Physical-chemical repurposing of drugs. History of its formation in Russia
Aleksandr L. Urakov , Petr D. Shabanov
Reviews on Clinical Pharmacology and Drug Therapy ›› 2023, Vol. 21 ›› Issue (3) : 231 -242.
Physical-chemical repurposing of drugs. History of its formation in Russia
It is reported that the traditional scheme of finding and developing a new drug and conducting the whole complex of preclinical studies requires several thousand chemical compounds, hundreds of millions of US dollars and more than 12 years of work. It is shown that physicochemical pharmacology was born in Russia at the end of the 20th century, which in our days has been transformed into “physicochemical repurposing of known medicines”. The first successfully repurposed known drug was a solution of 4% potassium chloride, which had previously traditionally belonged to the group of macro- and microelements, used by intravenous injections to regulate acid-base balance and rhythmic activity of the heart. In 1983, it was stated that this medicinal solution, when heated to 39–42°C and applied topically by irrigation of the bleeding surface, could be classified as a vasoconstrictor and hemostatic drug. Hyperthermia was used as a physico-chemical reprofiling factor, which, according to the Arrhenius law, accelerated and intensified, on the one hand, the spastic action of K+ cations on the gaping blood vessels (formation of hyperkalium contracture in the smooth muscles of the vascular wall) and, on the other hand, the blood clotting process in the wound. In subsequent years, the promise of physicochemical repurposing of known drugs was shown on the example of water, hydrogen peroxide, sodium chloride and sodium bicarbonate by purposefully changing their temperature, acid, osmotic activity, as well as the amount and quality of gas content (passing). A chronology of the physicochemical repurposing of known drug solutions and tablets is described and the essence of such new groups of drugs as bleachers of bruises and pyolytics is given. It is shown that both groups of drugs were discovered in Russia and are intended for local use to bleach bruises (blood stains) and dissolve thick mucus, sputum, pus, blood clots, meconium and other dense biological tissues containing the enzyme catalase. It is pointed out that the advantage and at the same time the limitation of the known drugs repurposed according to this scheme is their local application, since their new pharmacological activity is caused mainly by the physical and chemical principle of action, which is manifested by local interaction with the selected area of the patient’s organism.
history / pharmacology / new drugs / screening / development / financial costs
| [1] |
Taylor D. The pharmaceutical industry and the future of drug development. In: Hester RE, Harrison RM, editors. Pharmaceuticals in the Environment. Vol. 1. Royal Society of Chemistry, 2016. P. 1–33. DOI: 10.1039/9781782622345-00001 |
| [2] |
Taylor D. The pharmaceutical industry and the future of drug development. Pharmaceuticals in the Environment. Vol. 1 / ed. by R.E. Hester, R.M. Harrison. Royal Society of Chemistry, 2016. P. 1–33. DOI: 10.1039/9781782622345-00001 |
| [3] |
Wyatt PG, Gilbert IH, Read KD, Fairlamb AH. Target validation: linking target and chemical properties to desired product profile. Curr Top Med Chem. 2011;11(10):1275–1283. DOI: 10.2174/156802611795429185 |
| [4] |
Wyatt P.G., Gilbert I.H., Read K.D., Fairlamb A.H. Target validation: linking target and chemical properties to desired product profile // Curr Top Med Chem. 2011. Vol. 11, No. 10. P. 1275–1283. DOI: 10.2174/156802611795429185 |
| [5] |
Frearson JA, Wyatt PG, Gilbert IH, Fairlamb AH. Target assessment for antiparasitic drug discovery. Trends Parasitol. 2007;23(12):589–595. DOI: 10.1016/j.pt.2007.08.019 |
| [6] |
Frearson J.A., Wyatt P.G., Gilbert I.H., Fairlamb A.H. Target assessment for antiparasitic drug discovery // Trends Parasitol. 2007. Vol. 23, No. 12. P. 589–595. DOI: 10.1016/j.pt.2007.08.019 |
| [7] |
Drews J. Drug discovery: a historical perspective. Science. 2000;287(5460):1960–1964. DOI: 10.1126/science.287.5460.1960 |
| [8] |
Drews J. Drug discovery: a historical perspective // Science. 2000. Vol. 287, No. 5460. P. 1960–1964. DOI: 10.1126/science.287.5460.1960 |
| [9] |
Alelaimat MA, Al-Sha’er MA, Basheer HA. Novel sulfonamide-triazine hybrid derivatives: Docking, synthesis, and biological evaluation as anticancer agents. ACS Omega. 2023;8(15):14247–14263. DOI: 10.1021/acsomega.3c01273 |
| [10] |
Alelaimat M.A., Al-Sha’er M.A., Basheer H.A. Novel sulfonamide-triazine hybrid derivatives: Docking, synthesis, and biological evaluation as anticancer agents // ACS Omega. 2023. Vol. 8, No. 15. P. 14247–14263. DOI: 10.1021/acsomega.3c01273 |
| [11] |
Robbins N, Wright GD, Cowen LE. Antifungal drugs: The current armamentarium and development of new agents. Microbiol Spectr. 2016;4(5):10.1128/microbiolspec.FUNK-0002-2016. DOI: 10.1128/microbiolspec.FUNK-0002-2016 |
| [12] |
Robbins N., Wright G.D., Cowen L.E. Antifungal drugs: The current armamentarium and development of new agents // Microbiol Spectr. 2016. Vol. 4, No. 5. DOI: 10.1128/microbiolspec.FUNK-0002-2016 |
| [13] |
Urakov AL. Kak deistvuyut lekarstva vnutri nas. Izhevsk: Udmurtiya, 1993. 432 p. (In Russ.) |
| [14] |
Ураков А.Л. Как действуют лекарства внутри нас. Ижевск: Удмуртия, 1993. 432 с. |
| [15] |
Leung AY. Traditional toxicity documentation of Chinese Materia Medica — an overview. Toxicol Pathol. 2006;34(4):319–326. DOI: 10.1080/01926230600773958 |
| [16] |
Leung A.Y. Traditional toxicity documentation of Chinese Materia Medica — an overview // Toxicol Pathol. 2006. Vol. 34, No. 4. P. 319–326. DOI: 10.1080/01926230600773958 |
| [17] |
Toomsalu M. Rudolf Richard Buchheim, the founder of pharmacology. Naunyn-Schmiedeberg’s Arch Pharmacol. 2023. DOI: 10.1007/s00210-023-02528-z |
| [18] |
Toomsalu M. Rudolf Richard Buchheim, the founder of pharmacology // Naunyn-Schmiedebergs Arch Pharmacol. 2023. DOI: 10.1007/s00210-023-02528-z |
| [19] |
Reznikov KM. Pharmacological vector of Rudolf Buchheim. Research Results in Pharmacology. 2019;5(1):103–116. DOI: 10.3897/rrpharmacology.5.32234 |
| [20] |
Reznikov K.M. Pharmacological vector of Rudolf Buchheim // Research Results in Pharmacology. 2019. Vol. 5, No. 1. P. 103–116. DOI: 10.3897/rrpharmacology.5.32234 |
| [21] |
Urakov AL. Thermal pharmacology: history and definition. Reviews on Clinical Pharmacology and Drug Therapy. 2021;19(1):87–96. (In Russ.) DOI: 10.17816/RCF19187-96 |
| [22] |
Ураков А.Л. Температурная фармакология: история и определение // Обзоры по клинической фармакологии и лекарственной терапии. 2021. Т. 19, № 1. С. 87–96. DOI: 10.17816/RCF19187-96 |
| [23] |
Greenwood NN, Earnshaw A, editors. Chemistry of the elements. 2nd edition. Butterworth-Heinemann, 1997. 1384 p. |
| [24] |
Chemistry of the elements. 2nd edition / ed. by N.N. Greenwood, A. Earnshaw. Butterworth-Heinemann, 1997. 1384 p. |
| [25] |
Sjöström H, Nilsson R. Thalidomide and the power of the drug companies. Penguin books, 1972. 280 p. |
| [26] |
Sjöström H., Nilsson R. Thalidomide and the power of the drug companies. Penguin books, 1972. 280 p. |
| [27] |
Selvaraj S, Farooqui HH, Mehta A. Does price regulation affect atorvastatin sales in India? An impact assessment through interrupted time series analysis. BMJ Open. 2019;9(1): e024200. DOI: 10.1136/bmjopen-2018-024200 |
| [28] |
Selvaraj S., Farooqui H.H., Mehta A. Does price regulation affect atorvastatin sales in India? An impact assessment through interrupted time series analysis // BMJ Open. 2019. Vol. 9, No. 1. ID e024200. DOI: 10.1136/bmjopen-2018-024200 |
| [29] |
Luo J, Seeger JD, Donneyong M, et al. Effect of generic competition on atorvastatin prescribing and patients’ out-of-pocket spending. JAMA Intern Med. 2016;176(9):1317–1323. DOI: 10.1001/jamainternmed.2016.3384 |
| [30] |
Luo J., Seeger J.D., Donneyong M., et al. Effect of generic competition on atorvastatin prescribing and patients’ out-of-pocket spending // JAMA Intern Med. 2016. Vol. 176, No. 9. P. 1317–1323. DOI: 10.1001/jamainternmed.2016.3384 |
| [31] |
Selvaraj S, Farooqui HH, Mehta A, Mathur MR. Evaluating the impact of price regulation (Drug Price Control Order 2013) on antibiotic sales in India: a quasi-experimental analysis, 2008–2018. J Pharm Policy Pract. 2022;15(1):68. DOI: 10.1186/s40545-022-00466-4 |
| [32] |
Selvaraj S., Farooqui H.H., Mehta A., Mathur M.R. Evaluating the impact of price regulation (Drug Price Control Order 2013) on antibiotic sales in India: a quasi-experimental analysis, 2008–2018 // J Pharm Policy Pract. 2022. Vol. 15, No. 1. ID 68. DOI: 10.1186/s40545-022-00466-4 |
| [33] |
Acosta A, Ciapponi A, Aaserud M, et al. Pharmaceutical policies: effects of reference pricing, other pricing, and purchasing policies. Cochrane Database Syst Rev. 2014;10: CD005979. DOI: 10.1002/14651858.CD005979.pub2 |
| [34] |
Acosta A., Ciapponi A., Aaserud M., et al. Pharmaceutical policies: effects of reference pricing, other pricing, and purchasing policies // Cochrane Database Syst Rev. 2014. Vol. 10. ID CD005979. DOI: 10.1002/14651858.CD005979.pub2 |
| [35] |
Urakov AL, Shabanov PD. Acute respiratory syndrome-2 (SARS-CoV-2): A solution of hydrogen peroxide and sodium bicarbonate as an expectorant for recanalization of the respiratory tract and blood oxygenation in respiratory obstruction (review). Reviews on Clinical Pharmacology and Drug Therapy. 2021;19(4):383–393. (In Russ.) DOI: 10.17816/RCF194383-393 |
| [36] |
Ураков А.Л., Шабанов П.Д. Острый респираторный синдром-2 (SARS-CoV-2): Раствор перекиси водорода и гидрокарбоната натрия как отхаркивающее средство для реканализации дыхательных путей и оксигенации крови при респираторной обструкции (обзор научной и патентной литературы) // Обзоры по клинической фармакологии и лекарственной терапии. 2021. Т. 19, № 4. С. 383–393. DOI: 10.17816/RCF194383-393 |
| [37] |
Urakov A, Shabanov P, Gurevich K, et al. Intrapulmonary use of hydrogen peroxide in respiratory obstruction: Initial results demonstrate the possibility of airway recanalization and blood reoxygenation through the lungs: An update. Journal of Pharmaceutical Research International. 2023;35(9):33–37. DOI: 10.9734/jpri/2023/v35i97348 |
| [38] |
Urakov A., Shabanov P., Gurevich K., et al. Intrapulmonary use of hydrogen peroxide in respiratory obstruction: Initial results demonstrate the possibility of airway recanalization and blood reoxygenation through the lungs: An update // Journal of Pharmaceutical Research International. 2023. Vol. 35, No. 9. P. 33–37. DOI: 10.9734/jpri/2023/v35i97348 |
| [39] |
Urakov AL, Urakova NA. COVID-19: optimization of respiratory biomechanics by aerosol pus solvent. Russian Journal of Biomechanics. 2021;25(1):86–90. (In Russ.) DOI: 10.15593/RJBiomech/2021.1.07 |
| [40] |
Ураков А.Л., Уракова Н.А. COVID-19: оптимизация биомеханики дыхания аэрозолем растворителя гноя // Российский журнал биомеханики. 2021. Т. 25, № 1. С. 86–90. DOI: 10.15593/RJBiomech/2021.1.07 |
| [41] |
Urakov AL, Urakova NA. COVID-19: Application of intra-pulmonary injection of hydrogen peroxide solution eliminates hypoxia and normalizes respiratory biomechanics in respiratory obstruction. Russian Journal of Biomechanics. 2021;25(4):406–413. (In Russ.) DOI: 10.15593/RJBiomech/2021.4.06 |
| [42] |
Ураков А.Л., Уракова Н.А. COVID-19: Применение внутрилегочной инъекции раствора перекиси водорода для устранения гипоксии и нормализации биомеханики дыхания при респираторной обструкции // Российский журнал биомеханики. 2021. Т. 25, № 4. С. 406–413. DOI: 10.15593/RJBiomech/2021.4.06 |
| [43] |
Urakov AL, Urakova NA, Yagudin II, et al. COVID-19: Artificial sputum, respiratory obstruction method and screening of pyolitic and antihypoxic drugs. BioImpacts. 2022;12(4):393–394. DOI: 10.34172/bi.2022.23877 |
| [44] |
Urakov A.L., Urakova N.A., Yagudin I.I., et al. COVID-19: Artificial sputum, respiratory obstruction method and screening of pyolitic and antihypoxic drugs // BioImpacts. 2022. Vol. 12, No. 4. P. 393–394. DOI: 10.34172/bi.2022.23877 |
| [45] |
Eder J, Sedrani R, Wiesmann C. The discovery of first-in-class drugs: origins and evolution. Nat Rev Drug Discov. 2014;13(8): 577–587. DOI: 10.1038/nrd4336 |
| [46] |
Eder J., Sedrani R., Wiesmann C. The discovery of first-in-class drugs: origins and evolution // Nat Rev Drug Discov. 2014. Vol. 13, No. 8. P. 577–587. DOI: 10.1038/nrd4336 |
| [47] |
Swinney DC, Anthony J. How were new medicines discovered? Nat Rev Drug Discov. 2011;10(7):507–519. DOI: 10.1038/nrd3480 |
| [48] |
Swinney D.C., Anthony J. How were new medicines discovered? // Nat Rev Drug Discov. 2011. Vol. 10, No. 7. P. 507–519. DOI: 10.1038/nrd3480 |
| [49] |
Zheng W, Thorne N, McKew JC. Phenotypic screens as a renewed approach for drug discovery. Drug Discov Today. 2013;18(21–22): 1067–1073. DOI: 10.1016/j.drudis.2013.07.001 |
| [50] |
Zheng W., Thorne N., McKew J.C. Phenotypic screens as a renewed approach for drug discovery // Drug Discov Today. 2013. Vol. 18, No. 21–22. P. 1067–1073. DOI: 10.1016/j.drudis.2013.07.001 |
| [51] |
Jones LH, Bunnage ME. Applications of chemogenomic library screening in drug discovery. Nat Rev Drug Discov. 2017;16(4): 285–296. DOI: 10.1038/nrd.2016.244 |
| [52] |
Jones L.H., Bunnage M.E. Applications of chemogenomic library screening in drug discovery // Nat Rev Drug Discov. 2017. Vol. 16, No. 4. P. 285–296. DOI: 10.1038/nrd.2016.244 |
| [53] |
de la Torre BG, Albericio F. The pharmaceutical industry in 2019. An analysis of FDA drug approvals from the perspective of molecules. Molecules. 2020;25(3):745. DOI: 10.3390/molecules25030745 |
| [54] |
de la Torre B.G., Albericio F. The pharmaceutical industry in 2019. An analysis of FDA drug approvals from the perspective of molecules // Molecules. 2020. Vol. 25, No. 3. ID 745. DOI: 10.3390/molecules25030745 |
| [55] |
Bustamante C, Ochoa R, Asela C, Muskus C. Repurposing of known drugs for leishmaniasis treatment using bioinformatic predictions, in vitro validations and pharmacokinetic simulation. J Comput Aided Mol Des. 2019;33(9):845–854. DOI: 10.1007/s10822-019-00230-y |
| [56] |
Bustamante C., Ochoa R., Asela C., Muskus C. Repurposing of known drugs for leishmaniasis treatment using bioinformatic predictions, in vitro validations and pharmacokinetic simulation // J Comput Aided Mol Des. 2019. Vol. 33, No. 9. P. 845–854. DOI: 10.1007/s10822-019-00230-y |
| [57] |
Pinheiro AC, de Souza MVN. Current leishmaniasis drug discovery. RSC Med Chem. 2022;13(9):1029–1043. DOI: 10.1039/d1md00362c |
| [58] |
Pinheiro A.C., de Souza M.V.N. Current leishmaniasis drug discovery // RSC Med Chem. 2022. Vol. 13, No. 9. P. 1029–1043. DOI: 10.1039/d1md00362c |
| [59] |
Charlton RL, Rossi-Bergmann B, Denny PW, Steel PG. Repurposing as a strategy for the discovery of new anti-leishmanials: the-state-of-the-art. Parasitology. 2018;145(S2):219–236. DOI: 10.1017/S0031182017000993 |
| [60] |
Charlton R.L., Rossi-Bergmann B., Denny P.W., Steel P.G. Repurposing as a strategy for the discovery of new anti-leishmanials: the-state-of-the-art // Parasitology. 2018. Vol. 145, No. S2. P. 219–236. DOI: 10.1017/S0031182017000993 |
| [61] |
Fan M, Gabr M. Repurposing of known drugs as potential therapeutics for cancer immunotherapy for patients with solid tumors. Eur J Biomed Life Sci. 2022;(2–3):40–53. DOI: 10.29013/ELBLS-22-2-40-53 |
| [62] |
Fan M., Gabr M. Repurposing of known drugs as potential therapeutics for cancer immunotherapy for patients with solid tumors // Eur J Biomed Life Sci. 2022. No. 2–3. P. 40–53. DOI: 10.29013/ELBLS-22-2-40-53 |
| [63] |
Shoaib M, Kamal MA, Rizvi SMD. Repurposed drugs as potential therapeutic candidates for the management of Alzheimer’s disease. Curr Drug Metab. 2017;18(9):842–852. DOI: 10.2174/1389200218666170607101622 |
| [64] |
Shoaib M., Kamal M.A., Rizvi S.M.D. Repurposed drugs as potential therapeutic candidates for the management of Alzheimer’s disease // Curr Drug Metab. 2017. Vol. 18, No. 9. P. 842–852. DOI: 10.2174/1389200218666170607101622 |
| [65] |
Jarada TN, Rokne JG, Alhajj R. A review of computational drug repositioning: strategies, approaches, opportunities, challenges, and directions. J Cheminform. 2020;12(1):46. DOI: 10.1186/s13321-020-00450-7 |
| [66] |
Jarada T.N., Rokne J.G., Alhajj R. A review of computational drug repositioning: strategies, approaches, opportunities, challenges, and directions // J Cheminform. 2020. Vol. 12, No. 1. ID 46. DOI: 10.1186/s13321-020-00450-7 |
| [67] |
Bauzon J, Lee G, Cummings J. Repurposed agents in the Alzheimer’s disease drug development pipeline. Alzheimers Res Ther. 2020;12(1):98. DOI: 10.1186/s13195-020-00662-x |
| [68] |
Bauzon J., Lee G., Cummings J. Repurposed agents in the Alzheimer’s disease drug development pipeline // Alzheimers Res Ther. 2020. Vol. 12, No. 1. ID 98. DOI: 10.1186/s13195-020-00662-x |
| [69] |
Dalvi T, Dewangan B, Das R, et al. Old drugs with new tricks: Paradigm in drug development pipeline for Alzheimer’s disease. Cent Nerv Syst Agents Med Chem. 2020;20(3):157–176. DOI: 10.2174/1871524920666201021164805 |
| [70] |
Dalvi T., Dewangan B., Das R., et al. Old drugs with new tricks: Paradigm in drug development pipeline for alzheimer’s disease // Cent Nerv Syst Agents Med Chem. 2020. Vol. 20, No. 3. P. 157–176. DOI: 10.2174/1871524920666201021164805 |
| [71] |
Jiménez EM, Żołek T, Hernández Perez PG, et al. Drug repurposing to inhibit histamine N-methyl transferase. Molecules. 2023;28(2):576. DOI: 10.3390/molecules28020576 |
| [72] |
Jiménez E.M., Żołek T., Hernández Perez P.G., et al. Drug repurposing to inhibit histamine N-methyl transferase // Molecules. 2023. Vol. 28, No. 2. ID 576. DOI: 10.3390/molecules28020576 |
| [73] |
Ihara M, Saito S. Drug repositioning for Alzheimer’s disease: Finding hidden clues in old drugs. J Alzheimers Dis. 2020;74(4): 1013–1028. DOI: 10.3233/JAD-200049 |
| [74] |
Ihara M., Saito S. Drug repositioning for Alzheimer’s disease: Finding hidden clues in old drugs // J Alzheimers Dis. 2020. Vol. 74, No. 4. P. 1013–1028. DOI: 10.3233/JAD-200049 |
| [75] |
Ihara M, Saito S. Drug repositioning for Alzheimer’s disease. Brain Nerve. 2019;71(9):961–970. DOI: 10.11477/mf.1416201388 |
| [76] |
Ihara M., Saito S. Drug repositioning for Alzheimer’s disease // Brain Nerve. 2019. Vol. 71, No. 9. P. 961–970. DOI: 10.11477/mf.1416201388 |
| [77] |
Pushpakom S, Iorio F, Eyers PA, et al. Drug repurposing: progress, challenges and recommendations. Nat Rev Drug Discov. 2019;18(1):41–58. DOI: 10.1038/nrd.2018.168 |
| [78] |
Pushpakom S., Iorio F., Eyers P.A., et al. Drug repurposing: progress, challenges and recommendations // Nat Rev Drug Discov. 2019. Vol. 18, No. 1. P. 41–58. DOI: 10.1038/nrd.2018.168 |
| [79] |
Hodos RA, Kidd BA, Shameer K, et al. In silico methods for drug repurposing and pharmacology. Wiley Interdiscip Rev Syst Biol Med. 2016;8(3):186–210. DOI: 10.1002/wsbm.1337 |
| [80] |
Hodos R.A., Kidd B.A., Shameer K., et al. In silico methods for drug repurposing and pharmacology // Wiley Interdiscip Rev Syst Biol Med. 2016. Vol. 8, No. 3. P. 186–210. DOI: 10.1002/wsbm.1337 |
| [81] |
Cai L, Lu C, Xu J, et al. Drug repositioning based on the heterogeneous information fusion graph convolutional network. Brief Bioinform. 2021;22(6): bbab319. DOI: 10.1093/bib/bbab319 |
| [82] |
Cai L., Lu C., Xu J., et al. Drug repositioning based on the heterogeneous information fusion graph convolutional network // Brief Bioinform. 2021. Vol. 22, No. 6. ID bbab319. DOI: 10.1093/bib/bbab319 |
| [83] |
Huang W, Li Z, Kang Y, et al. Drug repositioning based on the enhanced message passing and hypergraph convolutional networks. Biomolecules. 2022;12(11):1666. DOI: 10.3390/biom12111666 |
| [84] |
Huang W., Li Z., Kang Y., et al. Drug repositioning based on the enhanced message passing and hypergraph convolutional networks // Biomolecules. 2022. Vol. 12, No. 11. ID 1666. DOI: 10.3390/biom12111666 |
| [85] |
Karaman B, Sippl W. Computational drug repurposing: Current trends. Curr Med Chem. 2019;26(28):5389–5409. DOI: 10.2174/0929867325666180530100332 |
| [86] |
Karaman B., Sippl W. Computational drug repurposing: Current trends // Curr Med Chem. 2019. Vol. 26, No. 28. P. 5389–5409. DOI: 10.2174/0929867325666180530100332 |
| [87] |
Vilar S, Hripcsak G. The role of drug profiles as similarity metrics: applications to repurposing, adverse effects detection and drug-drug interactions. Brief Bioinform. 2017;18(4):670–681. DOI: 10.1093/bib/bbw048 |
| [88] |
Vilar S., Hripcsak G. The role of drug profiles as similarity metrics: applications to repurposing, adverse effects detection and drug-drug interactions // Brief Bioinform. 2017. Vol. 18, No. 4. P. 670–681. DOI: 10.1093/bib/bbw048 |
| [89] |
Chang Y, Hawkins BA, Du JJ, et al. A guide to in Silico. Drug Design. Pharmaceutics. 2022;15(1):49. DOI: 10.3390/pharmaceutics15010049 |
| [90] |
Chang Y., Hawkins B.A., Du J.J., et al. A guide to in Silico // Drug Design. Pharmaceutics. 2022. Vol. 15, No. 1. ID 49. DOI: 10.3390/pharmaceutics15010049 |
| [91] |
Bruno A, Costantino G, Sartori L, Radi M. The in Silico drug discovery toolbox: Applications in lead discovery and optimization. Curr Med Chem. 2019;26(21):3838–3873. DOI: 10.2174/0929867324666171107101035 |
| [92] |
Bruno A., Costantino G., Sartori L., Radi M. The in Silico drug discovery toolbox: Applications in lead discovery and optimization // Curr Med Chem. 2019. Vol. 26, No. 21. P. 3838–3873. DOI: 10.2174/0929867324666171107101035 |
| [93] |
Qin S, Li W, Yu H, et al. Guiding drug repositioning for cancers based on drug similarity networks. Int J Mol Sci. 2023;24(3):2244. DOI: 10.3390/ijms24032244 |
| [94] |
Qin S., Li W., Yu H., et al. Guiding drug repositioning for cancers based on drug similarity networks // Int J Mol Sci. 2023. Vol. 24, No. 3. ID 2244. DOI: 10.3390/ijms24032244 |
| [95] |
Luo H, Wang J, Li M, et al. Computational drug repositioning with random walk on a heterogeneous network. IEEE/ACM Trans Comput Biol Bioinform. 2019;16(6):1890–1900. DOI: 10.1109/TCBB.2018.2832078 |
| [96] |
Luo H., Wang J., Li M., et al. Computational drug repositioning with random walk on a heterogeneous network // IEEE/ACM Trans Comput Biol Bioinform. 2019. Vol. 16, No. 6. P. 1890–1900. DOI: 10.1109/TCBB.2018.2832078 |
| [97] |
Shi W, Chen X, Deng L. A Review of recent developments and progress in computational drug repositioning. Curr Pharm Des. 2020;26(26):3059–3068. DOI: 10.2174/1381612826666200116145559 |
| [98] |
Shi W., Chen X., Deng L. A Review of recent developments and progress in computational drug repositioning // Curr Pharm Des. 2020. Vol. 26, No. 26. P. 3059–3068. DOI: 10.2174/1381612826666200116145559 |
| [99] |
Sahu NU, Kharkar PS. Computational drug repositioning: A lateral approach to traditional drug discovery? Curr Top Med Chem. 2016;16(19):2069–2077. DOI: 10.2174/1568026616666160216153249 |
| [100] |
Sahu N.U., Kharkar P.S. Computational drug repositioning: A lateral approach to traditional drug discovery? // Curr Top Med Chem. 2016. Vol. 16, No. 19. P. 2069–2077. DOI: 10.2174/1568026616666160216153249 |
| [101] |
Koromina M, Pandi MT, Patrinos GP. Rethinking drug repositioning and development with artificial intelligence. Machine learning, and OMICS. OMICS: J Integr Biol. 2019;23(11):539–548. DOI: 10.1089/omi.2019.0151 |
| [102] |
Koromina M., Pandi M.T., Patrinos G.P. Rethinking drug repositioning and development with artificial intelligence. Machine learning, and OMICS // OMICS: J Integr Biol. 2019. Vol. 23, No. 11. P. 539–548. DOI: 10.1089/omi.2019.0151 |
| [103] |
Miroshnichenko II, Valdman EA, Kuz’min II. Old drugs, new indications (Review). Drug development and registration. 2023;12(1): 182–190. (In Russ.) DOI: 10.33380/2305-2066-2023-12-1-182-190 |
| [104] |
Мирошниченко И.И., Вальдман Е.А., Кузьмин И.И. Новое предназначение старых лекарств (обзор) // Разработка и регистрация лекарственных средств. 2023. Т. 12, № 1. С. 182–190. DOI: 10.33380/2305-2066-2023-12-1-182-190 |
| [105] |
Urakov AL, Urakova NA, Shubina ZV, et al. Hypertonic activity of injection solutions can cause post-injection complications (Review). Drug development and registration. 2023;12(2):164–173. (In Russ.) DOI: 10.33380/2305-2066-2023-12-2-164-173 |
| [106] |
Ураков А.Л., Уракова Н.А., Шубина З.В., и др. Гипертоническая активность растворов для инъекций может являться причиной постинъекционных осложнений (обзор) // Разработка и регистрация лекарственных средств. 2023. Т. 12, № 2. С. 164–173. DOI: 10.33380/2305-2066-2023-12-2-164-173 |
| [107] |
Urakov AL, Shabanov PD, Gurevich KG, Lovtsova LV. Supplementing traditional drug formulation with the “needed” gases opens the way for the development of a new generation of drugs. Psychopharmacology and biological narcology. 2023;14(1):5–14. (In Russ.) DOI: 10.17816/phbn321616 |
| [108] |
Ураков А.Л., Шабанов П.Д., Гуревич К.Г., Ловцова Л.В. Дополнение традиционной рецептуры лекарственных препаратов «нужными» газами открывает путь к разработке лекарств нового поколения // Психофармакология и биологическая наркология. 2023. Т. 14, № 1. С. 5–14. DOI: 10.17816/phbn321616 |
| [109] |
Borosnyói A. Message from the editors. Epitőanyag — Journal of Silicate Based and Composite Materials. 2015;67(1):6. |
| [110] |
Borosnyói A. Message from the editors // Epitőanyag — Journal of Silicate Based and Composite Materials. 2015. Vol. 67, No. 1. ID 6. |
| [111] |
Urakov AL. Retsept na temperaturu. Izhevsk: Udmurtiya, 1988. 80 p. (In Russ.) |
| [112] |
Ураков А.Л. Рецепт на температуру. Ижевск: Удмуртия, 1988. 80 с. |
| [113] |
Shabanov PD, Fisher EL, Urakov AL. Hydrogen peroxide formulations and methods of their use for blood oxygen saturation. J Med Pharm Allied Sci. 2022;11(6):5489–5493. DOI: 10.55522/jmpas.V11I6.4604 |
| [114] |
Shabanov P.D., Fisher E.L., Urakov A.L. Hydrogen peroxide formulations and methods of their use for blood oxygen saturation // J Med Pharm Allied Sci. 2022. Vol. 11, No. 6. P. 5489–5493. DOI: 10.55522/jmpas.V11I6.4604 |
| [115] |
Urakov A, Urakova N, Sorokina Yu, et al. Targeted modification of physical-chemical properties of drugs as a universal way to transform “old” drugs into “new” drugs. In: Rudrapal M, editor. Drug repurposing — advances, scopes and opportunities in drug discovery. Ch. 3. IntechOpen, 2023. |
| [116] |
Urakov A., Urakova N., Sorokina Yu., et al. Targeted modification of physical-chemical properties of drugs as a universal way to transform “old“ drugs into “new” drugs. Drug repurposing — advances, scopes and opportunities in drug discovery. Ch. 3 / ed. by M. Rudrapal. IntechOpen, 2023. |
| [117] |
Urakov AL, Urakova NA, Stolyarenko AP. How to turn an old medicine into a new medicine. J Bio Innov. 2020;9(5):774–777. DOI: 10.46344/JBINO.2020.v09i05.13 |
| [118] |
Urakov A.L., Urakova N.A., Stolyarenko A.P. How to turn an old medicine into a new medicine // J Bio Innov. 2020. Vol. 9, No. 5. P. 774–777. DOI: 10.46344/JBINO.2020.v09i05.13 |
| [119] |
Fisher E, Urakov A, Svetova M, et al. COVID-19: intrapulmonary alkaline hydrogen peroxide can immediately increase blood oxygenation. Med Cas. 2021;55(4):135–138. DOI: 10.5937/mskg55-3524 |
| [120] |
Fisher E., Urakov A., Svetova M., et al. COVID-19: intrapulmonary alkaline hydrogen peroxide can immediately increase blood oxygenation // Med Cas. 2021. Vol. 55, No. 4. P. 135–138. DOI: 10.5937/mskg55-3524 |
ECO-vector LLC
/
| 〈 |
|
〉 |