Dynamics of gonadotropin and thienopyrimidine derivative TP03 effects on ovulation and ovarian steroidogenesis in Follimag-stimulated immature female rats

Kira V. Derkach , Andrey A. Bakhtyukov , Viktor N. Sorokoumov , Egor A. Didenko , Irina V. Romanova , Irina Yu. Morina , Ivan A. Lebedev , Lyubov V. Bayunova , Alexander O. Shpakov

Reviews on Clinical Pharmacology and Drug Therapy ›› 2024, Vol. 22 ›› Issue (1) : 53 -65.

PDF (2191KB)
Reviews on Clinical Pharmacology and Drug Therapy ›› 2024, Vol. 22 ›› Issue (1) : 53 -65. DOI: 10.17816/RCF622883
Original study articles
research-article

Dynamics of gonadotropin and thienopyrimidine derivative TP03 effects on ovulation and ovarian steroidogenesis in Follimag-stimulated immature female rats

Author information +
History +
PDF (2191KB)

Abstract

BACKGROUND: Gonadotropin preparations, particularly human chorionic gonadotropin (hCG), are commonly used to induce ovulation and treat reproductive disorders in women, albeit with associated side effects. Low-molecular-weight allosteric agonists of the luteinizing hormone receptor (LHR), such as thieno[2,3-d]pyrimidine derivatives, offer a potential alternative.

AIM: This study aims to compare the effects of thieno[2,3-d]pyrimidine TP03 and hCG on ovarian weight, corpus luteum formation, and plasma levels of estradiol, progesterone, and luteinizing hormone in immature female rats pre-treated with Follimag®. It also examines their impact on ovarian gene expression related to LHR and steroidogenesis.

MATERIALS AND METHODS: TP03 and hCG were administered 48 h after the Follimag® injection at a dose of 20 mg/kg (i.p.) and 15 IU/rat (s.c.), respectively. Parameters were assessed at 1, 2, 4, 8, 16, and 24 h after TP03 and hCG administration. Plasma hormone levels were measured via ELISA, and ovarian gene expression was analyzed using real-time PCR.

RESULTS: TP03 increased ovarian weight, progesterone levels in the blood, and expression of steroidogenic genes encoding the cholesterol-transporting protein StAR and the cytochromes CYP11A1 and CYP17A1. TP03 also stimulated corpus luteum formation (16–24 h after treatment). The temporal dynamics of its stimulating effects were similar to those of hCG, although their magnitude was slightly inferior to those of gonadotropin. TP03-induced decrease in blood estradiol levels and aromatase gene expression in the ovaries was also more moderate. Unlike hCG, which suppressed LHR gene expression 8 h after treatment, TP03 maintained a high LHR gene expression, preserving ovarian sensitivity to endogenous luteinizing hormone.

CONCLUSIONS: TP03 exhibits potential as an ovulation inducer with milder stimulating effects on ovarian steroidogenesis than hCG, which reduces the risks of developing ovarian hyperstimulation syndrome and resistance to gonadotropins.

Keywords

ovulation inducer / allosteric agonist / luteinizing hormone receptor / chorionic gonadotropin / ovarian steroidogenesis / progesterone / aromatase

Cite this article

Download citation ▾
Kira V. Derkach, Andrey A. Bakhtyukov, Viktor N. Sorokoumov, Egor A. Didenko, Irina V. Romanova, Irina Yu. Morina, Ivan A. Lebedev, Lyubov V. Bayunova, Alexander O. Shpakov. Dynamics of gonadotropin and thienopyrimidine derivative TP03 effects on ovulation and ovarian steroidogenesis in Follimag-stimulated immature female rats. Reviews on Clinical Pharmacology and Drug Therapy, 2024, 22(1): 53-65 DOI:10.17816/RCF622883

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Martinez F, Racca A, Rodríguez I, Polyzos NP. Ovarian stimulation for oocyte donation: a systematic review and meta-analysis. Hum Reprod Update. 2021;27(4):673–696. doi: 10.1093/humupd/dmab008

[2]

Martinez F., Racca A., Rodríguez I., Polyzos N.P. Ovarian stimulation for oocyte donation: a systematic review and meta-analysis // Hum Reprod Update. 2021. Vol. 27, N. 4. P. 673–696. doi: 10.1093/humupd/dmab008

[3]

Segaloff DL, Wang HY, Richards JS. Hormonal regulation of luteinizing hormone/chorionic gonadotropin receptor mRNA in rat ovarian cells during follicular development and luteinization. Mol Endocrinol. 1990;4(12):1856–1865. doi: 10.1210/mend-4-12-1856

[4]

Segaloff D.L., Wang H.Y., Richards J.S. Hormonal regulation of luteinizing hormone/chorionic gonadotropin receptor mRNA in rat ovarian cells during follicular development and luteinization // Mol Endocrinol. 1990. Vol. 4, N. 12. P. 1856–1865. doi: 10.1210/mend-4-12-1856

[5]

Menon B, Sinden J, Franzo-Romain M, et al. Regulation of LH receptor mRNA binding protein by miR-122 in rat ovaries. Endocrinology. 2013;154(12):4826–4834. doi: 10.1210/en.2013-1619

[6]

Menon B., Sinden J., Franzo-Romain M., et al. Regulation of LH receptor mRNA binding protein by miR-122 in rat ovaries // Endocrinology. 2013. Vol. 154, N. 12. P. 4826–4834. doi: 10.1210/en.2013–1619

[7]

Menon B, Gulappa T, Menon KM. miR-122 regulates LH receptor expression by activating sterol response element binding protein in rat ovaries. Endocrinology. 2015;156(9):3370–3380. doi: 10.1210/en.2015-1121

[8]

Menon B., Gulappa T., Menon K.M. miR-122 regulates LH receptor expression by activating sterol response element binding protein in rat ovaries // Endocrinology. 2015. Vol. 156, N. 9. P. 3370–3380. doi: 10.1210/en.2015-1121

[9]

Jiang X, Dias JA, He X. Structural biology of glycoprotein hormones and their receptors: insights to signaling. Mol Cell Endocrinol. 2014;382(1):424–451. doi: 10.1016/j.mce.2013.08.021

[10]

Jiang X., Dias J.A., He X. Structural biology of glycoprotein hormones and their receptors: insights to signaling // Mol Cell Endocrinol. 2014. Vol. 382, N. 1. P. 424–451. doi: 10.1016/j.mce.2013.08.021

[11]

Casarini L, Simoni M. Recent advances in understanding gonadotropin signaling. Fac Rev. 2021;10:41. doi: 10.12703/r/10-41

[12]

Casarini L., Simoni M. Recent advances in understanding gonadotropin signaling // Fac Rev. 2021. Vol. 10, P. 41. doi: 10.12703/r/10-41

[13]

Namavar Jahromi B, Parsanezhad ME, Shomali Z, et al. Ovarian hyperstimulation syndrome: a narrative review of its pathophysiology, risk factors, prevention, classification, and management. Iran J Med Sci. 2018;43(3):248–260.

[14]

Namavar Jahromi B., Parsanezhad M.E., et al. Ovarian hyperstimulation syndrome: a narrative review of its pathophysiology, risk factors, prevention, classification, and management // Iran J Med Sci. 2018. Vol. 43, N. 3. P. 248–260.

[15]

Shen X, Yang Q, Li L, Lu W. Clinical pregnancy and incidence of ovarian hyperstimulation syndrome in high ovarian responders receiving different doses of hCG supplementation in a GnRH-agonist trigger protocol. Evid Based Complement Alternat Med. 2021;2021:2180933. doi: 10.1155/2021/2180933

[16]

Shen X., Yang Q., Li L., Lu W. Clinical pregnancy and incidence of ovarian hyperstimulation syndrome in high ovarian responders receiving different doses of hCG supplementation in a GnRH-agonist trigger protocol // Evid Based Complement Alternat Med. 2021. Vol. 2021, P. 2180933. doi: 10.1155/2021/2180933

[17]

Cerrillo M, Rodríguez S, Mayoral M, et al. Differential regulation of VEGF after final oocyte maturation with GnRH agonist versus hCG: a rationale for OHSS reduction. Fertil Steril. 2009;91(4 Suppl): 1526–1528. doi: 10.1016/j.fertnstert.2008.08.118

[18]

Cerrillo M., Rodríguez S., Mayoral M., et al. Differential regulation of VEGF after final oocyte maturation with GnRH agonist versus hCG: a rationale for OHSS reduction // Fertil Steril. 2009. Vol. 91, Suppl. 4. P. 1526–1528. doi: 10.1016/j.fertnstert.2008.08.118

[19]

Miller I, Chuderland D, Ron-El R, et al. GnRH agonist triggering modulates PEDF to VEGF ratio inversely to hCG in granulosa cells. J Clin Endocrinol Metab. 2015;100(11):E1428–E1436. doi: 10.1210/jc.2015-2312

[20]

Miller I., Chuderland D., Ron-El R., et al. GnRH agonist triggering modulates PEDF to VEGF ratio inversely to hCG in granulosa cells // J Clin Endocrinol Metab. 2015. Vol. 100, N. 11. P. E1428–E1436. doi: 10.1210/jc.2015-2312

[21]

Engmann LL, Maslow BS, Kaye LA, et al. Low dose human chorionic gonadotropin administration at the time of gonadotropin releasing-hormone agonist trigger versus 35 h later in women at high risk of developing ovarian hyperstimulation syndrome — a prospective randomized double-blind clinical trial. J Ovarian Res. 2019;12(1):8. doi: 10.1186/s13048-019-0483-7

[22]

Engmann L.L., Maslow B.S., Kaye L.A., et al. Low dose human chorionic gonadotropin administration at the time of gonadotropin releasing-hormone agonist trigger versus 35 h later in women at high risk of developing ovarian hyperstimulation syndrome — a prospective randomized double-blind clinical trial // J Ovarian Res. 2019. Vol. 12, N. 1. P. 8. doi: 10.1186/s13048-019-0483-7

[23]

Heitman LH, Oosterom J, Bonger KM, et al. [3H]Org 43553, the first low-molecular-weight agonistic and allosteric radioligand for the human luteinizing hormone receptor. Mol Pharmacol. 2008;73(2):518–524. doi: 10.1124/mol.107.039875

[24]

Heitman L.H., Oosterom J., Bonger K.M., et al. [3H]Org 43553, the first low-molecular-weight agonistic and allosteric radioligand for the human luteinizing hormone receptor // Mol Pharmacol. 2008. Vol. 73, N. 2. P. 518–524. doi: 10.1124/mol.107.039875

[25]

van Koppen CJ, Zaman GJ, Timmers CM, et al. A signaling-selective, nanomolar potent allosteric low molecular weight agonist for the human luteinizing hormone receptor. Naunyn Schmiedebergs Arch Pharmacol. 2008;378(5):503–514. doi: 10.1007/s00210-008-0318-3

[26]

van Koppen C.J., Zaman G.J., Timmers C.M., et al. A signaling-selective, nanomolar potent allosteric low molecular weight agonist for the human luteinizing hormone receptor // Naunyn Schmiedebergs Arch Pharmacol. 2008. Vol. 378. N. 5. P. 503–514. doi: 10.1007/s00210-008-0318-3

[27]

Nataraja SG, Yu HN, Palmer SS. Discovery and development of small molecule allosteric modulators of glycoprotein hormone receptors. Front Endocrinol (Lausanne). 2015;6:142. doi: 10.3389/fendo.2015.00142

[28]

Nataraja S.G., Yu H.N., Palmer S.S. discovery and development of small molecule allosteric modulators of glycoprotein hormone receptors // Front Endocrinol (Lausanne). 2015 Vol. 6, P. 142. doi: 10.3389/fendo.2015.00142

[29]

Derkach K.V., Dar’in D.V., Bakhtyukov A.A., et al. In vitro and in vivo studies of functional activity of new low molecular weight agonists of the luteinizing hormone receptor. Biochem Mosc Suppl Ser A. 2016;10:294–300. doi: 10.1134/S1990747816030132

[30]

Derkach K.V., Dar’in D.V., Bakhtyukov A.A., et al. In vitro and in vivo studies of functional activity of new low molecular weight agonists of the luteinizing hormone receptor // Biochem Moscow Suppl Ser A. 2016. Vol. 10, N. 4. P. 294–300. doi: 10.1134/S1990747816030132

[31]

Bakhtyukov AA, Derkach KV, Sorokoumov VN, et al. The effects of separate and combined treatment of male rats with type 2 diabetes with metformin and orthosteric and allosteric agonists of luteinizing hormone receptor on steroidogenesis and spermatogenesis. Int J Mol Sci. 2021;23(1):198. doi: 10.3390/ijms23010198

[32]

Bakhtyukov A.A., Derkach K.V., Sorokoumov V.N., et al. The effects of separate and combined treatment of male rats with type 2 diabetes with metformin and orthosteric and allosteric agonists of luteinizing hormone receptor on steroidogenesis and spermatogenesis // Int J Mol Sci. 2021. Vol. 23, N. 1. P. 198. doi: 10.3390/ijms23010198

[33]

van de Lagemaat R, Timmers CM, et al. Induction of ovulation by a potent, orally active, low molecular weight agonist (Org 43553) of the luteinizing hormone receptor. Hum Reprod. 2009;24(3):640–648. doi: 10.1093/humrep/den412

[34]

van de Lagemaat R., Timmers C.M., Kelder J., et al. Induction of ovulation by a potent, orally active, low molecular weight agonist (Org 43553) of the luteinizing hormone receptor // Hum Reprod. 2009. Vol. 24, N. 3. P. 640–648. doi: 10.1093/humrep/den412

[35]

van de Lagemaat R, Raafs BC, van Koppen C, et al. Prevention of the onset of ovarian hyperstimulation syndrome (OHSS) in the rat after ovulation induction with a low molecular weight agonist of the LH receptor compared with hCG and rec-LH. Endocrinology. 2011;152(11):4350–4357. doi: 10.1210/en.2011-1077

[36]

van de Lagemaat R., Raafs B.C., van Koppen C., et al. Prevention of the onset of ovarian hyperstimulation syndrome (OHSS) in the rat after ovulation induction with a low molecular weight agonist of the LH receptor compared with hCG and rec-LH // Endocrinology. 2011. Vol. 152, N. 11. P. 4350–4357. doi: 10.1210/en.2011-1077

[37]

Fokina EA, Derkach KV, Bakhtyukov AA, et al. stimulation of ovulation in immature female rats using orthosteric and allosteric luteinizing hormone receptor agonists. Dokl Biochem Biophys. 2022;507(1):345–349. doi: 10.1134/S1607672922340063

[38]

Fokina E.A., Derkach K.V., Bakhtyukov A.A., et al. Stimulation of ovulation in immature female rats using orthosteric and allosteric luteinizing hormone receptor agonists // Dokl Biochem Biophys. 2022. Vol. 507, N. 1. P. 345–349. doi: 10.1134/S1607672922340063

[39]

Pedersen T, Peters H. Proposal for a classification of oocytes and follicles in the mouse ovary. J Reprod Fertil. 1968;17(3):555–557. doi: 10.1530/jrf.0.0170555

[40]

Pedersen T., Peters H. Proposal for a classification of oocytes and follicles in the mouse ovary // J Reprod Fertil. 1968. Vol. 17. N. 3. P. 555–557. doi: 10.1530/jrf.0.0170555

[41]

Hirshfield AN. Development of follicles in the mammalian ovary. Int Rev Cytol. 1991;124:43–101. doi: 10.1016/s0074-7696(08)61524-7

[42]

Hirshfield A.N. Development of follicles in the mammalian ovary // Int Rev Cytol. 1991. Vol. 124, P. 43–101. doi: 10.1016/s0074-7696(08)61524-7

[43]

Schmittgen TD, Livak KJ. Analyzing real-time PCR data by the comparative C(T) method. Nat Protoc. 2008;3(6):1101–1108. doi: 10.1038/nprot.2008.73

[44]

Schmittgen T.D., Livak K.J. Analyzing real-time PCR data by the comparative C(T) method // Nat Protoc. 2008. Vol. 3, N. 6. P. 1101–1108. doi: 10.1038/nprot.2008.73

[45]

Hsueh AJ, Adashi EY, Jones PB, Welsh TH Jr. Hormonal regulation of the differentiation of cultured ovarian granulosa cells. Endocr Rev. 1984;5(1):76–127. doi: 10.1210/edrv-5-1-76

[46]

Hsueh A.J., Adashi E.Y., Jones P.B., Welsh T.H. Jr. Hormonal regulation of the differentiation of cultured ovarian granulosa cells // Endocr Rev. 1984, Vol. 5, N. 1. P. 76–127. doi: 10.1210/edrv-5-1-76

[47]

Palermo R. Differential actions of FSH and LH during folliculogenesis. Reprod Biomed Online. 2007;15(3):326–337. doi: 10.1016/s1472-6483(10)60347-1

[48]

Palermo R. Differential actions of FSH and LH during folliculogenesis // Reprod Biomed Online. 2007. Vol. 15, N. 3. P. 326–337. doi: 10.1016/s1472-6483(10)60347-1

[49]

Conforti A, Vaiarelli A, Cimadomo D, et al. Pharmacogenetics of FSH Action in the Female. Front Endocrinol (Lausanne). 2019;10:398. doi: 10.3389/fendo.2019.00398

[50]

Conforti A., Vaiarelli A., Cimadomo D., et al. Pharmacogenetics of FSH Action in the Female // Front Endocrinol (Lausanne). 2019. Vol. 10, P. 398. doi: 10.3389/fendo.2019.00398

[51]

Miller WL, Auchus RJ. The molecular biology, biochemistry, and physiology of human steroidogenesis and its disorders. Endocr Rev. 2011;32(1):81–151. doi: 10.1210/er.2010-0013

[52]

Miller W.L., Auchus R.J. The molecular biology, biochemistry, and physiology of human steroidogenesis and its disorders // Endocr Rev. 2011. Vol. 32, N. 1. P. 81–151. doi: 10.1210/er.2010-0013

[53]

Singh P, Krishna A. Effects of GnRH agonist treatment on steroidogenesis and folliculogenesis in the ovary of cyclic mice. J Ovarian Res. 2010;3:26. doi: 10.1186/1757-2215-3-26

[54]

Singh P., Krishna A. Effects of GnRH agonist treatment on steroidogenesis and folliculogenesis in the ovary of cyclic mice // J Ovarian Res. 2010. Vol. 3, P. 26. doi: 10.1186/1757-2215-3-26

[55]

Riccetti L, Yvinec R, Klett D, et al. human luteinizing hormone and chorionic gonadotropin display biased agonism at the LH and LH/CG receptors. Sci Rep. 2017;7(1):940. doi: 10.1038/s41598-017-01078-8

[56]

Riccetti L., Yvinec R., Klett D., et al. Human luteinizing hormone and chorionic gonadotropin display biased agonism at the LH and LH/CG receptors // Sci Rep. 2017. Vol. 7, N. 1. P. 940. doi: 10.1038/s41598-017-01078-8

[57]

Soares SR. Etiology of OHSS and use of dopamine agonists. Fertil Steril. 2012;97(3):517–522. doi: 10.1016/j.fertnstert.2011.12.046

[58]

Soares S.R. Etiology of OHSS and use of dopamine agonists // Fertil Steril. 2012. Vol. 97, N. 3. P. 517–522. doi: 10.1016/j.fertnstert.2011.12.046

[59]

Li Y, Fang L, Zhang R, et al. Melatonin stimulates VEGF expression in human granulosa-lutein cells: A potential mechanism for the pathogenesis of ovarian hyperstimulation syndrome. Mol Cell Endocrinol. 2020;518:110981. doi: 10.1016/j.mce.2020.110981

[60]

Li Y., Fang L., Zhang R., et al. Melatonin stimulates VEGF expression in human granulosa-lutein cells: A potential mechanism for the pathogenesis of ovarian hyperstimulation syndrome // Mol Cell Endocrinol. 2020. Vol. 518, P. 110981. doi: 10.1016/j.mce.2020.110981

[61]

Veldhuis JD, Liu PY, Takahashi PY, Keenan DM. Dynamic testosterone responses to near-physiological LH pulses are determined by the time pattern of prior intravenous LH infusion. Am J Physiol Endocrinol Metab. 2012;303(6):E720–E728. doi: 10.1152/ajpendo.00200.2012

[62]

Veldhuis J.D., Liu P.Y., Takahashi P.Y., Keenan D.M. Dynamic testosterone responses to near-physiological LH pulses are determined by the time pattern of prior intravenous LH infusion // Am J Physiol Endocrinol Metab. 2012. Vol. 303, N. 6. P. E720–E728. doi: 10.1152/ajpendo.00200.2012

RIGHTS & PERMISSIONS

ECO-vector LLC

AI Summary AI Mindmap
PDF (2191KB)

138

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/