Tissue oxidative metabolism and microhemodynamics of the skin in rats exposed to stress factors of different durations and combinations
Marina Yu. Ravaeva , Igor V. Cheretaev , Elena N. Chuyan , Pavel A. Galenko-Yaroshevskii , Elviza R. Dzheldubaeva , Irina S. Mironyuk
Reviews on Clinical Pharmacology and Drug Therapy ›› 2023, Vol. 21 ›› Issue (4) : 357 -366.
Tissue oxidative metabolism and microhemodynamics of the skin in rats exposed to stress factors of different durations and combinations
BACKGROUND: Changes in tissue oxidative metabolism under the action of stressors of different durations have not been studied. The relationship between NADH and FAD coenzymes and the microcirculatory bed remains unclear.
AIM: This study aimed to identify the features of the reaction of skin microhemodynamics and tissue oxidative metabolism in rats exposed to acute and chronic stress factors of different durations and their combinations.
MATERIALS AND METHODS: The experiment was performed on 100 male Wistar rats weighing 200–220 g. The animals were divided into five groups of 20 rats. The first control group and the second and third groups were exposed to acute stress (AS) and chronic hypokinetic stress (HS), respectively; the fourth group (AS-HS) was previously exposed to AS (on the first day) and then to HS (1–10 days); and the fifth group (for 10 days of the HS, then the effect of the AS on day 10). On day 10, the indicators of tissue oxidative metabolism and skin microhemodynamics were recorded.
RESULTS: AS and HS increased the requirement of cells for ATP and contributed to the predominance of oxidative phosphorylation over other processes, as indicated by an increase in FAD. AS-HS significantly changed oxidative metabolism, separating oxidative phosphorylation and activating glycolysis. HS-AS did not cause such changes. AS increased the microcirculation index and reduced the coefficient of variation, and HS reduced the microcirculation index and increased the mean square deviation. AS–HS significantly increased the microcirculation index, and HS-AS increased the mean square deviation and coefficient of variation but reduced the microcirculation index.
CONCLUSIONS: AS and HS increase the requirement of cells for ATP and contribute to the predominance of oxidative phosphorylation over other processes. AS-HS modifies oxidative metabolism by disconnecting oxidative phosphorylation and activating glycolysis. HS-AS depletes the metabolic reserves of the body. AS-HS rearranges metabolism along the path of glycolysis, protecting against stress factors and preventing the development of oxidative stress. AS leads to hyperemia and stasis of blood circulation in the microarray, reducing the vasomotor activity of the vessels. HS inhibits the level of tissue perfusion and reduces the inflow of arterial blood into the microcirculatory bed and the outflow of venous blood, leading to spastic, stagnant phenomena and stasis. AS-HS reduces vasoconstriction, preparing a microcirculatory bed for prolonged hypokinesia. HS-AS levels vasodilation and improves the parameters of skin microhemodynamics (mean square deviation and coefficient of variation).
tissue oxidative metabolism / skin microhemodynamics / stress / laboratory rats / hypokinesia / acute stress
| [1] |
Kurganova LN. Lipid peroxidation — one of the possible components of a rapid response to stress. Bulletin of N.I. Lobachevsky Nizhny Novgorod University. Series Biology. 2001;(2):74–76. |
| [2] |
Курганова Л.Н. Перекисное окисление липидов — одна из возможных компонент быстрой реакции на стресс // Вестник Нижегородского университета им. Н.И. Лобачевского. Серия Биология. 2001. № 2. С. 74–76. |
| [3] |
Moskvin SV, Antipov EV, Zarubina EG, Ryazanova EA. Oxygen exchange effectiveness after application of different gels based on hyaluronic acid laser-phoresis. Vestnik Jesteticheskoi Mediciny. 2011;10(3):48–55. |
| [4] |
Москвин С.В., Антипов Е.В., Зарубина Е.Г., Рязанова Е.А. Эффективность кислородного обмена после применения лазерофореза различных гелей на основе гиалуроновой кислоты // Вестник Эстетической Медицины. 2011. Т. 10, № 3. С. 48–55. |
| [5] |
Mayevsky A, Rogatsky GG. Mitochondrial function in vivo evaluated by NADH fiuorescence: from animal models to human studies. Am J Physiol Cell Phisiol. 2007;292(2):615–640. DOI: 10.1152/ajpcell.00249.2006 |
| [6] |
Mayevsky A., Rogatsky G.G. Mitochondrial function in vivo evaluated by NADH fiuorescence: from animal models to human studies // Am J Physiol Cell Phisiol. 2007. Vol. 292, No. 2. P. 615–640. DOI: 10.1152/ajpcell.00249.2006 |
| [7] |
Mokry M, Gal P, Harakalova M, et al. Experimental study on predicting skin flap necrosis by fliorescence in the FAD and NADH bands during surgery. Photochem Photobiol. 2007;83(5):1193–1196. DOI: 10.1111/j.1751-1097.2007.00132.x |
| [8] |
Mokry M., Gal P., Harakalova M., et al. Experimental study on predicting skin flap necrosis by fliorescence in the FAD and NADH bands during surgery // Photochem Photobiol. 2007. Vol. 83, No. 5. P. 1193–1196. DOI: 10.1111/j.1751-1097.2007.00132.x |
| [9] |
Krupatkin AI, Sidorov VV. Laser Doppler flowmetry of blood microcirculation: a guide for doctors. Moscow: Medicine; 2005. 254 p. (In Russ.) |
| [10] |
Крупаткин А.И., Сидоров В.В. Лазерная допплеровская флоуметрия микроциркуляции крови: руководство для врачей. Москва: Медицина, 2005. 254 c. |
| [11] |
Lukina MM, Shirmanova MV, Sergeeva TF, Zagaynova ЕV. Metabolical imaging for the study of oncological processes (review). Modern Technologies in Medicine. 2016;8(4):113–121. DOI: 10.17691/stm2016.8.4.16 |
| [12] |
Lukina M.M., Shirmanova M.V., Sergeeva T.F., Zagaynova Е.V. Metabolical imaging for the study of oncological processes (review) // Modern Technologies in Medicine. 2016. Vol. 8, No. 4. С. 113–121. DOI: 10.17691/stm2016.8.4.16 |
| [13] |
Xie N, Zhang L, Gao W, et al. NAD+ metabolism: pathophysiologic mechanisms and therapeutic potential. Sig Transduct Target Ther. 2020;5(1):227. DOI: 10.1038/s41392-020-00311-7 |
| [14] |
Xie N., Zhang L., Gao W., et al. NAD+ metabolism: pathophysiologic mechanisms and therapeutic potential // Sig Transduct Target Ther. 2020. Vol. 5, No. 1. P. 227. DOI: 10.1038/s41392-020-00311-7 |
| [15] |
Georgakoudi I, Quinn KP. Optical imaging using endogenous contrast to assess metabolic state. Annu Rev Biomed Eng. 2012;14: 351–367. DOI: 10.1146/annurev-bioeng-071811-150108 |
| [16] |
Georgakoudi I., Quinn K.P. Optical imaging using endogenous contrast to assess metabolic state // Annu Rev Biomed Eng. 2012. Vol. 14. P. 351–367. DOI: 10.1146/annurev-bioeng-071811-150108 |
| [17] |
Chance B, Schoener B, Oshino R, et al. Oxidation-reduction ratio studies of mitochondria in freeze-trapped samples. NADH and flavoprotein fluorescence signals. J Biol Chem. 1979;254(11):4764–4771. |
| [18] |
Chance B., Schoener B., Oshino. R., et al. Oxidation-reduction ratio studies of mitochondria in freeze-trapped samples. NADH and flavoprotein fluorescence signals // J Biol Chem. 1979. Vol. 254, No. 11. P. 4764–4771. |
| [19] |
Chance B. Optical method. Annu Rev Biophys Biophys Chem. 1991;20(1):1–30. DOI: 10.1146/annurev.bb.20.060191.000245 |
| [20] |
Chance B. Optical method // Annu Rev Biophys Biophys Chem. 1991. Vol. 20, No. 1. P. 1–30. DOI: 10.1146/annurev.bb.20.060191.000245 |
| [21] |
Wouters BG, Koritzinsky M. Hypoxia signalling through mTOR and the unfolded protein response in cancer. Nat Rev Cancer. 2008;8(11):851–864. DOI: 10.1038/nrc2501 |
| [22] |
Wouters B.G., Koritzinsky M. Hypoxia signalling through mTOR and the unfolded protein response in cancer // Nat Rev Cancer. 2008. Vol. 8, No. 11. P. 851–864. DOI: 10.1038/nrc2501 |
| [23] |
Solaini G, Baracca A, Lenaz G, Sgarbi G. Hypoxia and mitochondrial oxidative metabolism. Biochim Biophys Acta. 2010;1797(6–7): 1171–1177. DOI: 10.1016/j.bbabio.2010.02.011 |
| [24] |
Solaini G., Baracca A., Lenaz G., Sgarbi G. Hypoxia and mitochondrial oxidative metabolism // Biochim Biophys Acta. 2010. Vol. 1797, No. 6–7. P. 1171–1177. DOI: 10.1016/j.bbabio.2010.02.011 |
| [25] |
Zhang H, Bosch-Marce M, Shimoda LA, et al. Mitochondrial autophagy is an HIF-1-dependent adaptive metabolic response to hypoxia. J Biol Chem. 2008;283(16):10892–10903. DOI: 10.1074/jbc.M800102200 |
| [26] |
Zhang H., Bosch-Marce M., Shimoda L.A., et al. Mitochondrial autophagy is an HIF-1-dependent adaptive metabolic response to hypoxia // J Biol Chem. 2008. Vol. 283, No. 16. P. 10892–10903. DOI: 10.1074/jbc.M800102200 |
| [27] |
Zhang H, Gao P, Fukuda R, et al. HIF-1 inhibits mitochondrial biogenesis and cellular respiration in VHL-deficient renal cell carcinoma by repression of C-MYC activity. Cancer Cell. 2007;11(5):407–420. DOI: 10.1016/j.ccr.2007.04.001 |
| [28] |
Zhang H., Gao P., Fukuda R., et al. HIF-1 inhibits mitochondrial biogenesis and cellular respiration in VHL-deficient renal cell carcinoma by repression of C-MYC activity // Cancer Cell. 2007. Vol. 11, No. 5. P. 407–420. DOI: 10.1016/j.ccr.2007.04.001 |
| [29] |
Brand KA, Hermfisse U. Aerobic glycolysis by proliferating cells: a protective strategy against reactive oxygen species. Faseb J. 1997;11(5):388–395. DOI: 10.1096/fasebj.11.5.9141507 |
| [30] |
Brand K.A., Hermfisse U. Aerobic glycolysis by proliferating cells: a protective strategy against reactive oxygen species // Faseb J. 1997. Vol. 11, No. 5. P. 388–395. DOI: 10.1096/fasebj.11.5.9141507 |
| [31] |
Lunt SY, Vander Heiden MG. Aerobic glycolysis: meeting the metabolic requirements of cell proliferation. Annu Rev Cell Dev Biol. 2011;27:441–464. DOI: 10.1146/annurev-cellbio-092910-154237 |
| [32] |
Lunt S.Y., Vander Heiden M.G. Aerobic glycolysis: meeting the metabolic requirements of cell proliferation. Annu Rev // Cell Dev Biol. 2011. Vol. 27. P. 441–464. DOI: 10.1146/ annurev-cellbio-092910-154237 |
ECO-vector
/
| 〈 |
|
〉 |