Preclinical study of pharmacokinetic ADME processes of phenosanic acid in vitro and in vivo

Vera M. Kosman , Marina V. Karlina , Ksenia V. Tyutina , Valery G. Makarov , Marina N. Makarova , Sergey V. Morozov , Eugenia E. Gushchina , Natalia V. Zhuravskaya

Reviews on Clinical Pharmacology and Drug Therapy ›› 2022, Vol. 20 ›› Issue (3) : 297 -308.

PDF
Reviews on Clinical Pharmacology and Drug Therapy ›› 2022, Vol. 20 ›› Issue (3) : 297 -308. DOI: 10.17816/RCF203297-308
Original study articles
research-article

Preclinical study of pharmacokinetic ADME processes of phenosanic acid in vitro and in vivo

Author information +
History +
PDF

Abstract

BACKGROUND: Phenosanic acid is a synthetic antioxidant, the active ingredient of the original domestic drug recommended for the treatment of epilepsy. To improve the effectiveness and safety of the use of phenosanoic acid, additional study of its pharmacokinetic properties is necessary.

AIM: To study the pharmacokinetic parameters of the active ingredient of the drug Dibufelon, capsule 200 mg (LLC “Piq-Pharma”, Russia) in vitro and in vivo systems in rats after single administration in one dose.

MATERIALS AND METHODS: Phenosanic acid binding to blood plasma proteins, microsomal stability and permeability through the monolayer of Caco-2 cells were evaluated in in vitro tests. The pharmacokinetics parameters were studied after a single intragastric administration in Wistar rats in dose of 80 mg/kg. The samples were analyzed by HPLC-UV.

RESULTS: A high variability in the degree of binding of phenosanic acid to blood plasma proteins by 20–65% depending on the concentration was revealed, relatively high microsomal stability (half-life — 1106 ± 789 min, internal clearance — 2.05 ± 0.86 μl/min/mg protein of liver microsome; residual content after 60 min incubation — 87.9 ± 7.8%) and the ability to penetrate through the monolayer of cells Caco-2. The rapid absorbtion of the substance into the systemic bloodstream was established — its maximum concentration in blood plasma was observed already 3.6 ± 1.2 hours after administration, and its slow removal from the systemic bloodstream — the half-life was about 19 h, the average retention time was about 29 h. Phenosanic acid with different degrees of intensity was distributed to all the examined organs and tissues: kidneys > liver > brain > omentum > muscle, and invariably excreted in a small amount with urine and feces, about 0.04% and 5.5%, respectively.

CONCLUSIONS: As a result of the study, it was found that phenosanic acid is characterized by rapid absorbtion into the systemic bloodstream and a long stay in it invariably, which may be due to the peculiarities of its binding to blood plasma proteins and relatively high metabolic stability, revealed during the corresponding in vitro tests. The study of the permeability and transport of phenosanic acid showed that it can presumably be attributed to compounds with medium permeability and is not a substrate for the transport protein P-glycoprotein (P-gp). The study of tissue availability of phenosanic acid confirmed its entry into peripheral tissues, including the brain, which is the area of implementation of the anticonvulsant effect.

Keywords

phenosanic acid / plasma protein binding / stability / liver microsomes / permeability / intragastrical application / pharmacokinetics / rats / plasma organ and tissues / excretes / HPLC-UV

Cite this article

Download citation ▾
Vera M. Kosman, Marina V. Karlina, Ksenia V. Tyutina, Valery G. Makarov, Marina N. Makarova, Sergey V. Morozov, Eugenia E. Gushchina, Natalia V. Zhuravskaya. Preclinical study of pharmacokinetic ADME processes of phenosanic acid in vitro and in vivo. Reviews on Clinical Pharmacology and Drug Therapy, 2022, 20(3): 297-308 DOI:10.17816/RCF203297-308

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Burd SG, Lebedeva AV, Pantina NV, et al. Clinical results and prospects for the use of phenosanic acid in patients with focal epilepsy. Zhurnal Nevrologii i Psikhiatrii imeni SS. Korsakova. 2021;121(10):52–59. (In Russ.) DOI: 10.17116/jnevro202112110152

[2]

Бурд С.Г., Лебедева А.В., Пантина Н.В., и др. Клинические результаты и перспективы применения фенозановой кислоты у взрослых пациентов с фокальной эпилепсией // Журнал неврологии и психиатрии им. С.С. Корсакова. 2021. Т. 121, № 10. С. 52–59. DOI: 10.17116/jnevro202112110152

[3]

Altman DG, Bland JM. How to randomize. BMJ. 1999;319(7211):703–704. DOI: 10.1136/bmj.319.7211.703

[4]

Altman D.G., Bland J.M. How to randomize // BMJ. 1999. Vol. 319, No. 7211. P. 703–704. DOI: 10.1136/bmj.319.7211.703

[5]

Bland JM. An Introduction to Medical Statistics. 3rd edition. New York: Oxford University Press; 2000. 422 р.

[6]

Bland J.M. An Introduction to Medical Statistics. 3rd edition. New York: Oxford University Press, 2000. 422 р.

[7]

Zhang Y, Huo M, Zhou J, Xie S. PKSolver: An add-in program for pharmacokinetic and pharmacodynamic data analysis in Microsoft Excel. Comput Methods Programs Biomed. 2010;99(3):306–314. DOI: 10.1016/j.cmpb.2010.01.007

[8]

Zhang Y., Huo M., Zhou J., Xie S. PKSolver: An add-in program for pharmacokinetic and pharmacodynamic data analysis in Microsoft Excel // Comput Methods Programs Biomed. 2010. Vol. 99, No. 3. P. 306–314. DOI: 10.1016/j.cmpb.2010.01.007

[9]

Prokopov AA, SHukil’ LV, Berlyand AS. Studying the bioavailability of fenozan acid in various medicinal forms. Khimiko farmatsevticheskii zhurnal. 2006;40(1):3–5. (In Russ.) DOI: 10.30906/0023-1134-2006-40-1-3-5

[10]

Прокопов А.А., Шукиль Л.В., Берлянд А.С. Изучение биодоступности фенозановой кислоты в различных лекарственных формах // Химико-фармацевтический журнал. 2006. T. 40, № 1. С. 3–5. DOI: 10.30906/0023-1134-2006-40-1-3-5

[11]

Kondratenko SN, Starodubcev AK, Belyakova GA. VEZHKH-opredelenie i farmakokinetika novogo original’nogo preparata Dibufelon®. Khimiko farmatsevticheskii zhurnal. 2009;43(11):54–56. (In Russ.) DOI: 10.30906/0023-1134-2009-43-11-54-56

[12]

Кондратенко С.Н., Стародубцев А.К., Белякова Г.А. ВЭЖХ-определение и фармакокинетика нового оригинального препарата Дибуфелон® // Химико-фармацевтический журнал. 2009. Т. 43, № 11. С. 54–56. DOI: 10.30906/0023-1134-2009-43-11-54-56

[13]

Kosman VM, Karlina MV, Makarova MN. Experience in development of bioanalytical methods by HPLC with UV detection. Pharmacy. 2020;69(3):23–35. (In Russ.) DOI: 10.29296/25419218-2020-03-04

[14]

Косман В.М., Карлина М.В., Макарова М.Н. Опыт разработки биоаналитических методик методом ВЭЖХ с УФ-детектированием // Фармация. 2020. Т. 69, № 3. С. 23–35. DOI: 10.29296/25419218-2020-03-04

[15]

Luik AI, Luk’yanchuk VD. Syvorotochnyi al’bumin i biotransport yadov. Moscow: Meditsina; 1984. 224 p.

[16]

Луик А.И., Лукьянчук В.Д. Сывороточный альбумин и биотранспорт ядов. Москва: Медицина, 1984. 224 с.

[17]

Abaimov DA, Sariev AK, Noskova TYu, et al. Modern technologies in therapeutic drug monitoring (review). Epilepsy and paroxysmal conditions. 2013;5(2):31–41. (In Russ.)

[18]

Абаимов Д.А., Сариев Е.К., Носкова Т.Ю., и др. Современные технологии в терапевтическом лекарственном мониторинге // Эпилепсия и пароксизмальные состояния. 2013. Т. 5, № 2. С. 31–41.

[19]

Mondal SK, Mazumber UK, Mondal NB, Banerjee S. Optimisation of rat liver microsomal stability assay using HPLC. J Biological Sci. 2008;8:1110–1114. DOI: 10.3923/jbs.2008.1110.1114

[20]

Mondal S.K., Mazumber U.K., Mondal N.B., Banerjee S. Optimisation of rat liver microsomal stability assay using HPLC // J Biological Sci. 2008. Vol. 8. P. 1110–1114. DOI: 10.3923/jbs.2008.1110.1114

[21]

Obach RS. Prediction of human clearance of twenty-nine drugs from hepatic microsomal intrinsic clearance data: an examination of in vitro half-life approach and nonspecific binding to microsomes. Drug Metab Dispos. 1999;27(11):1350–1359.

[22]

Obach R.S. Prediction of human clearance of twenty-nine drugs from hepatic microsomal intrinsic clearance data: an examination of in vitro half-life approach and nonspecific binding to microsomes // Drug Metab Dispos. 1999. Vol. 27, No. 11. P. 1350–1359.

[23]

Riley RJ, McGinnity DF, Austin RP. A Unified model for predicting human hepatic, metabolic clearance from in vitro intrinsic clearance data in hepatocytes and microsomes. Drug Metab Dispos. 2005;33(9):1304–1311. DOI: 10.1124/dmd.105.004259

[24]

Riley R.J., McGinnity D.F., Austin R.P. A Unified model for predicting human hepatic, metabolic clearance from in vitro intrinsic clearance data in hepatocytes and microsomes // Drug Metab Dispos. 2005. Vol. 33, N. 9. P. 1304–1311. DOI: 10.1124/dmd.105.004259

[25]

Bohets H, Annaert P, Mannens G, et al. Strategies for absorption screening in drug discovery and development. Curr Top Med Chem. 2001;1:367–383. DOI: 10.2174/1568026013394886

[26]

Bohets H., Annaert P., Mannens G., et al. Strategies for absorption screening in drug discovery and development // Curr Top Med Chem. 2001. Vol. 1. P. 367–383. DOI: 10.2174/1568026013394886

[27]

Huebert ND, Dasgupta M, Chen Y. Using in vitro human tissues to predict pharmacokinet properties. Curr Opin Drug Discov Devel. 2004;7:69–74.

[28]

Huebert N.D., Dasgupta M., Chen Y. Using in vitro human tissues to predict pharmacokinet properties // Curr Opin Drug Discov Devel. 2004. Vol. 7. P. 69–74.

[29]

Lennernas H, Palm K, Fagerholm U, Artursson. Comparison between active and passive drug transport in human intestinal epithelial (Caco-2) cells in vitro and human jejunum in vivo. International Journal of Pharmaceutics. 1996;127:103–107. DOI: 10.1016/0378-5173(95)04204-0

[30]

Lennernas H., Palm K., Fagerholm U., Artursson P. Comparison between active and passive drug transport in human intestinal epithelial (Caco-2) cells in vitro and human jejunum in vivo // International Journal of Pharmaceutics. 1996. Vol. 127. P. 103–107. DOI: 10.1016/0378-5173(95)04204-0

[31]

Arena A, Phillips J, Blanchard M. MultiScreen Caco-2 Assay System. Drug transport assays in a 96-well system: reproducibility and correlation to human absorption. 2003. Available from: https://www.sigmaaldrich.cn/CN/zh/technical-documents/technical-article/research-and-disease-areas/pharmacology-and-drug-discovery-research/multiscreen-caco-2-assay-system

[32]

Arena A., Phillips J., Blanchard M. MultiScreen Caco-2 Assay System. Drug transport assays in a 96-well system: reproducibility and correlation to human absorption. 2003. Режим доступа: https://www.sigmaaldrich.cn/CN/zh/technical-documents/technical-article/research-and-disease-areas/pharmacology-and-drug-discovery-research/multiscreen-caco-2-assay-system Дата обращения: 29.03.2022.

[33]

Marugan J.J., Xiao J., Zheng W., et al. ML223: A small molecule probe with in vivo activity against acute myeloid leukemia subtype M4Eo. In: Probe Reports from the NIH Molecular Libraries Program [Internet]. 2010. Available from: https://www.ncbi.nlm.nih.gov/books/NBK133444/table/ml223.t4/. Cited: 29 March 2022

[34]

Marugan J.J., Xiao J., Zheng W., et al. ML223: A small molecule probe with in vivo activity against acute myeloid leukemia subtype M4Eo. In: Probe Reports from the NIH Molecular Libraries Program [Internet]. 2010. Режим доступа: https://www.ncbi.nlm.nih.gov/books/NBK133444/table/ml223.t4/. Дата обращения: 29.03.2022

[35]

Zherdev VP, Kolyvanov GB, Litvin AA, et al. Garmonizaciya provedeniya issledovanij bioekvivalentnosti lekarstvennyh preparatov: voprosy i ih vozmozhnoe reshenie. Eksperimental’naya i klinicheskaya farmakologiya. 2003;66(2):60–64. (In Russ.) DOI: 10.30906/0869-2092-2003-66-2-60-64

[36]

Жердев В.П., Колыванов Г.Б., Литвин А.А. и др. Гармонизация проведения исследований биоэквивалентности лекарственных препаратов: вопросы и их возможное решение // Экспериментальная и клиническая фармакология. 2003. Т. 66, № 2. С. 60–64. DOI: 10.30906/0869-2092-2003-66-2-60-64

RIGHTS & PERMISSIONS

ECO-vector LLC

AI Summary AI Mindmap
PDF

60

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/