Role of key endocannabinoids and their receptors in breast cancer

Mikhail G. Akimov , Polina V. Dudina , Tatiana V. Vyunova , Allan V. Kalueff , Natalia M. Gretskaya , Vladimir V. Bezuglov

Reviews on Clinical Pharmacology and Drug Therapy ›› 2024, Vol. 22 ›› Issue (1) : 41 -51.

PDF (962KB)
Reviews on Clinical Pharmacology and Drug Therapy ›› 2024, Vol. 22 ›› Issue (1) : 41 -51. DOI: 10.17816/RCF623144
Reviews
review-article

Role of key endocannabinoids and their receptors in breast cancer

Author information +
History +
PDF (962KB)

Abstract

Breast cancer stands as the leading cause of cancer-related deaths among women worldwide. Endocannabinoids and their exogenous analogs, e.g., tetrahydrocannabinol, exhibit antitumor effects in various animal models of cancer. However, several studies have shown that under certain conditions, treatment with cannabinoids can stimulate the proliferation of cancer cells in vitro and disrupt the immune system’s involvement in suppressing tumors. Additionally, conflicting reports exist regarding the antitumor role of endocannabinoid system in cancer. This review aims to consider the main mechanisms of action of key ligands and receptors of the endocannabinoid system within the context of breast cancer.

Keywords

breast cancer / endocannabinoids / lysophosphatidylinositol / anandamide

Cite this article

Download citation ▾
Mikhail G. Akimov, Polina V. Dudina, Tatiana V. Vyunova, Allan V. Kalueff, Natalia M. Gretskaya, Vladimir V. Bezuglov. Role of key endocannabinoids and their receptors in breast cancer. Reviews on Clinical Pharmacology and Drug Therapy, 2024, 22(1): 41-51 DOI:10.17816/RCF623144

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Lord SJ, Kiely BE, Pearson SA, et al. Metastatic breast cancer incidence, site and survival in Australia, 2001–2016: a population-based health record linkage study protocol. BMJ Open. 2019;9(2): e026414. doi:10.1136/bmjopen-2018-026414

[2]

Lord S.J., Kiely B.E., Pearson S.A., et al. Metastatic breast cancer incidence, site and survival in Australia, 2001–2016: a population-based health record linkage study protocol // BMJ Open. 2019. Vol. 9, N. 2. P. e026414. doi: 10.1136/bmjopen-2018-026414

[3]

Sarfaraz S, Adhami VM, Syed DN, Afaq F, Mukhtar H. Cannabinoids for cancer treatment: progress and promise. Cancer Res. 2008;68(2):339–342. doi: 10.1158/0008-5472.CAN-07-2785

[4]

Sarfaraz S., Adhami V.M., Syed D.N., et al. Cannabinoids for cancer treatment: progress and promise // Cancer Res. 2008. Vol. 68, N. 2. P. 339–342. doi: 10.1158/0008-5472.CAN-07-2785

[5]

Buczynski MW, Parsons LH. Quantification of brain endocannabinoid levels: methods, interpretations and pitfalls. Br J Pharmacol. 2010;160(3):423–442. doi: 10.1111/j.1476-5381.2010.00787.x

[6]

Buczynski M.W., Parsons L.H. Quantification of brain endocannabinoid levels: methods, interpretations and pitfalls // Br J Pharmacol. 2010. Vol. 160, N. 3. P. 423–442. doi: 10.1111/j.1476-5381.2010.00787.x

[7]

Nomura DK, Long JZ, Niessen S, et al. Monoacylglycerol lipase regulates a fatty acid network that promotes cancer pathogenesis. Cell. 2010;140(1):49–61. doi: 10.1016/j.cell.2009.11.027

[8]

Nomura D.K., Long J.Z., Niessen S., et al. Monoacylglycerol lipase regulates a fatty acid network that promotes cancer pathogenesis // Cell. 2010. Vol. 140, N. 1. P. 49–61. doi: 10.1016/j.cell.2009.11.027

[9]

Mock ED, Gagestein B, van der Stelt M. Anandamide and other N-acylethanolamines: A class of signaling lipids with therapeutic opportunities. Prog Lipid Res. 2023;89:101194. doi: 10.1016/j.plipres.2022.101194

[10]

Mock E.D., Gagestein B., van der Stelt M. Anandamide and other N-acylethanolamines: A class of signaling lipids with therapeutic opportunities // Prog Lipid Res. 2023. Vol. 89. P. 101194. doi: 10.1016/j.plipres.2022.101194

[11]

Soethoudt M, Grether U, Fingerle J, et al. Cannabinoid CB2 receptor ligand profiling reveals biased signalling and off-target activity. Nat Commun. 2017;8(1):13958. doi: 10.1038/ncomms13958

[12]

Soethoudt M., Grether U., Fingerle J., et al. Cannabinoid CB2 receptor ligand profiling reveals biased signalling and off-target activity // Nat Commun. 2017. Vol. 8, N. 1. P. 13958. doi: 10.1038/ncomms13958

[13]

Lowe H, Toyang N, Steele B, et al. The endocannabinoid system: a potential target for the treatment of various diseases. Int J Mol Sci. 2021;22(17):9472. doi: 10.3390/ijms22179472

[14]

Lowe H., Toyang N., Steele B., et al. The endocannabinoid system: a potential target for the treatment of various diseases // Int J Mol Sci. 2021. Vol. 22, N. 17. P. 9472. doi: 10.3390/ijms22179472

[15]

Vinod KY, Hungund BL. Role of the endocannabinoid system in depression and suicide. Trends Pharmacol Sci. 2006;27(10):539–545. doi: 10.1016/j.tips.2006.08.006

[16]

Vinod K.Y., Hungund B.L. Role of the endocannabinoid system in depression and suicide // Trends Pharmacol Sci. 2006. Vol. 27, N. 10. P. 539–545. doi: 10.1016/j.tips.2006.08.006

[17]

Nagarkatti P, Pandey R, Rieder SA, et al. Cannabinoids as novel anti-inflammatory drugs. Future Med Chem. 2009;1(7):1333–1349. doi: 10.4155/fmc.09.93

[18]

Nagarkatti P., Pandey R., Rieder S.A., et al. Cannabinoids as novel anti-inflammatory drugs // Future Med Chem. 2009. Vol. 1, N. 7. P. 1333–1349. doi: 10.4155/fmc.09.93

[19]

Ramer R, Wittig F, Hinz B. The endocannabinoid system as a pharmacological target for new cancer therapies. Cancers (Basel). 2021;13(22):5701. doi: 10.3390/cancers13225701

[20]

Ramer R., Wittig F., Hinz B. The endocannabinoid system as a pharmacological target for new cancer therapies // Cancers (Basel). 2021. Vol. 13, N. 22. P. 5701. doi: 10.3390/cancers13225701

[21]

Lu HC, Mackie K. Review of the endocannabinoid system. Biol Psychiatry Cogn Neurosci Neuroimaging. 2021;6(6):607–615. doi: 10.1016/j.bpsc.2020.07.016

[22]

Lu H.C., Mackie K. Review of the endocannabinoid system // Biol Psychiatry Cogn Neurosci Neuroimaging. 2021. Vol. 6, N. 6. P. 607–615. doi: 10.1016/j.bpsc.2020.07.016

[23]

Basavarajappa BS. Critical enzymes involved in endocannabinoid metabolism. Protein and peptide letters. 2007;14(3):237–246. doi: 10.2174/092986607780090829

[24]

Basavarajappa B.S. Critical enzymes involved in endocannabinoid metabolism // Protein Pept Lett. 2007. Vol. 14, N. 3. P. 237–246. doi: 10.2174/092986607780090829

[25]

Nyilas R, Dudok B, Urbán GM, et al. Enzymatic machinery for endocannabinoid biosynthesis associated with calcium stores in glutamatergic axon terminals. J Neurosci. 2008;28(5):1058–1063. doi: 10.1523/JNEUROSCI.5102-07.2008

[26]

Nyilas R., Dudok B., Urbán G.M., et al. Enzymatic machinery for endocannabinoid biosynthesis associated with calcium stores in glutamatergic axon terminals // J Neurosci. 2008. Vol. 28, N. 5. P. 1058–1063. doi: 10.1523/JNEUROSCI.5102-07.2008

[27]

van der Stelt M, Trevisani M, Vellani V, et al. Anandamide acts as an intracellular messenger amplifying Ca2+ influx via TRPV1 channels. EMBO J. 2005;24(17):3026–3037. doi: 10.1038/sj.emboj.7600784

[28]

van der Stelt M., Trevisani M., Vellani V., et al. Anandamide acts as an intracellular messenger amplifying Ca2+ influx via TRPV1 channels // EMBO J. 2005. Vol. 24, N. 17. P. 3026–3037. doi: 10.1038/sj.emboj.7600784

[29]

Di Marzo V, Fontana A, Cadas H, et al. Formation and inactivation of endogenous cannabinoid anandamide in central neurons. Nature. 1994;372(6507):686–691. doi: 10.1038/372686a0

[30]

Di Marzo V., Fontana A., Cadas H., et al. Formation and inactivation of endogenous cannabinoid anandamide in central neurons: 6507 // Nature. 1994. Vol. 372, N. 6507. P. 686–691. doi: 10.1038/372686a0

[31]

Sugiura T, Kondo S, Sukagawa A, et al. 2-Arachidonoylgylcerol: A possible endogenous cannabinoid receptor ligand in brain. Biochem Biophys Res Commun. 1995;215(1):89–97. doi: 10.1006/bbrc.1995.2437

[32]

Sugiura T., Kondo S., Sukagawa A., et al. 2-Arachidonoylgylcerol: A possible endogenous cannabinoid receptor ligand in brain // Biochem Biophys Res Commun. 1995. Vol. 215, N. 1. P. 89–97. doi: 10.1006/bbrc.1995.2437

[33]

De Petrocellis L, Melck D, Bisogno T, Di Marzo V. Endocannabinoids and fatty acid amides in cancer, inflammation and related disorders. Chemistry and Physics of Lipids. 2000;108(1–2):191–209. doi: 10.1016/S0009-3084(00)00196-1

[34]

De Petrocellis L., Melck D., Bisogno T., et al. Endocannabinoids and fatty acid amides in cancer, inflammation and related disorders // Chem Phys Lipids. 2000. Vol. 108, N. 1–2. P. 191–209. doi: 10.1016/S0009-3084(00)00196-1

[35]

Almeida CF, Teixeira N, Correia-da-Silva G, Amaral C. Cannabinoids in breast cancer: differential susceptibility according to subtype. Molecules. 2021;27(1):156. doi: 10.3390/molecules27010156

[36]

Almeida C.F., Teixeira N., Correia-da-Silva G., et al. Cannabinoids in breast cancer: differential susceptibility according to subtype // Molecules. 2021. Vol. 27, N. 1. P. 156. doi: 10.3390/molecules27010156

[37]

Tate JG, Bamford S, Jubb HC, et al. COSMIC: the catalogue of somatic mutations in cancer. Nucleic Acids Res. 2019;47(D1): D941–D947. doi: 10.1093/nar/gky1015

[38]

Tate J.G., Bamford S., Jubb H.C., et al. COSMIC: The catalogue of somatic mutations in cancer // Nucleic Acids Res. 2019. Vol. 47, N. D1. P. D941–D947. doi: 10.1093/nar/gky1015

[39]

Qamri Z, Preet A, Nasser MW, et al. Synthetic cannabinoid receptor agonists inhibit tumor growth and metastasis of breast cancer. Mol Cancer Ther. 2009;8(11):3117–3129. doi: 10.1158/1535-7163.MCT-09-0448

[40]

Qamri Z., Preet A., Nasser M.W., et al. Synthetic cannabinoid receptor agonists inhibit tumor growth and metastasis of breast cancer // Mol Cancer Ther. 2009. Vol. 8, N. 11. P. 3117–3129. doi: 10.1158/1535-7163.MCT-09-0448

[41]

Oka S, Kimura S, Toshida T, Ota R, Yamashita A, Sugiura T. Lysophosphatidylinositol induces rapid phosphorylation of p38 mitogen-activated protein kinase and activating transcription factor 2 in HEK293 cells expressing GPR55 and IM-9 lymphoblastoid cells. J Biochem. 2010;147(5):671–678. doi: 10.1093/jb/mvp208

[42]

Oka S., Kimura S., Toshida T., et al. Lysophosphatidylinositol induces rapid phosphorylation of p38 mitogen-activated protein kinase and activating transcription factor 2 in HEK293 cells expressing GPR55 and IM-9 lymphoblastoid cells // J Biochem. 2010. Vol. 147, N. 5. P. 671–678. doi: 10.1093/jb/mvp208

[43]

Lauckner JE, Jensen JB, Chen HY, et al. GPR55 is a cannabinoid receptor that increases intracellular calcium and inhibits M current. Proc Natl Acad Sci USA. 2008;105(7):2699–2704. doi: 10.1073/pnas.0711278105

[44]

Lauckner J.E., Jensen J.B., Chen H.Y., et al. GPR55 is a cannabinoid receptor that increases intracellular calcium and inhibits M current // Proc Natl Acad Sci U.S.A. 2008. Vol. 105, N. 7. P. 2699–2704. doi: 10.1073/pnas.0711278105

[45]

Ford LA, Roelofs AJ, Anavi-Goffer S, et al. A role for L-alpha-lysophosphatidylinositol and GPR55 in the modulation of migration, orientation and polarization of human breast cancer cells. Br J Pharmacol. 2010;160(3):762–771. doi: 10.1111/j.1476-5381.2010.00743.x

[46]

Ford L.A., Roelofs A.J., Anavi-Goffer S., et al. A role for L-alpha-lysophosphatidylinositol and GPR55 in the modulation of migration, orientation and polarization of human breast cancer cells // Br J Pharmacol. 2010. Vol. 160, N. 3. P. 762–771. doi: 10.1111/j.1476-5381.2010.00743.x

[47]

Andradas C, Blasco-Benito S, Castillo-Lluva S, et al. Activation of the orphan receptor GPR55 by lysophosphatidylinositol promotes metastasis in triple-negative breast cancer. Oncotarget. 2016;7(30):47565–47575. doi: 10.18632/oncotarget.10206

[48]

Andradas C., Blasco-Benito S., Castillo-Lluva S., et al. Activation of the orphan receptor GPR55 by lysophosphatidylinositol promotes metastasis in triple-negative breast cancer // Oncotarget. 2016. Vol. 7, N. 30. P. 47565–47575. doi: 10.18632/oncotarget.10206

[49]

Nasser MW, Qamri Z, Deol YS, et al. Crosstalk between chemokine receptor cxcr4 and cannabinoid receptor CB2 in modulating breast cancer growth and invasion. PLoS ONE. 2011;6(9):e23901. doi: 10.1371/journal.pone.0023901

[50]

Nasser M.W., Qamri Z., Deol Y.S., et al. Crosstalk between chemokine receptor CXCR4 and cannabinoid receptor CB2 in modulating breast cancer growth and invasion // Plos One. 2011. Vol. 6, N. 9. P. e23901. doi: 10.1371/journal.pone.0023901

[51]

Guzmán M. Cannabinoids: potential anticancer agents. Nat Rev Cancer. 2003;3(10):745–755. doi: 10.1038/nrc1188

[52]

Guzmán M. Cannabinoids: potential anticancer agents // Nat Rev Cancer. 2003. Vol. 3, N. 10. P. 745–755. doi: 10.1038/nrc1188

[53]

Laezza C, Pisanti S, Crescenzi E, Bifulco M. Anandamide inhibits Cdk2 and activates Chk1 leading to cell cycle arrest in human breast cancer cells. FEBS Lett. 2006;580(26):6076–6082. doi: 10.1016/j.febslet.2006.09.074

[54]

Laezza C., Pisanti S., Crescenzi E., et al. Anandamide inhibits Cdk2 and activates Chk1 leading to cell cycle arrest in human breast cancer cells // FEBS Lett. 2006. Vol. 580, N. 26. P. 6076–6082. doi: 10.1016/j.febslet.2006.09.074

[55]

Caffarel MM, Moreno-Bueno G, Cerutti C, et al. JunD is involved in the antiproliferative effect of Δ9-tetrahydrocannabinol on human breast cancer cells. Oncogene. 2008;27(37):5033–5044. doi: 10.1038/onc.2008.145

[56]

Caffarel M.M., Moreno-Bueno G., Cerutti C., et al. Jund is involved in the antiproliferative effect of Δ9-tetrahydrocannabinol on human breast cancer cells // Oncogene. 2008. Vol. 27, N. 37. P. 5033–5044. doi: 10.1038/onc.2008.145

[57]

Weitzman JB, Fiette L, Matsuo K, Yaniv M. Jund protects cells from p53-dependent senescence and apoptosis. molecular Cell. 2000;6(5):1109–1119. doi: 10.1016/S1097-2765(00)00109-X

[58]

Weitzman J.B., Fiette L., Matsuo K., et al. Jund protects cells from p53-dependent senescence and apoptosis // Mol Cell. 2000. Vol. 6, N. 5. P. 1109–1119. doi: 10.1016/S1097-2765(00)00109-X

[59]

Pérez-Gómez E, Andradas C, Blasco-Benito S, et al. Role of cannabinoid receptor CB2 in HER2 pro-oncogenic signaling in breast cancer. J Natl Cancer Inst. 2015;107(6):djv077. doi: 10.1093/jnci/djv077

[60]

Pérez-Gómez E., Andradas C., Blasco-Benito S., et al. Role of cannabinoid receptor CB2 in HER2 pro-oncogenic signaling in breast cancer // J Natl Cancer Inst. 2015. Vol. 107, N. 6. P. djv077. doi: 10.1093/jnci/djv077

[61]

Caffarel MM, Andradas C, Mira E, et al. Cannabinoids reduce ErbB2-driven breast cancer progression through Akt inhibition. Mol Cancer. 2010;9(1):196. doi: 10.1186/1476-4598-9-196

[62]

Caffarel M.M., Andradas C., Mira E., et al. Cannabinoids reduce ErbB2-driven breast cancer progression through Akt inhibition // Mol Cancer. 2010. Vol. 9, N. 1. P. 196. doi: 10.1186/1476-4598-9-196

[63]

Nithipatikom K, Gomez-Granados AD, Tang AT, et al. Cannabinoid receptor type 1 (CB1) activation inhibits small GTPase RhoA activity and regulates motility of prostate carcinoma cells. Endocrinology. 2012;153(1):29–41. doi: 10.1210/en.2011-1144

[64]

Nithipatikom K., Gomez-Granados A.D., Tang A.T., et al. Cannabinoid receptor type 1 (cb1) activation inhibits small GTPase RhoA activity and regulates motility of prostate carcinoma cells // Endocrinology. 2012. Vol. 153, N. 1. P. 29–41. doi: 10.1210/en.2011-1144

[65]

Porter AC, Sauer JM, Knierman MD, et al. Characterization of a novel endocannabinoid, virodhamine, with antagonist activity at the CB1 receptor. J Pharmacol Exp Ther. 2002;301(3):1020–1024. doi: 10.1124/jpet.301.3.1020

[66]

Porter A.C., Sauer J.M., Knierman M.D., et al. Characterization of a novel endocannabinoid, virodhamine, with antagonist activity at the CB1 receptor // J Pharmacol Exp Ther. 2002. Vol. 301, N. 3. P. 1020–1024. doi: 10.1124/jpet.301.3.1020

[67]

Benchama O, Tyukhtenko S, Malamas MS, et al. Inhibition of triple negative breast cancer-associated inflammation, tumor growth and brain colonization by targeting monoacylglycerol lipase. Sci Rep. 2022;12(1):5328. doi: 10.1038/s41598-022-09358-8

[68]

Benchama O., Tyukhtenko S., Malamas M.S., et al. Inhibition of triple negative breast cancer-associated inflammation, tumor growth and brain colonization by targeting monoacylglycerol lipase // Sci Rep. 2022. Vol. 12, N. 1. P. 5328. doi: 10.1038/s41598-022-09358-8

[69]

Deng H, Li W. Monoacylglycerol lipase inhibitors: modulators for lipid metabolism in cancer malignancy, neurological and metabolic disorders. Acta Pharm Sin B. 2020;10(4):582–602. doi: 10.1016/j.apsb.2019.10.006

[70]

Deng H., Li W. Monoacylglycerol lipase inhibitors: modulators for lipid metabolism in cancer malignancy, neurological and metabolic disorders // Acta Pharm Sin B. 2020. Vol. 10, N. 4. P. 582–602. doi: 10.1016/j.apsb.2019.10.006

[71]

Elbaz M, Ahirwar D, Ravi J, et al. Novel role of cannabinoid receptor 2 in inhibiting EGF/EGFR and IGF-I/IGF-IR pathways in breast cancer. Oncotarget. 2017;8(18):29668–29678. doi: 10.18632/oncotarget.9408

[72]

Elbaz M., Ahirwar D., Ravi J., et al. Novel role of cannabinoid receptor 2 in inhibiting EGF/EGFR and IGF-I/IGF-IR pathways in breast cancer // Oncotarget. 2017. Vol. 8, N. 18. P. 29668–29678. doi: 10.18632/oncotarget.9408

[73]

Bisogno T, Katayama K, Melck D, et al. Biosynthesis and degradation of bioactive fatty acid amides in human breast cancer and rat pheochromocytoma cells. Eur J Biochem. 1998;254(3):634–642. doi: 10.1046/j.1432-1327.1998.2540634.x

[74]

Bisogno T., Katayama K., Melck D., et al. Biosynthesis and degradation of bioactive fatty acid amides in human breast cancer and rat pheochromocytoma cells // Eur J Biochem. 1998. Vol. 254, N. 3. P. 634–642. doi: 10.1046/j.1432-1327.1998.2540634.x

[75]

Gustafsson SB, Palmqvist R, Henriksson ML, et al. High tumour cannabinoid CB1 receptor immunoreactivity negatively impacts disease-specific survival in stage ii microsatellite stable colorectal cancer. PLOS One. 2011;6(8):e23003. doi: 10.1371/journal.pone.0023003

[76]

Gustafsson S.B., Palmqvist R., Henriksson M.L., et al. High tumour cannabinoid CB1 receptor immunoreactivity negatively impacts disease-specific survival in stage ii microsatellite stable colorectal cancer // PLOS One. 2011. Vol. 6, N. 8. P. e23003. doi: 10.1371/journal.pone.0023003

[77]

Portella G, Laezza C, Laccetti P, et al. Inhibitory effects of cannabinoid CB1 receptor stimulation on tumor growth and metastatic spreading: actions on signals involved in angiogenesis and metastasis. FASEB J. 2003;17(12):1771–1773. doi: 10.1096/fj.02-1129fje

[78]

Portella G., Laezza C., Laccetti P., et al. Inhibitory effects of cannabinoid CB1 receptor stimulation on tumor growth and metastatic spreading: actions on signals involved in angiogenesis and metastasis // FASEB J. 2003. Vol. 17, N. 12. P. 1771–1773. doi: 10.1096/fj.02-1129fje

[79]

Falasca M, Corda D. Elevated levels and mitogenic activity of lysophosphatidylinositol in k-ras-transformed epithelial cells. Eur J Biochem. 1994;221(1):383–389. doi: 10.1111/j.1432-1033.1994.tb18750.x

[80]

Falasca M., Corda D. Elevated levels and mitogenic activity of lysophosphatidylinositol in k-ras-transformed epithelial cells // Eur J Biochem. 1994. Vol. 221, N. 1. P. 383–389. doi: 10.1111/j.1432-1033.1994.tb18750.x

[81]

Falasca M, Iurisci C, Carvelli A, et al. Release of the mitogen lysophosphatidylinositol from H-Ras-transformed fibroblasts; a possible mechanism of autocrine control of cell proliferation. Oncogene. 1998;16(18):2357–2365. doi: 10.1038/sj.onc.1201758

[82]

Falasca M., Iurisci C., Carvelli A., et al. Release of the mitogen lysophosphatidylinositol from H-Ras-transformed fibroblasts; a possible mechanism of autocrine control of cell proliferation // Oncogene. 1998. Vol. 16, N. 18. P. 2357–2365. doi: 10.1038/sj.onc.1201758

[83]

Xiao Y, Chen Y, Kennedy AW, et al. Evaluation of plasma lysophospholipids for diagnostic significance using electrospray ionization mass spectrometry (ESI-MS) analyses. Ann NY Acad Sci. 2000;905(1):242–259. doi: 10.1111/j.1749-6632.2000.tb06554.x

[84]

Xiao Y., Chen Y., Kennedy A.W., et al. evaluation of plasma lysophospholipids for diagnostic significance using electrospray ionization mass spectrometry (ESI-MS) analyses // Ann N Y Acad Sci. 2000. Vol. 905, N. 1. P. 242–259. doi: 10.1111/j.1749-6632.2000.tb06554.x

[85]

Moreno E, Cavic M, Krivokuca A, et al. The endocannabinoid system as a target in cancer diseases: are we there yet? Frontiers in Pharmacology. 2019;10:339. doi: 10.3389/fphar.2019.00339

[86]

Moreno E., Cavic M., Krivokuca A., et al. The endocannabinoid system as a target in cancer diseases: are we there yet? // Front Pharmacol. 2019. Vol. 10. P. 339. doi: 10.3389/fphar.2019.00339

[87]

Zhou XL, Guo X, Song YP, et al. The LPI/GPR55 axis enhances human breast cancer cell migration via HBXIP and p-MLC signaling. Acta Pharmacol Sin. 2018;39(3):459–471. doi: 10.1038/aps.2017.157

[88]

Zhou X.L., Guo X., Song Y.P., et al. The LPI/GPR55 axis enhances human breast cancer cell migration via HBXIP and p-MLC signaling // Acta Pharmacol Sin. 2018. Vol. 39, N. 3. P. 459–471. doi: 10.1038/aps.2017.157

[89]

Alhouayek M, Masquelier J, Muccioli GG. Lysophosphatidylinositols, from cell membrane constituents to GPR55 ligands. Trends Pharmacol Sci. 2018;39(6):586–604. doi: 10.1016/j.tips.2018.02.011

[90]

Alhouayek M., Masquelier J., Muccioli G.G. Lysophosphatidylinositols, from cell membrane constituents to GPR55 ligands // Trends Pharmacol Sci. 2018. Vol. 39, N. 6. P. 586–604. doi: 10.1016/j.tips.2018.02.011

[91]

Navarro G, Varani K, Lillo A, et al. Pharmacological data of cannabidiol- and cannabigerol-type phytocannabinoids acting on cannabinoid CB1, CB2 and CB1/CB2 heteromer receptors. Pharmacol Res. 2020;159:104940. doi: 10.1016/j.phrs.2020.104940

[92]

Navarro G., Varani K., Lillo A., et al. Pharmacological data of cannabidiol- and cannabigerol-type phytocannabinoids acting on cannabinoid CB1, CB2 and CB1/CB2 heteromer receptors // Pharmacol Res. 2020. Vol. 159. P. 104940. doi: 10.1016/j.phrs.2020.104940

[93]

Balenga NAB, Aflaki E, Kargl J, et al. GPR55 regulates cannabinoid 2 receptor-mediated responses in human neutrophils. Cell Res. 2011;21(10):1452–1469. doi: 10.1038/cr.2011.60

[94]

Balenga N.A.B., Aflaki E., Kargl J., et al. GPR55 regulates cannabinoid 2 receptor-mediated responses in human neutrophils // Cell Res. 2011. Vol. 21, N. 10. P. 1452–1469. doi: 10.1038/cr.2011.60

[95]

Kargl J, Balenga N, Parzmair GP, et al. The cannabinoid receptor CB1 modulates the signaling properties of the lysophosphatidylinositol receptor GPR55. J Biol Chem. 2012;287(53):44234–44248. doi: 10.1074/jbc.M112.364109

[96]

Kargl J., Balenga N., Parzmair G.P., et al. The cannabinoid receptor CB1 modulates the signaling properties of the lysophosphatidylinositol receptor GPR55 // J Biol Chem. 2012. Vol. 287, N. 53. P. 44234–44248. doi: 10.1074/jbc.M112.364109

[97]

Anavi-Goffer S, Irving AJ, Ross RA. Modulation of l-α-lysophosphatidylinositol/GPR55 MAP kinase signalling by CB2 receptor agonists: identifying novel GPR55 inhibitors. J Basic Clin Physiol Pharmacol. 2016;27(3):303–310. doi: 10.1515/jbcpp-2015-0142

[98]

Anavi-Goffer S., Irving A.J., Ross R.A. Modulation of l-α-lysophosphatidylinositol/GPR55 MAP kinase signalling by CB2 receptor agonists: identifying novel GPR55 inhibitors // J Basic Clin Physiol Pharmacol. 2016. Vol. 27, N. 3. P. 303–310. doi: 10.1515/jbcpp-2015-0142

[99]

Anavi-Goffer S, Baillie G, Irving AJ, et al. Modulation of L-α-lysophosphatidylinositol/GPR55 mitogen-activated protein kinase (MAPK) signaling by cannabinoids. J Biol Chem. 2012;287(1):91–104. doi: 10.1074/jbc.M111.296020

[100]

Anavi-Goffer S., Baillie G., Irving A.J., et al. Modulation of L-α-lysophosphatidylinositol/GPR55 mitogen-activated protein kinase (MAPK) signaling by cannabinoids // J Biol Chem. 2012. Vol. 287, N. 1. P. 91–104. doi: 10.1074/jbc.M111.296020

[101]

Zhang J, Medina-Cleghorn D, Bernal-Mizrachi L, et al. The potential relevance of the endocannabinoid, 2-arachidonoylglycerol, in diffuse large B-cell lymphoma. Oncoscience. 2016;3(1):31–41. doi: 10.18632/oncoscience.289

[102]

Zhang J., Medina-Cleghorn D., Bernal-Mizrachi L., et al. The potential relevance of the endocannabinoid, 2-arachidonoylglycerol, in diffuse large B-cell lymphoma // Oncoscience. 2016. Vol. 3, N. 1. P. 31–41. doi: 10.18632/oncoscience.289

[103]

Sailler S, Schmitz K, Jäger E, et al. Regulation of circulating endocannabinoids associated with cancer and metastases in mice and humans. Oncoscience. 2014;1(4):272–282. doi: 10.18632/oncoscience.33

[104]

Sailler S., Schmitz K., Jäger E., et al. Regulation of circulating endocannabinoids associated with cancer and metastases in mice and humans // Oncoscience. 2014. Vol. 1, N. 4. P. 272–282. doi: 10.18632/oncoscience.33

[105]

Suchopár J, Laštůvka Z, Mašková S, et al. Endocannabinoids. Ceska Gynekol. 2021;86(6):414–420. doi: 10.48095/cccg2021414

[106]

Suchopár J., Laštůvka Z., Mašková S., et al. Endocannabinoids // Ceska Gynekol. 2021. Vol. 86, N. 6. P. 414–420. doi: 10.48095/cccg2021414

RIGHTS & PERMISSIONS

ECO-vector LLC

AI Summary AI Mindmap
PDF (962KB)

91

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/