A new ghrelin receptor antagonist, agrelax, reduces emotional overeating caused by the stimulation of the lateral hypothalamus reward zone in well-fed rats
Andrei A. Lebedev , Evgeny R. Bychkov , Valeria V. Lukashkova , Viktor A. Lebedev , Nikolai S. Efimov , Petr D. Shabanov
Reviews on Clinical Pharmacology and Drug Therapy ›› 2023, Vol. 21 ›› Issue (4) : 339 -348.
A new ghrelin receptor antagonist, agrelax, reduces emotional overeating caused by the stimulation of the lateral hypothalamus reward zone in well-fed rats
BACKGROUND: Ghrelin receptor antagonists hold promise for the treatment of eating disorders. The reward zone of the lateral hypothalamus has been proposed as a target for mediating the effects of the ghrelin system in emotional overeating.
AIM: This study aimed to evaluate the effects of a new ghrelin receptor antagonist, agrelax, on emotional overeating induced by the stimulation of the reward zone of the lateral hypothalamus in well-fed rats.
MATERIALS AND METHODS: Male Wistar rats were trained to self-stimulate in a Skinner box. After training, a feeder was placed in the Skinner box, and a food-conditioned reflex was developed in the rats for 5 days. Then, the reaction of food self-deprivation, i.e., behavior under conditions of choice of self-stimulation or food intake, was assessed.
RESULTS: The reaction of food self-deprivation when the animals did not approach the feeder was >10% of the threshold current. Self-stimulation of the lateral hypothalamus with a threshold current caused numerous approaches to the feeder and food intake. Sulpiride, a dopamine D2/D3 antagonist (5 and 20 mg/kg ip), administered to well-fed rats reduced both feeding behavior and the intensity of self-stimulation in the food self-deprivation test at threshold currents. The ghrelin receptor antagonists [D-LYS3]-GHRP-6 and the novel antagonist agrelax (1 µg/µL, 20 µL intranasally) also reduced both feeding behavior and the intensity of self-stimulation under these conditions.
CONCLUSIONS: Ghrelin and dopamine receptors are involved in emotional overeating. Agrelax, a novel ghrelin receptor antagonist, reduces emotional overeating induced by the activation of the lateral hypothalamic reward system. Because emotional overeating is strongly associated with clinical eating disorders such as bulimia and binge-eating disorder, the use of ghrelin antagonists to treat and prevent this problem is promising.
emotional overeating / [D-LYS3]-GHRP-6 / agrelax / ghrelin / self-stimulation / lateral hypothalamus
| [1] |
Sultson H, Kukk K, Akkermann K Positive and negative emotional eating have different associations with overeating and binge eating: construction and validation of the positive-negative emotion-al eating scale. Appetite. 2017;116:423–430. DOI: 10.1016/j.ap-pet.2017.05.035 |
| [2] |
Sultson H., Kukk K., Akkermann K. Positive and negative emotional eating have different associations with overeating and binge eating: construction and validation of the positive-negative emotion-al eating scale // Appetite. 2017. Vol. 116. P. 423–430. DOI: 10.1016/j.ap-pet.2017.05.035 |
| [3] |
Bongers P, De Graaff A, Jansen A. ‘Emotional’ does not even start to cover it: Generalization of overeating in emotional eaters. Appetite. 2016;96:611–616. DOI: 10.1016/j.appet.2015.11.004 |
| [4] |
Bongers P., De Graaff A., Jansen A. ‘Emotional’ does not even start to cover it: Generalization of overeating in emotional eaters // Appetite. 2016. Vol. 96. P. 611–616. DOI: 10.1016/j.appet.2015.11.004 |
| [5] |
Pompili S, Laghi F. Binge eating and binge drinking among adolescents: The role of drinking and eating motives. J Health Psychol. 2017;24(11):1505–1516. DOI: 10.1177/1359105317713359 |
| [6] |
Pompili S., Laghi F. Binge eating and binge drinking among adolescents: The role of drinking and eating motives // J Health Psychol. 2017. Vol. 24, No. 11. P. 1505–1516. DOI: 10.1177/1359105317713359 |
| [7] |
Margules DL, Olds J Identical “feeding“ and “rewarding” systems in the lateral hypothalamus of rats. Science. 1962;135(3501): 374–385. DOI: 10.1126/science.135.3501.374 |
| [8] |
Margules D.L. Olds J Identical “feeding” and “rewarding” systems in the lateral hypothalamus of rats // Science. 1962. Vol. 135, No. 3501. P. 374–385. DOI: 10.1126/science.135.3501.374 |
| [9] |
Spies G Food versus intracranial self-stimulation reinforcement in food-deprived rats. J Comp Physiol Psychol. 1965;60(2):153–157. DOI: 10.1037/h0022367 |
| [10] |
Spies G. Food versus intracranial self-stimulation reinforcement in food-deprived rats // J Comp Physiol Psychol. 1965. Vol. 60, No. 2. P. 153–157. DOI: 10.1037/h0022367 |
| [11] |
Lebedev AA, Bessolova YuN, Efimov NS, et al. Role of orexin peptide system in emotional overeating induced by brain reward stimulation in fed rats. Research Results in Pharmacology. 2020;6(1):81–91. DOI: 10.3897/rrpharmacology.6.52180 |
| [12] |
Lebedev A.A., Bessolova Yu.N., Efimov N.S., et al. Role of orexin peptide system in emotional overeating induced by brain reward stimulation in fed rats // Research Results in Pharmacology. 2020. Vol. 6, No. 1. P. 81–91. DOI: 10.3897/rrpharmacology.6.52180 |
| [13] |
Lebedev AA, Bessolova YuN, Efimov NS, et al. Self-stimulation of the lateral hypothalamus by threshold current induces emotional overeating under conditions of food self-deprivation in satiated rats: the role of the orexin and dopaminergic systems of the brain. Reviews on Clinical Pharmacology and Drug Therapy. 2021;19(4): 421–429. DOI: 10.17816/RCF194421-429 |
| [14] |
Лебедев А.А., Бессолова Ю.Н., Ефимов Н.С., и др. Самостимуляция латерального гипоталамуса пороговой силой тока вызывает эмоциональное переедание в условиях пищевой самодепривации у сытых крыс: роль орексиновой и дофаминергической систем мозга // Обзоры по клинической фармакологии и лекарственной терапии. 2021. Т. 19, № 4. С. 421–429. DOI: 10.17816/RCF194421-429 |
| [15] |
Wang Y, Eddison M, Fleishman G, et al. EASI-FISH for thick tissue defines lateral hypothalamus spatio-molecular organization. Cell. 2021;184(26):6361–6377.e24. DOI: 10.1016/j.cell.2021.11.024 |
| [16] |
Wang Y., Eddison M., Fleishman G., et al. EASI-FISH for thick tissue defines lateral hypothalamus spatio-molecular organization // Cell. 2021. Vol. 184, No. 26. P. 6361–6377.e24. DOI: 10.1016/j.cell.2021.11.024 |
| [17] |
Mitchell V, Bouret S, Beauvillain JC, et al. Comparative distribution of mRNA encoding the growth hormone secretagogue-receptor (GHS-R) in Microcebus murinus (Primate, lemurian) and rat forebrain and pituitary. J Comp Neurol. 2001;429(3):469–489. DOI: 10.1002/1096-9861(20010115)429:3<469::aid-cne8>3.0.co;2-# |
| [18] |
Mitchell V., Bouret S., Beauvillain J.C., et al. Comparative distribution of mRNA encoding the growth hormone secretagogue-receptor (GHS-R) in Microcebus murinus (Primate, lemurian) and rat forebrain and pituitary // J Comp Neurol. 2001. Vol. 429, No. 3. P. 469–489. DOI: 10.1002/1096-9861(20010115)429:3<469::aid-cne8>3.0.co;2-# |
| [19] |
Cornejo MP, Denis R, Romero GG, et al. Ghrelin treatment induces rapid and delayed increments of food intake: a heuristic model to explain ghrelin’s orexigenic effects. Cell Mol Life Sci. 2021;78(19–20): 6689–6708. DOI: 10.1007/s00018-021-03937-0 |
| [20] |
Cornejo M.P., Denis R., Romero G.G., et al. Ghrelin treatment induces rapid and delayed increments of food intake: a heuristic model to explain ghrelin’s orexigenic effects // Cell Mol Life Sci. 2021. Vol. 78, No. 19–20. P. 6689–6708. DOI: 10.1007/s00018-021-03937-0 |
| [21] |
Yanagi S, Sato T, Kangawa K, Nakazato M. The homeostatic force of ghrelin. Cell Metab. 2018;27(4):786–804. DOI: 10.1016/j.cmet.2018.02.008 |
| [22] |
Yanagi S., Sato T., Kangawa K., Nakazato M. The homeostatic force of ghrelin // Cell Metab. 2018. Vol. 27, No. 4. P. 786–804. DOI: 10.1016/j.cmet.2018.02.008 |
| [23] |
Lopez-Ferreras L, Richard JE, Anderberg RH, et al. Ghrelin’s control of food reward and body weight in the lateral hypothalamic area is sexually dimorphic. Physiol Behav. 2017;176:40–49. DOI: 10.1016/j.physbeh.2017.02.011 |
| [24] |
Lopez-Ferreras L., Richard J.E., Anderberg R.H., et al. Ghrelin’s control of food reward and body weight in the lateral hypothalamic area is sexually dimorphic // Physiol Behav. 2017. Vol. 176. P. 40–49. DOI: 10.1016/j.physbeh.2017.02.011 |
| [25] |
Lebedev AA, Lukashkova VV, Pshenichnaya AG, et al. A new ghrelin receptor antagonist agrelax participates in the control of emotional-explorative behavior and anxiety in rats. Psychopharmacology & Biological Narcology. 2023;14(1):71–76. DOI: 10.17816/phbn321624 |
| [26] |
Лебедев А.А., Лукашкова В.В., Пшеничная А.Г., и др. Новый антагонист рецепторов грелина агрелакс участвует в контроле эмоционально-исследовательского поведения и уровня тревожности у крыс // Психофармакология и биологическая наркология. 2023. Т. 14, № 1. С. 71–76. DOI: 10.17816/phbn321624 |
| [27] |
Konig KP, Klippel AA. The rat brain: a stereotaxic atlas of the forebrain and lower parts of the brain stem. Williams and Wilkins, Baltimore; 1963. 162 p. |
| [28] |
Konig K.P., Klippel A.A. The rat brain: a stereotaxic atlas of the forebrain and lower parts of the brain stem. Williams and Wilkins, Baltimore, 1963. 162 p. |
| [29] |
Frank RA, Preshaw RL, Stutz RM, Valenstein ES. Lateral hypothalamic stimulation: stimulus-bound eating and self-depri-vation. Physiol Behav. 1982;29(1):17–21. DOI: 10.1016/0031-9384(82)90359-6 |
| [30] |
Frank R.A., Preshaw R.L., Stutz R.M., Valenstein E.S. Lateral hypothalamic stimulation: stimulus-bound eating and self-depri-vation // Physiol Behav. 1982. Vol. 29, No. 1. P. 17–21. DOI: 10.1016/0031-09384(82)90359-6 |
| [31] |
Wise RA. Forebrain substrates of reward and motivation. J Comp Neurol. 2005;493(1):115–121. DOI: 10.1002/cne.20689 |
| [32] |
Wise R.A. Forebrain substrates of reward and motivation // J Comp Neurol. 2005. Vol. 493, No. 1. P. 115–121. DOI: 10.1002/cne.20689 |
| [33] |
McGregor IS, Atrens DM. Prefrontal cortex self-stimulation and energy balance. Behav Neurosci. 1991;105(6):870–883. DOI: 10.1037/0735-7044.105.6.870 |
| [34] |
McGregor I.S., Atrens D.M. Prefrontal cortex self-stimulation and energy balance // Behav Neurosci. 1991. Vol. 105, No. 6. P. 870–883. DOI: 10.1037/0735-7044.105.6.870 |
| [35] |
Nakajima S, Baker JD. Effects of D2 dopamine receptor blockade with raclopride on intracranial self-stimulation and food-reinforced operant behaviour. Psychopharmacology (Berl). 1989;98(3):330–333. DOI: 10.1007/BF00451683 |
| [36] |
Nakajima S., Baker J.D. Effects of D2 dopamine receptor blockade with raclopride on intracranial self-stimulation and food-reinforced operant behaviour // Psychopharmacology (Berl). 1989. Vol. 98, No. 3. P. 330–333. DOI: 10.1007/BF00451683 |
| [37] |
Thyssen IYu, Yakushina ND, Lebedev AA, et al. Effects of OX1R Orexin A receptor antagonist SB-408124 on compulsive behavior and anxiety level after vital stress in rats. Reviews on Clinical Pharmacology and Drug Therapy. 2018;16(1):34–42. DOI: 10.17816/RCF16134-42 |
| [38] |
Тиссен И.Ю., Якушина Н.Д., Лебедев А.А., и др. Эффекты антагониста OX1R рецепторов орексина SB-408124 на компульсивное поведение и уровень тревожности после витального стресса у крыс // Обзоры по клинической фармакологии и лекарственной терапии. 2018. Т. 16, № 1. С. 34–42. DOI: 10.17816/RCF16134-42 |
| [39] |
Gearhardt AN, Yokum S, Orr PT, et al. Neural correlates of food addiction. Archives of General Psychiatry. 2011;68(8):808–816. DOI: 10.1001/archgenpsychia-try.2011.32 |
| [40] |
Gearhardt A.N., Yokum S., Orr P.T., et al. Neural correlates of food addiction // Archives of General Psychiatry. 2011. Vol. 68, No. 8. P. 808–816. DOI: 10.1001/archgenpsychia-try.2011.32 |
| [41] |
Wang GJ, Geliebter A, Volkow ND, et al. Enhanced striatal dopamine release during food stimulation during binge eating disorder. Obesity (Silver Spring). 2011;19(8):1601–1608. DOI: 10.1038/oby.2011.27 |
| [42] |
Wang G.J., Geliebter A., Volkow N.D., et al. Enhanced striatal dopamine release during food stimulation during binge eating disorder // Obesity (Silver Spring). 2011. Vol. 19, No. 8. P. 1601–1608. DOI: 10.1038/oby.2011.27 |
| [43] |
Avena NM, Rada P, Hoebel BG. Evidence for sugar addiction: behavioral and neurochemical effects of intermittent, excessive sugar intake. Neurosci Biobehav Rev. 2008;32(1):29–39. DOI: 10.1016/j.neubiorev.2007.04.019 |
| [44] |
Avena N.M., Rada P., Hoebel B.G. Evidence for sugar addiction: behavioral and neurochemical effects of intermittent, excessive sugar intake // Neurosci Biobehav Rev. 2008. Vol. 32, No. 1. P. 29–39. DOI: 10.1016/j.neubiorev.2007.04.019 |
| [45] |
Roik RO, Lebedev AA, Shabanov PD. The value of extended amygdala structures in emotive effects of narcogenic with diverse chemical structure. Research Results in Pharmacology. 2019;5(3):11–19. DOI: 10.3897/npharmacology.5.38389 |
| [46] |
Roik R.O., Lebedev A.A., Shabanov P.D. The value of extended amygdala structures in emotive effects of narcogenic with diverse chemical structure // Research Results in Pharmacology 2019. Vol. 5, No. 3. P. 11–19. DOI: 10.3897/npharmacology.5.38389 |
| [47] |
Cason AM, Smith RJ, Tahsili-Fahadan P, et al. Role of orexin/hypocretin in reward seeking and addiction: implications for obesity. Physiol Behav. 2010;100(5):419–428. DOI: 10.1016/j.physbeh.2010.03.009 |
| [48] |
Cason A.M., Smith R.J., Tahsili-Fahadan P., et al. Role of orexin/hypocretin in reward seeking and addiction: implications for obesity // Physiol Behav. 2010. Vol. 100, No. 5. P. 419–428. DOI: 10.1016/j.physbeh.2010.03.009 |
| [49] |
Koob GF. A role for brain stress system in addiction. Neuron. 2008;59(1):11–34. DOI: 10.1016/j.neuron.2008.06.012 |
| [50] |
Koob G.F. A role for brain stress system in addiction // Neuron. 2008. Vol. 59, No. 1. P. 11–34. DOI: 10.1016/j.neuron.2008.06.012 |
| [51] |
Stuber GD, Wise RA. Lateral hypothalamic circuits for feeding and reward. Nature Neuroscience. 2016;19(2):198–205. DOI: 10.1038/nn.4220 |
| [52] |
Stuber G.D., Wise R.A. Lateral hypothalamic circuits for feeding and reward // Nature Neuroscience. 2016. Vol. 19, No. 2. P. 198–205. DOI: 10.1038/nn.4220 |
| [53] |
Alvarez-Crespo M, Skibicka KP, Farkas I, et al. The amygdala as a neurobiological target for ghrelin in rats: neuroanatomical, electrophysiological and behavioral evidence. PloS One. 2012;7(10):e46321. DOI: 10.1371/journal.pone.0046321 |
| [54] |
Alvarez-Crespo M., Skibicka K.P., Farkas I., et al. The amygdala as a neurobiological target for ghrelin in rats: neuroanatomical, electrophysiological and behavioral evidence // PloS One. 2012. Vol. 7, No. 10. P. e46321. DOI: 10.1371/journal.pone.0046321 |
| [55] |
Barrile F, Cassano D, Fernandez G, et al. Ghrelin’s orexigenic action in the lateral hypothalamic area involves indirect recruitment of orexin neurons and arcuate nucleus activation. Psychoneuroendocrinology. 2023;156:106333. DOI: 10.1016/j.psyneuen.2023.106333 |
| [56] |
Barrile F., Cassano D., Fernandez G., et al. Ghrelin’s orexigenic action in the lateral hypothalamic area involves indirect recruitment of orexin neurons and arcuate nucleus activation // Psychoneuroendocrinology. 2023. Vol. 156. P. 106333. DOI: 10.1016/j.psyneuen.2023.106333 |
ECO-vector
/
| 〈 |
|
〉 |