Antidepressant effect of new coumarin derivatives
Bakhodir B. Daliev , Dmitrii I. Klimenko , Inessa V. Karpova , Leonid V. Myznikov , Evgenii R. Bychkov , Andrey A. Lebedev , Petr D. Shabanov
Reviews on Clinical Pharmacology and Drug Therapy ›› 2024, Vol. 22 ›› Issue (2) : 163 -170.
Antidepressant effect of new coumarin derivatives
BACKGROUND: The incidence of bipolar disorder is increasing worldwide. The search for new compounds with antidepressant activity and milder adverse drug reactions is an urgent task of modern psychopharmacology.
AIM: This study aimed to analyze the effect of new neuroactive coumarin derivatives on the level of depressive behavior and monoamine metabolism in the brain structures of rats.
MATERIALS AND METHODS: The antidepressant effects of LVM-091, LVM-099, LVM-S144, and IEM-2886 were evaluated in rats subjected to the Porsolt forced swimming test and the metabolism of monoamines in brain structures (LVM-099) using high-performance liquid chromatography.
RESULTS: LVM-091, LVM-099, LVM-S144, and IEM-2886, synthesized from coumarin, decreased the immobilization time of the experimental rats in the Porsolt forced swimming test, indicating the antidepressant effect of these substances. The administration of LVM-099 at a dose of 10 mg/kg increased the level of homovanillic acid and the homovanillic acid-to-dopamine ratio in the nucleus accumbens. LVM-099 also increased 5-hydroxyindoleacetic acid levels and the 5-hydroxyindoleacetic acid-to-serotonin ratio in the nucleus accumbens. In the amygdala, the levels of norepinephrine, dopamine, serotonin, and their metabolites did not change after LVM-099 administration.
CONCLUSIONS: New coumarin derivatives exert antidepressant effects and increase the metabolism of dopamine and serotonin in rat nucleus accumbens, which can be used in the development of new highly effective antidepressants.
coumarin / depression / dopamine / serotonin / neurotropic effect
| [1] |
Wong M-L, Licinio J. Research and treatment approaches to depression. Nat Rev Neurosci. 2001;2(5):343–351. doi: 10.1038/35072566 |
| [2] |
Wong M.-L., Licinio J. Research and treatment approaches to depression // Nat Rev Neurosci. 2001. Vol. 2, N 5. P. 343–351. doi: 10.1038/35072566 |
| [3] |
Wang X, Zhou H, Wang X, et al. Design, synthesis, and in vivo and in silico evaluation of coumarin derivatives with potential antidepressant effects. Molecules. 2021;26(18):5556. doi: 10.3390/molecules26185556 |
| [4] |
Wang X., Zhou H., Wang X., et al. Design, synthesis, and in vivo and in silico evaluation of coumarin derivatives with potential antidepressant effects // Molecules. 2021. Vol. 26, N 18. ID 5556. doi: 10.3390/molecules26185556 |
| [5] |
Fournier JC, DeRubeis RJ, Hollon SD, et al. Antidepressant drug effects and depression severity: a patient-level meta-analysis. JAMA. 2010;303(1):47–53. doi: 10.1001/jama.2009.1943 |
| [6] |
Fournier J.C., DeRubeis R.J., Hollon S.D., et al. Antidepressant drug effects and depression severity: a patient-level meta-analysis // JAMA. 2010. Vol. 303, N 1. P. 47–53. doi: 10.1001/jama.2009.1943 |
| [7] |
Nestler EJ, Barrot M, DiLeone RJ, et al. Neurobiology of depression. Neuron. 2002;34(1):13–25. doi: 10.1016/S0896-6273(02)00653-0 |
| [8] |
Nestler E.J., Barrot M., DiLeone R.J., et al. Neurobiology of depression // Neuron. 2002. Vol. 34, N 1. P. 13–25. doi: 10.1016/S0896-6273(02)00653-0 |
| [9] |
Sleath B, Shih Y-CT. Sociological influences on antidepressant prescribing. Soc Sci Med. 2003;56(6):1335–1344. doi: 10.1016/S0277-9536(02)00132-6 |
| [10] |
Sleath B., Shih Y.-C.T. Sociological influences on antidepressant prescribing // Soc Sci Med. 2003. Vol. 56, N 6. P. 1335–1344. doi: 10.1016/S0277-9536(02)00132-6 |
| [11] |
D’Aquila PS, Collu M, Gessa GL, Serra G. The role of dopamine in the mechanism of action of antidepressant drugs. Eur J Pharmacol. 2000;405(1–3):365–373. doi: 10.1016/S0014-2999(00)00566-5. |
| [12] |
D’Aquila P.S., Collu M., Gessa G.L., Serra G. The role of dopamine in the mechanism of action of antidepressant drugs // Eur J Pharmacol. 2000. Vol. 405, N 1–3. P. 365–373. doi: 10.1016/S0014-2999(00)00566-5. |
| [13] |
Bychkov ER, Lebedev AA, Efimov NS, et al. Features of the involvement of the dopamine and serotonin brain systems in positive and negative emotional states in rats. Reviews on Clinical Pharmacology and Drug Therapy. 2020;18(2):123–130. EDN: XHZFPD doi: 10.17816/RCF182123-130 |
| [14] |
Бычков Е.Р., Лебедев А.А., Ефимов Н.С., и др. Особенности вовлечения дофаминергической и серотонинергической систем мозга в положительные и отрицательные эмоциональные состояния у крыс // Обзоры по клинической фармакологии и лекарственной терапии. 2020. Т. 18, № 2. С. 123–130. EDN: XHZFPD doi: 10.17816/RCF182123-130 |
| [15] |
Capra JC, Cunha MP, Machado DG, et al. Antidepressant-like effect of scopoletin, a coumarin isolated from Polygala sabulosa (Polygalaceae) in mice: evidence for the involvement of monoaminergic systems. Eur J Pharmacol. 2010;643(2–3):232–238. doi: 10.1016/j.ejphar.2010.06.043 |
| [16] |
Capra J.C., Cunha M.P., Machado D.G., et al. Antidepressant-like effect of scopoletin, a coumarin isolated from Polygala sabulosa (Polygalaceae) in mice: evidence for the involvement of monoaminergic systems // Eur J Pharmacol. 2010. Vol. 643, N 2–3. P. 232–238. doi: 10.1016/j.ejphar.2010.06.043 |
| [17] |
Xu Q, Pan Y, Yi L-T, et al. Antidepressant-like effects of psoralen isolated from the seeds of Psoralea corylifolia in the mouse forced swimming test. Biological Pharm Bull. 2008;31(6):1109–1114. doi: 10.1248/bpb.31.1109 |
| [18] |
Xu Q., Pan Y., Yi L.-T., et al. Antidepressant-like effects of psoralen isolated from the seeds of Psoralea corylifolia in the mouse forced swimming test // Biological Pharm Bull. 2008. Vol. 31, N 6. P. 1109–1114. doi: 10.1248/bpb.31.1109 |
| [19] |
Sashidhara KV, Kumar A, Chatterjee M, et al. Discovery and synthesis of novel 3-phenylcoumarin derivatives as antidepressant agents. Bioorg Med Chem Lett. 2011;21(7):1937–1941. doi: 10.1016/j.bmcl.2011.02.040 |
| [20] |
Sashidhara K.V., Kumar A., Chatterjee M., et al. Discovery and synthesis of novel 3-phenylcoumarin derivatives as antidepressant agents // Bioorg Med Chem Lett. 2011. Vol. 21, N 7. P. 1937–1941. doi: 10.1016/j.bmcl.2011.02.040 |
| [21] |
Skalicka-Woźniak K, Orhan IE, Cordell GA, et al. Implication of coumarins towards central nervous system disorders. Pharmacol Res. 2016;103:188–203. doi: 10.1016/j.phrs.2015.11.023 |
| [22] |
Skalicka-Woźniak K., Orhan I.E., Cordell G.A., et al. Implication of coumarins towards central nervous system disorders // Pharmacol Res. 2016. Vol. 103. P. 188–203. doi: 10.1016/j.phrs.2015.11.023 |
| [23] |
Zaugg J, Eickmeier E, Rueda DC, et al. HPLC-based activity profiling of Angelica pubescens roots for new positive GABAA receptor modulators in Xenopus oocytes. Fitoterapia. 2011;82(3):434–440. doi: 10.1016/j.fitote.2010.12.001 |
| [24] |
Zaugg J., Eickmeier E., Rueda D.C., et al. HPLC-based activity profiling of Angelica pubescens roots for new positive GABAA receptor modulators in Xenopus oocytes // Fitoterapia. 2011. Vol. 82, N 3. P. 434–440. doi: 10.1016/j.fitote.2010.12.001 |
| [25] |
Kashirin AO, Polukeev VA, Pshenichnaya AG, et al. Behavioral effects of new compounds based on coumarin in rats. Reviews on Clinical Pharmacology and Drug Therapy. 2020;18(1):37–42. EDN: QYXLQE doi: 10.7816/RCF18137-42 |
| [26] |
Каширин А.О., Полукеев В.А., Пшеничная А.Г., и др. Поведенческие эффекты новых соединений на основе кумарина у крыс // Обзоры по клинической фармакологии и лекарственной терапии. 2020. Т. 18, № 1. С. 37–42. EDN: QYXLQE doi: 10.7816/RCF18137-42 |
| [27] |
Daliev BB, Bychkov ER, Myznikov LV, et al. Anticompulsive effects of novel derivatives of coumarin in rats. Reviews on Clinical Pharmacology and Drug Therapy. 2021;19(3):339–344. EDN: OJYYKN doi: 10.17816/RCF193339-344 |
| [28] |
Далиев Б.Б., Бычков Е.Р., Мызников Л.В., и др. Антикомпульсивные эффекты новых производных кумарина у крыс // Обзоры по клинической фармакологии и лекарственной терапии. 2021. Т. 19, № 3. C. 339–344. EDN: OJYYKN doi: 10.17816/RCF193339-344 |
| [29] |
Kraeuter AK, Guest PC, Sarnyai Z. The forced swim test for depression-like behavior in rodents. In: Guest PC, editor. Pre-clinical models: Techniques and protocols. New York: Humana Press; 2019. Vol. 1916. P. 75–80. doi: 10.1007/978-1-4939-8994-2_5 |
| [30] |
Kraeuter A.K., Guest P.C., Sarnyai Z. The forced swim test for depression-like behavior in rodents. В кн.: Pre-clinical models: Techniques and protocols / P.C. Guest, editor. New York: Humana Press, 2019. Vol. 1916. P. 75–80. doi: 10.1007/978-1-4939-8994-2_5 |
| [31] |
Bayassi-Jakowicka M, Lietzau G, Czuba E, et al. Neuroplasticity and multilevel system of connections determine the integrative role of nucleus accumbens in the brain reward system. Int J Mol Sci. 2021;22(18):9806. doi: 10.3390/ijms22189806 |
| [32] |
Bayassi-Jakowicka M., Lietzau G., Czuba E., et al. Neuroplasticity and multilevel system of connections determine the integrative role of nucleus accumbens in the brain reward system // Int J Mol Sci. 2021. Vol. 22, N 18. ID 9806. doi: 10.3390/ijms22189806 |
| [33] |
Cathala A, Devroye C, Maitre M, et al. Serotonin2C receptors modulate dopamine transmission in the nucleus accumbens independently of dopamine release: behavioral, neurochemical and molecular studies with cocaine. Addict Biol. 2015;20(3):445–457. doi: 10.1111/adb.12137 |
| [34] |
Cathala A., Devroye C., Maitre M., et al. Serotonin2C receptors modulate dopamine transmission in the nucleus accumbens independently of dopamine release: behavioral, neurochemical and molecular studies with cocaine // Addict Biol. 2015. Vol. 20, N 3. P. 445–457. doi: 10.1111/adb.12137 |
| [35] |
Meredith GE. The synaptic framework for chemical signaling in nucleus accumbens. Ann N Y Acad Sci. 1999;877(1):140–156. doi: 10.1111/j.1749-6632.1999.tb09266.x |
| [36] |
Meredith G.E. The synaptic framework for chemical signaling in nucleus accumbens // Ann N Y Acad Sci. 1999. Vol. 877, N 1. P. 140–156. doi: 10.1111/j.1749-6632.1999.tb09266.x |
| [37] |
Goldstein LE, Rasmusson AM, Bunney BS, Roth RH. Role of the amygdala in the coordination of behavioral, neuroendocrine, and prefrontal cortical monoamine responses to psychological stress in the rat. J Neurosci. 1996;16(15):4787–4798. doi: 10.1523/JNEUROSCI.16-15-04787.1996 |
| [38] |
Goldstein L.E., Rasmusson A.M., Bunney B.S., Roth R.H. Role of the amygdala in the coordination of behavioral, neuroendocrine, and prefrontal cortical monoamine responses to psychological stress in the rat // J Neurosci. 1996. Vol. 16, N 15. P. 4787–4798. doi: 10.1523/JNEUROSCI.16-15-04787.1996 |
| [39] |
Karolewicz B, Klimek V, Zhu H, et al. Effects of depression, cigarette smoking, and age on monoamine oxidase B in amygdaloid nuclei. Brain Res. 2005;1043(1–2):57–64. doi: 10.1016/j.brainres.2005.02.043 |
| [40] |
Karolewicz B., Klimek V., Zhu H., et al. Effects of depression, cigarette smoking, and age on monoamine oxidase B in amygdaloid nuclei // Brain Res. 2005. Vol. 1043, N 1–2. P. 57–64. doi: 10.1016/j.brainres.2005.02.043 |
| [41] |
Micale V, Arezzi A, Rampello L, Drago F. Melatonin affects the immobility time of rats in the forced swim test: the role of serotonin neurotransmission. Eur Neuropsychopharmacol. 2006;16(7):538–545. doi: 10.1016/j.euroneuro.2006.01.005 |
| [42] |
Micale V., Arezzi A., Rampello L., Drago F. Melatonin affects the immobility time of rats in the forced swim test: the role of serotonin neurotransmission // Eur Neuropsychopharmacol. 2006. Vol. 16, N 7. P. 538–545. doi: 10.1016/j.euroneuro.2006.01.005 |
| [43] |
Borsini F. Role of the serotonergic system in the forced swimming test. Neurosci Biobehav Rev. 1995;19(3):377–395. doi: 10.1016/0149-7634(94)00050-B |
| [44] |
Borsini F. Role of the serotonergic system in the forced swimming test // Neurosci Biobehav Rev. 1995. Vol. 19, N 3. P. 377–395. doi: 10.1016/0149-7634(94)00050-B |
ECO-vector LLC
/
| 〈 |
|
〉 |