Смирнова Е.Л., Потеряева Е.Л., Иванова А.А., и др. Ассоциация ID-полиморфизма гена CASPS с вибрационной болезнью // Медицина труда и промышленная экология. 2022. Т. 62, № 12. С. 809–813. EDN: SRSPYJ doi: 10.31089/1026-9428-2022-62-12-809-813

[129]

Chistova NP. The role of candidate gene polymorphisms for endothelial dysfunction and metabolic disorders in the development of cardiovascular diseases under the influence of production factors. Russian Journal of Occupational Health and Industrial Ecology. 2019;62(5): 331–336. EDN: JDNIWU doi: 10.31089/1026-9428-2022-62-5-331-336

[130]

Чистова Н.П. Роль полиморфизмов генов кандидатов эндотелиальной дисфункции и метаболических нарушений в развитии сердечно-сосудистых заболеваний при воздействии производственных факторов // Медицина труда и промышленная экология. 2022. Т. 62, № 5. С. 331–336. EDN: JDNIWU doi: 10.31089/1026-9428-2022-62-5-331-336

[131]

Ussov VYu, Bogunetsky AA. Detection of myocardial viability in isсhaemic damage using magnetic resonance and emission tomography. Bulletin of Siberian Medicine. 2013;12(6):154–166. (In Russ.) EDN: RUENRN doi: 10.20538/1682-0363-2013-6-154-166

[132]

Усов В.Ю., Богунецкий А.А. Оценка жизнеспособности ишемически поврежденного миокарда: возможности магнитно-резонансной и эмиссионной томографии // Бюллетень сибирской медицины. 2013. Т. 12, № 6. С. 154–166. EDN: RUENRN doi: 10.20538/1682-0363-2013-6-154-166

[133]

McMurray JJ. Neprilysin inhibition to treat heart failure: a tale of science, serendipity, and second chances. Eur J Heart Fail. 2015;17(3):242–247. doi: 10.1002/ejhf.250

[134]

McMurray J.J. Neprilysin inhibition to treat heart failure: a tale of science, serendipity, and second chances // Eur J Heart Fail. 2015. Vol. 17, N. 3. P. 242–247 doi: 10.1002/ejhf.250

[135]

Sacharczuk W, Dankowski R, Ożegowski S, et al. Evaluation of early left-sided cardiac reverse remodeling under combined therapy of sacubitril-valsartan and spironolactone compared with angiotensin-converting enzyme inhibitors and spironolactone. Front Cardiovasc Med. 2023;10:1103688. doi: 10.3389/fcvm.2023.1103688

[136]

Sacharczuk W., Dankowski R., Ożegowski S., et al. Evaluation of early left-sided cardiac reverse remodeling under combined therapy of sacubitril-valsartan and spironolactone compared with angiotensin-converting enzyme inhibitors and spironolactone // Front Cardiovasc Med. 2023. Vol. 10. P. 1103688. doi: 10.3389/fcvm.2023.1103688

[137]

Carluccio E, Dini FL, Correale M, et al. Effect of sacubitril/valsartan on cardiac remodeling compared with other renin–angiotensin system inhibitors: a difference-in-difference analysis of propensity-score matched samples. Clin Res Cardiol. 2023. doi: 10.1007/s00392-023-02306-0

[138]

Carluccio E., Dini F.L., Correale M., et al. Effect of sacubitril/valsartan on cardiac remodeling compared with other renin–angiotensin system inhibitors: a difference-in-difference analysis of propensity-score matched samples // Clin Res Cardiol. 2023. doi: 10.1007/s00392-023-02306-0

[139]

Leancă SA, Afrăsânie I, Crișu D, et al. Cardiac reverse remodeling in ischemic heart disease with novel therapies for heart failure with reduced ejection fraction. Life. 2023;13(4):1000. doi: 10.3390/life13041000

[140]

Leancă S.A., Afrăsânie I., Crișu D., et al. Cardiac reverse remodeling in ischemic heart disease with novel therapies for heart failure with reduced ejection fraction // Life. 2023. Vol. 13, N. 4. P. 1000. doi: 10.3390/life13041000

[141]

Álvarez-Zaballos S, Martínez-Sellés M. Angiotensin-converting enzyme and heart failure. Front Biosci (Landmark Ed). 2023;28(7):150. doi: 10.31083/j.fbl2807150

[142]

Álvarez-Zaballos S., Martínez-Sellés M. Angiotensin-converting enzyme and heart failure // Front Biosci (Landmark Ed). 2023. Vol. 28, N. 7. P. 150. doi: 10.31083/j.fbl2807150

[143]

Nishiya D, Enomoto S, Omura T, et al. The long-acting Ca2+-channel blocker azelnidipine prevents left ventricular remodeling after myocardial infarction. J Pharmacol Sci. 2007;103(4):391–397. doi: 10.1254/jphs.fp0061139

[144]

Nishiya D., Enomoto S., Omura T., et al. The long-acting Ca2+-channel blocker azelnidipine prevents left ventricular remodeling after myocardial infarction // J Pharmacol Sci. 2007. Vol. 103, N. 4. P. 391–397. doi: 10.1254/jphs.fp0061139

[145]

Spasov AA, Vassiliev PM, Lenskaya KV, et al. Hypoglycemic potential of cyclic guanidine derivatives. Pure and Applied Chemistry. 2017;89(8):1007–1016. doi: 10.1515/pac-2016-1024

[146]

Spasov A.A., Vassiliev P.M., Lenskaya K.V., et al. Hypoglycemic potential of cyclic guanidine derivatives // Pure and Applied Chemistry. 2017. Vol. 89, N. 8. P. 1007–1016. doi: 10.1515/pac-2016-1024

[147]

Huang Yl, Xu Xz, Liu J, et al. Effects of new hypoglycemic drugs on cardiac remodeling: a systematic review and network meta-analysis. BMC Cardiovasc Disord .2023;23(1):293. doi: 10.1186/s12872-023-03324-6

[148]

Huang Yl, Xu Xz, Liu J, et al. Effects of new hypoglycemic drugs on cardiac remodeling: a systematic review and network meta-analysis. BMC Cardiovasc Disord. 2023;23(1):293. doi: 10.1186/s12872-023-03324-6

RIGHTS & PERMISSIONS

ECO-vector LLC

AI Summary AI Mindmap
PDF (1299KB)

228

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/