Immunotropic effects of hypoglycemic agents on coronavirus infection: a view from the perspective of pharmacogenetics

Konstantin G. Gurevich , Yulia A. Sorokina , Alexander L. Urakov , Snezhana D. Sinyushkina , Maria I. Pryazhnikova , Alyona V. Gorinova , Lyubov V. Lovtsova , Olga V. Zanozina

Reviews on Clinical Pharmacology and Drug Therapy ›› 2022, Vol. 20 ›› Issue (3) : 269 -279.

PDF
Reviews on Clinical Pharmacology and Drug Therapy ›› 2022, Vol. 20 ›› Issue (3) : 269 -279. DOI: 10.17816/RCF203269-279
Reviews
review-article

Immunotropic effects of hypoglycemic agents on coronavirus infection: a view from the perspective of pharmacogenetics

Author information +
History +
PDF

Abstract

Diabetes mellitus is a predictor of the severe course of a new coronavirus infection and high mortality, in this regard, the selection of appropriate hypoglycemic therapy is a vital issue. In this article, we paid attention to dipeptidyl peptidase-4 (DPP-4) inhibitors, since this group of drugs has features like low risk of hyperglycemia and immuno-mediated effects. For the most effective treatment, it is necessary to take into account the individual characteristics of each patient, namely, the achievements of pharmacogenetics. The genetic variability of the response to therapy with DPP-4 inhibitors is due to a variety of polymorphisms, several main variations are considered in the review. The ambiguity of the available studies on the effectiveness of DPP-4 inhibitors in patients with type 2 diabetes with COVID-19 indicates the need to continue pharmacogenetic studies. The combination of knowledge about the subtleties of the mechanisms of pharmacological action of drugs and individual characteristics of pharmacodinamics will ensure the greatest effectiveness and safety of personalized therapy of diabetes mellitus against the background of coronavirus infection.

Keywords

dipeptidyl peptidase-4 inhibitors / COVID-19 / pharmacogenetics / diabetes mellitus

Cite this article

Download citation ▾
Konstantin G. Gurevich, Yulia A. Sorokina, Alexander L. Urakov, Snezhana D. Sinyushkina, Maria I. Pryazhnikova, Alyona V. Gorinova, Lyubov V. Lovtsova, Olga V. Zanozina. Immunotropic effects of hypoglycemic agents on coronavirus infection: a view from the perspective of pharmacogenetics. Reviews on Clinical Pharmacology and Drug Therapy, 2022, 20(3): 269-279 DOI:10.17816/RCF203269-279

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Verspohl EJ. Novel therapeutics for type 2 diabetes: Incretin hormone mimetics (glucagon-like peptide-1 receptor agonists) and dipeptidyl peptidase-4 inhibitors. Pharmacol Ther. 2009;124(1): 113–138. DOI: 10.1016/j.pharmthera.2009.06.002

[2]

Verspohl E.J. Novel therapeutics for type 2 diabetes: Incretin hormone mimetics (glucagon-like peptide-1 receptor agonists) and dipeptidyl peptidase-4 inhibitors // Pharmacol Ther. 2009. Vol. 124, No. 1. P. 113–138. DOI: 10.1016/j.pharmthera.2009.06.002

[3]

Mulvihill EE, Drucker DJ. Pharmacology, physiology, and mechanisms of action of dipeptidyl peptidase-4 inhibitors. Endocr Rev. 2014;35(6): 992–1019. DOI: 10.1210/er.2014-1035

[4]

Mulvihill E.E., Drucker D.J. Pharmacology, physiology, and mechanisms of action of dipeptidyl peptidase-4 inhibitors // Endocr Rev. 2014. Vol. 35, No. 6. P. 992–1019. DOI: 10.1210/er.2014-1035

[5]

Capuano A, Sportiello L, Maiorino MI, et al. Dipeptidyl peptidase-4 inhibitors in type 2 diabetes therapy — focus on alogliptin. Drug Des Devel Ther. 2013;7:989–1001. DOI: 10.2147/DDDT.S37647

[6]

Capuano A., Sportiello L., Maiorino M.I., et al. Dipeptidyl peptidase-4 inhibitors in type 2 diabetes therapy — focus on alogliptin // Drug Des Devel Ther. 2013. Vol. 7. P. 989–1001. DOI: 10.2147/DDDT.S37647

[7]

Pratley RE, Salsali A. Inhibition of DPP-4: a new therapeutic approach for the treatment of type 2 diabetes. Curr Med Res Opin. 2007;23(4):919–931. DOI: 10.1185/030079906X162746

[8]

Pratley R.E., Salsali A. Inhibition of DPP-4: a new therapeutic approach for the treatment of type 2 diabetes // Curr Med Res Opin. 2007. Vol. 23, No. 4. P. 919–931. DOI: 10.1185/030079906X162746

[9]

Kimura T, Kaku K. New prospects for incretin-related drugs in the treatment of type 2 diabetes. J Diabetes Investig. 2021;12(7): 1141–1143. DOI: 10.1111/jdi.13460

[10]

Kimura T., Kaku K. New prospects for incretin-related drugs in the treatment of type 2 diabetes // J Diabetes Investig. 2021. Vol. 12, No. 7. P. 1141–1143. DOI: 10.1111/jdi.13460

[11]

Tasyurek HM, Altunbas HA, Balci MK, et al. Incretins: Their physiology and application in the treatment of diabetes mellitus. Diabetes Metab Res Rev. 2014;30(5):354–337. DOI: 10.1002/dmrr.2501

[12]

Tasyurek H.M., Altunbas H.A., Balci M.K., et al. Incretins: Their physiology and application in the treatment of diabetes mellitus // Diabetes Metab Res Rev. 2014. Vol. 30, No. 5. P. 354–337. DOI: 10.1002/dmrr.2501

[13]

Han SJ, Ha KH, Lee N, et al. Effectiveness and safety of sodium-glucose co-transporter-2 inhibitors compared with dipeptidyl peptidase-4 inhibitors in older adults with type 2 diabetes: A nationwide population-based study. Diabetes Obes Metab. 2021;23(3):682–691. DOI: 10.1111/dom.14261

[14]

Han S.J., Ha K.H., Lee N., et al. Effectiveness and safety of sodium-glucose co-transporter-2 inhibitors compared with dipeptidyl peptidase-4 inhibitors in older adults with type 2 diabetes: A nationwide population-based study // Diabetes Obes Metab. 2021. Vol. 23, No. 3. P. 682–691. DOI: 10.1111/dom.14261

[15]

Espeland MA, Pratley RE, Rosenstock J, et al. Cardiovascular outcomes and safety with linagliptin, a dipeptidyl peptidase-4 inhibitor, compared with the sulphonylurea glimepiride in older people with type 2 diabetes: A subgroup analysis of the randomized CAROLINA trial. Diabetes Obes metab. 2021;23(2):569–580. DOI: 10.1111/dom.14254

[16]

Espeland M.A., Pratley R.E., Rosenstock J., et al. Cardiovascular outcomes and safety with linagliptin, a dipeptidyl peptidase-4 inhibitor, compared with the sulphonylurea glimepiride in older people with type 2 diabetes: A subgroup analysis of the randomized CAROLINA trial // Diabetes Obes Metab. 2021. Vol. 23, No. 2. P. 569–580. DOI: 10.1111/dom.14254

[17]

Zanozina OV, Sorokina YuA, Lovtsova LV, et al. Gliptiny v inkretin-napravlennoi farmakoterapii sakharnogo diabeta: vozmozhnosti i personalizatsiya. Nizhnii Novgorod: Remedium Privolzh’e; 2018. 112 p. (In Russ.) DOI: 10.21145/978-5-906125-57-6_2018

[18]

Занозина О.В., Сорокина Ю.А., Ловцова Л.В., и др. Глиптины в инкретин-направленной фармакотерапии сахарного диабета: возможности и персонализация. Нижний Новгород: Ремедиум Приволжье, 2018. 112 c. DOI: 10.21145/978-5-906125-57-6_2018

[19]

Lotfy M, Singh J, Kalász H, et al. Medicinal chemistry and applications of incretins and DPP-4 inhibitors in the treatment of type 2 diabetes mellitus. The open medicinal chemistry journal. 2011;5(2):82–92. DOI: 10.2174/1874104501105010082

[20]

Lotfy M., Singh J., Kalász H., et al. Medicinal chemistry and applications of incretins and DPP-4 inhibitors in the treatment of type 2 diabetes mellitus // Open Med Chem J. 2011. Vol. 5, Suppl. 2. P. 82–92. DOI: 10.2174/1874104501105010082

[21]

Szeltner Z, Polgar L. Structure, function and biological relevance of prolyl oligopeptidase. Curr Protein Pept Sci. 2008;9(1):96–107. DOI: 10.2174/138920308783565723

[22]

Szeltner Z., Polgar L. Structure, function and biological relevance of prolyl oligopeptidase // Curr Protein Pept Sci. 2008. Vol. 9, No. 1. P. 96–107. DOI: 10.2174/138920308783565723

[23]

Urakov AL, Gurevich KG, Sorokina YuA, et al. Metformin and vildagliptin combination: a new approach of endothelial nitric oxide synthase activity regulation and metabolism in diabetes mellitus type 2. Reviews on Clinical Pharmacology and Drug Therapy. 2018;16(2):5–12. (In Russ). DOI: 10.17816/RCF1625-12

[24]

Ураков А.Л., Гуревич К.Г., Сорокина Ю.А., и др. Комбинации метформина и вилдаглиптина: новый взгляд на регуляторы активности эндотелиальной функции и метаболизма при сахарном диабете 2-го типа // Обзоры по клинической фармакологии и лекарственной терапии. 2018. Т. 16, № 2. С. 5–12. DOI: 10.17816/RCF1625-12

[25]

Deacon CF. Physiology and pharmacology of DPP-4 in glucose homeostasis and the treatment of type 2 diabetes. Front Endocrinol (Lausanne). 2019;10:80. DOI: 10.3389/fendo.2019.00080

[26]

Deacon C.F. Physiology and pharmacology of DPP-4 in glucose homeostasis and the treatment of type 2 diabetes // Front Endocrinol (Lausanne). 2019. Vol. 10. P. 80. DOI: 10.3389/fendo.2019.00080

[27]

Reinhold D, Bank U, Täger M, et al. DP IV/CD26, APN/CD13 and related enzymes as regulators of T cell immunity: implications for experimental encephalomyelitis and multiple sclerosis. Front Biosci. 2008;13(6):2356–2363. DOI: 10.2741/2849

[28]

Reinhold D., Bank U., Täger M., et al. DP IV/CD26, APN/CD13 and related enzymes as regulators of T cell immunity: implications for experimental encephalomyelitis and multiple sclerosis // Front Biosci. 2008. Vol. 13, No. 6. P. 2356–2363. DOI: 10.2741/2849

[29]

Scheen AJ. DPP-4 inhibition and COVID-19: From initial concerns to recent expectations. Diabetes Metab. 2021;47(2):101213. DOI: 10.1016/j.diabet.2020.11.005

[30]

Scheen A.J. DPP-4 inhibition and COVID-19: From initial concerns to recent expectations // Diabetes Metab. 2021. Vol. 47, No. 2. P. 101213. DOI: 10.1016/j.diabet.2020.11.005

[31]

Hariyanto TI, Kurniawan A. Dipeptidyl peptidase 4 (DPP4) inhibitor and outcome from coronavirus disease 2019 (COVID-19) in diabetic patients: a systematic review, meta-analysis, and meta-regression. J Diabetes Metab Disord. 2021;20(1):543–550. DOI: 10.1007/s40200-021-00777-4

[32]

Hariyanto T.I., Kurniawan A. Dipeptidyl peptidase 4 (DPP4) inhibitor and outcome from coronavirus disease 2019 (COVID-19) in diabetic patients: a systematic review, meta-analysis, and meta-regression // J Diabetes Metab Disord. 2021. Vol. 20, No. 1. P. 543–550. DOI: 10.1007/s40200-021-00777-4

[33]

Sorokina YuA, Zanozina OV, Postnikova AD. The insulin resistance indices: necessity and opportunities in type 2 diabetes mellitus management. Clinical Medicine. 2020;98(7):529–535. (In Russ.) DOI: 10.30629/0023-2149-2020-98-7-529-535

[34]

Сорокина Ю.А., Занозина О.В., Постникова А.Д. Индексы инсулинорезистентности: возможность и необходимость их применения для оптимизации ведения больных сахарным диабетом 2-го типа // Клиническая медицина. 2020. Т. 98, № 7. С. 529–535. DOI: 10.30629/0023-2149-2020-98-7-529-535.

[35]

Tomovic K, Lazarevic J, Kocic G, et al. Mechanisms and pathways of anti-inflammatory activity of DPP-4 inhibitors in cardiovascular and renal protection. Med Res Rev. 2019;39(1):404–422. DOI: 10.1002/med.21513

[36]

Tomovic K., Lazarevic J., Kocic G., et al. Mechanisms and pathways of anti-inflammatory activity of DPP-4 inhibitors in cardiovascular and renal protection // Med Res Rev. 2019. Vol. 39, No. 1. P. 404–422. DOI: 10.1002/med.21513

[37]

Liu X, Men P, Wang B, et al. Effect of dipeptidyl-peptidase-4 inhibitors on C-reactive protein in patients with type 2 diabetes: a systematic review and meta-analysis. Lipids in Health and Disease. 2019;18(1):144. DOI: 10.1186/s12944-019-1086-4

[38]

Liu X., Men P., Wang B., et al. Effect of dipeptidyl-peptidase-4 inhibitors on C-reactive protein in patients with type 2 diabetes: a systematic review and meta-analysis // Lipids in Health and Disease. 2019. Vol. 18, No. 1. P. 144. DOI: 10.1186/s12944-019-1086-4

[39]

Makarova EV, Varvarina GN, Sorokina YuA, et al. Metformin opportunities in comorbid patents with diabetes mellitus type 2 and chronic obstructive pulmonary disease. Dnevnik kazanskoi meditsinskoi shkoly. 2020;1(27):21–26. (In Russ.)

[40]

Макарова Е.В., Варварина Г.Н., Сорокина Ю.А., и др. Возможности фармакотерапии метформином у коморбидных пациентов с сахарным диабетом 2 типа и хронической обструктивной болезнью легких // Дневник казанской медицинской школы. 2020. № 1(27). С. 21–26.

[41]

Sorokina YuA, Zanozina OV, Makarova EV, et al. Leptin and its receptor gene polymorphism as a target for pharmacotherapy in T2DM and COPD. Medical Council. 2021;(7):88–94. DOI: 10.21518/2079-701X-2021-7-88-94

[42]

Сорокина Ю.А., Занозина О.В., Макарова Е.В., и др. Лептин и полиморфизм гена его рецептора как мишень для фармакотерапии при сахарном диабете 2-го типа и хронической обструктивной болезни легких // Медицинский совет. 2021. № 7. С. 88–94. DOI: 10.21518/2079-701X-2021-7-88-94

[43]

Waumans Y, Baerts L, Kehoe K, et al. The dipeptidyl peptidase family, prolyl oligopeptidase, and prolyl carboxypeptidase in the immune system and inflammatory disease, including atherosclerosis. Front Immunol 2015;6:387. DOI: 10.3389/fimmu.2015.00387

[44]

Waumans Y., Baerts L., Kehoe K., et al. The dipeptidyl peptidase family, prolyl oligopeptidase, and prolyl carboxypeptidase in the immune system and inflammatory disease, including atherosclerosis // Front Immunol. 2015. Vol. 6. P. 387. DOI: 10.3389/fimmu.2015.00387

[45]

Rizzo MR, Barbieri M, Marfella R, et al. Reduction of oxidative stress and inflammation by blunting daily acute glucose fluctuations in patients with type 2 diabetes: role of dipeptidyl peptidase-IV inhibition. Diabetes Care. 2012;35(10):2076–2082. DOI: 10.2337/dc12-1436

[46]

Rizzo M.R., Barbieri M., Marfella R., et al. Reduction of oxidative stress and inflammation by blunting daily acute glucose fluctuations in patients with type 2 diabetes: role of dipeptidyl peptidase-IV inhibition // Diabetes Care. 2012. Vol. 35, No. 10. P. 2076–2082. DOI: 10.2337/dc12-1436

[47]

Lee YS, Jun HS. Anti-inflammatory effects of GLP-1-based therapies beyond glucose control. Mediators Inflamm. 2016;2016:3094642. DOI: 10.1155/2016/3094642

[48]

Lee Y.S., Jun H.S. Anti-inflammatory effects of GLP-1-based therapies beyond glucose control // Mediators Inflamm. 2016. Vol. 2016. P. 3094642. DOI: 10.1155/2016/3094642

[49]

Rakhmat II, Kusmala YY, Handayani DR, et al. Dipeptidyl peptidase-4 (DPP-4) inhibitor and mortality in coronavirus disease 2019 (COVID-19) — A systematic review, meta-analysis, and meta-regression. Diabetes Metab Syndr. 2021;15(3):777–782. DOI: 10.1016/j.dsx.2021.03.027

[50]

Rakhmat I.I., Kusmala Y.Y., Handayani D.R., et al. Dipeptidyl peptidase-4 (DPP-4) inhibitor and mortality in coronavirus disease 2019 (COVID-19) — A systematic review, meta-analysis, and meta-regression // Diabetes Metab Syndr. 2021. Vol. 15, No. 3. P. 777–782. DOI: 10.1016/j.dsx.2021.03.027

[51]

Xu J, Wang J, He M, et al. Dipeptidyl peptidase IV (DPP-4) inhibition alleviates pulmonary arterial remodeling in experimental pulmonary hypertension. Lab Invest. 2018;98(10):1333–1346. DOI: 10.1038/s41374-018-0080-1

[52]

Xu J., Wang J., He M., et al. Dipeptidyl peptidase IV (DPP-4) inhibition alleviates pulmonary arterial remodeling in experimental pulmonary hypertension // Lab Invest. 2018. Vol. 98, No. 10. P. 1333–1346. DOI: 10.1038/s41374-018-0080-1

[53]

Patoulias D, Doumas M. Dipeptidyl peptidase-4 inhibitors and COVID-19-related deaths among patients with type 2 diabetes mellitus: a meta-analysis of observational studies. Endocrinol Metab (Seoul). 2021;36(4):904–908. DOI: 10.3803/EnM.2021.1048

[54]

Patoulias D., Doumas M. Dipeptidyl peptidase-4 inhibitors and COVID-19-related deaths among patients with type 2 diabetes mellitus: A meta-analysis of observational studies // Endocrinol Metab (Seoul). 2021. Vol. 36, No. 4. P. 904–908. DOI: 10.3803/EnM.2021.1048

[55]

Drucker DJ. Coronavirus infections and type 2 diabetes-shared pathways with therapeutic implications. Endocr Rev. 2020;41(3): bnaa011. DOI: 10.1210/endrev/bnaa011

[56]

Drucker D.J. Coronavirus infections and type 2 diabetes-shared pathways with therapeutic implications // Endocr Rev. 2020. Vol. 41, No. 3. bnaa011. DOI: 10.1210/endrev/bnaa011

[57]

Scheen AJ. DPP-4 inhibition and COVID-19: From initial concerns to recent expectations. Diabet Metab. 2021;47(2):101213. DOI: 10.1016/j.diabet.2020.11.005

[58]

Scheen A.J. DPP-4 inhibition and COVID-19: From initial concerns to recent expectations // Diabet Metab. 2021. Vol. 47, No. 2. P. 101213. DOI: 10.1016/j.diabet.2020.11.005

[59]

Qi F, Qian S, Zhang S, et al. Single cell RNA sequencing of 13 human tissues identify cell types and receptors of human coronaviruses. Biochem Biophys Res Commun. 2020;526(1):135–140. DOI: 10.1016/j.bbrc.2020.03.044

[60]

Qi F., Qian S., Zhang S., et al. Single cell RNA sequencing of 13 human tissues identify cell types and receptors of human coronaviruses // Biochem Biophys Res Commun. 2020. Vol. 526, No. 1. P. 135–140. DOI: 10.1016/j.bbrc.2020.03.044

[61]

Vankadari N, Wilce JA. Emerging WuHan (COVID-19) coronavirus: glycan shield and structure prediction of spike glycoprotein and its interaction with human CD26. Emerg Microbes Infect. 2020;9(1): 601–604. DOI: 10.1080/22221751.2020.1739565

[62]

Vankadari N., Wilce J.A. Emerging WuHan (COVID-19) coronavirus: glycan shield and structure prediction of spike glycoprotein and its interaction with human CD26 // Emerg Microbes Infect. 2020. Vol. 9, No. 1. P. 601–604. DOI: 10.1080/22221751.2020.1739565

[63]

Nyland JE, Raja-Khan NT, Bettermann K, et al. Diabetes, drug treatment, and mortality in COVID-19: a multinational retrospective cohort study. Diabetes. 2021;70(12):2903–2916. DOI: 10.2337/db21-0385

[64]

Nyland J.E., Raja-Khan N.T., Bettermann K., et al. Diabetes, drug treatment, and mortality in COVID-19: A multinational retrospective cohort study // Diabetes. 2021. Vol. 70, No. 12. P. 2903–2916. DOI: 10.2337/db21-0385

[65]

Hariyanto TI, Kurniawan A. Dipeptidyl peptidase 4 (DPP4) inhibitor and outcome from coronavirus disease 2019 (COVID-19) in diabetic patients: a systematic review, meta-analysis, and meta-regression. J Diabetes Metab Disord. 2021;20(1):543–550. DOI: 10.1007/s40200-021-00777-4

[66]

Hariyanto T.I., Kurniawan A. Dipeptidyl peptidase 4 (DPP4) inhibitor and outcome from coronavirus disease 2019 (COVID-19) in diabetic patients: a systematic review, meta-analysis, and meta-regression // J Diabetes Metab Disord. 2021. Vol. 20, No. 1. P. 543–550. DOI: 10.1007/s40200-021-00777-4

[67]

Baggio LL, Varin EM, Koehler JA, et al. Plasma levels of DPP4 activity and sDPP4 are dissociated from inflammation in mice and humans. Nature Commun. 2020;11(1):3766. DOI: 10.1038/s41467-020-17556-z

[68]

Baggio L.L., Varin E.M., Koehler J.A., et al. Plasma levels of DPP4 activity and sDPP4 are dissociated from inflammation in mice and humans // Nature Commun. 2020. Vol. 11, No. 1. P. 3766. DOI: 10.1038/s41467-020-17556-z

[69]

Chandra R. The role of pharmacogenomics in precision medicine // Medical Laboratory Observer. 2017. [cited 2022 Feb 26] Available from: https://www.mlo-online.com/continuing-education/article/13009247/the-role-of-pharmacogenomics-in-precision-medicine

[70]

Chandra R. The role of pharmacogenomics in precision medicine // Medical Laboratory Observer. 2017. Режим доступа: https://www.mlo-online.com/continuing-education/article/13009247/the-role-of-pharmacogenomics-in-precision-medicine. Дата обращения: 22.02.2022.

[71]

Nasykhova YA, Tonyan ZN, Mikhailova AA, et al. Pharmacogenetics of type 2 diabetes — progress and prospects. Int J Mol Sci. 2020;21(18):6842. DOI: 10.3390/ijms21186842

[72]

Nasykhova Y.A., Tonyan Z.N., Mikhailova A.A., et al. Pharmacogenetics of type 2 diabetes — progress and prospects // Int J Mol Sci. 2020. Vol. 21, No. 18. P. 6842. DOI: 10.3390/ijms21186842

[73]

Wu F, Yang L, Hang K, et al. Full-length human GLP-1 receptor structure without orthosteric ligands. Nature Commun. 2020;11(1):1272. DOI: 10.1038/s41467-020-14934-5

[74]

Wu F., Yang L., Hang K., et al. Full-length human GLP-1 receptor structure without orthosteric ligands // Nature Commun. 2020. Vol. 11, No. 1. P. 1272. DOI: 10.1038/s41467-020-14934-5

[75]

Űrgeová A, Javorský M, Klimčáková L, et al. Genetic variants associated with glycemic response to treatment with dipeptidylpeptidase 4 inhibitors. Pharmacogenomics. 2020;21(5):317–323. DOI: 10.2217/pgs-2019-0147

[76]

Űrgeová A., Javorský M., Klimčáková L., et al. Genetic variants associated with glycemic response to treatment with dipeptidylpeptidase 4 inhibitors // Pharmacogenomics. 2020. Vol. 21, No. 5. P. 317–323. DOI: 10.2217/pgs-2019-0147

[77]

Lyssenko V, Lupi R, Marchetti P, et al. Mechanisms by which common variants in the TCF7L2 gene increase risk of type 2 diabetes. J Clin Invest. 2007;117(8):2155–2163. DOI: 10.1172/JCI30706

[78]

Lyssenko V., Lupi R., Marchetti P., et al. Mechanisms by which common variants in the TCF7L2 gene increase risk of type 2 diabetes // J Clin Invest. 2007. Vol. 117, No. 8. P. 2155–2163. DOI: 10.1172/JCI30706

[79]

Grant SF, Thorleifsson G, Reynisdottir I, et al. Variant of transcription factor 7-like 2 (TCF7L2) gene confers risk of type 2 diabetes. Nat Genet. 2006;38(3):320–323. DOI: 10.1038/ng1732

[80]

Grant S.F., Thorleifsson G., Reynisdottir I., et al. Variant of transcription factor 7-like 2 (TCF7L2) gene confers risk of type 2 diabetes // Nat Genet. 2006. Vol. 38, No. 3. P. 320–323. DOI: 10.1038/ng1732

[81]

Zimdahl H, Ittrich C, Graefe-Mody U, et al. Influence of TCF7L2 gene variants on the therapeutic response to the dipeptidylpeptidase-4 inhibitor linagliptin. Diabetologia. 2014;57(9):1869–1875. DOI: 10.1007/s00125-014-3276-y

[82]

Zimdahl H., Ittrich C., Graefe-Mody U., et al. Influence of TCF7L2 gene variants on the therapeutic response to the dipeptidylpeptidase-4 inhibitor linagliptin // Diabetologia. 2014. Vol. 57, No. 9. P. 1869–1875. DOI: 10.1007/s00125-014-3276-y

[83]

Wilson JR, Shuey MM, Brown NJ, et al. Hypertension and type 2 diabetes are associated with decreased inhibition of dipeptidyl peptidase-4 by sitagliptin. J Endocr Soc. 2017;1(9):1168–1178. DOI: 10.1210/js.2017-00312

[84]

Wilson J.R., Shuey M.M., Brown N.J., et al. Hypertension and type 2 diabetes are associated with decreased inhibition of dipeptidyl peptidase-4 by sitagliptin // J Endocr Soc. 2017. Vol. 1, No. 9. P. 1168–1178. DOI: 10.1210/js.2017-00312

[85]

GENOCARD Genetic Encyclopedia [Internet]. rs163184 T>G mutation in the KCNQ1 gene [cited 2022 Feb 26]. Available from: https://www.genokarta.ru/snps/rs163184_TG

[86]

ГЕНОКАРТА. Генетическая энциклопедия [Электронный ресурс]. Мутация rs163184 T>G в гене KCNQ1. 2019. Режим доступа: https://www.genokarta.ru/snps/rs163184_TG. Дата обращения: 22.02.2022.

[87]

Rathmann W, Bongaerts B. Pharmacogenetics of novel glucose-lowering drugs. Diabetologia. 2021;64(6):1201–1212. DOI: 10.1007/s00125-021-05402-w

[88]

Rathmann W., Bongaerts B. Pharmacogenetics of novel glucose-lowering drugs // Diabetologia. 2021. Vol. 64, No. 6. P. 1201–1212. DOI: 10.1007/s00125-021-05402-w

[89]

Gotthardová I, Javorský M, Klimčáková L, et al. KCNQ1 gene polymorphism is associated with glycaemic response to treatment with DPP-4 inhibitors. Diabetes Res Clin Pract. 2017;130:142–147. DOI: 10.1016/j.diabres.2017.05.018

[90]

Gotthardová I., Javorský M., Klimčáková L., et al. KCNQ1 gene polymorphism is associated with glycaemic response to treatment with DPP-4 inhibitors // Diabetes Res Clin Pract. 2017. Vol. 130. P. 142–147. DOI: 10.1016/j.diabres.2017.05.018

[91]

Gao K, Wang J, Li L, et al. Polymorphisms in four genes (KCNQ1 rs151290, KLF14 rs972283, GCKR rs780094 and MTNR1B rs10830963) and their correlation with type 2 diabetes mellitus in han chinese in Henan Province, China. Int J Environ Res Public Health. 2016;13(3):260. DOI: 10.3390/ijerph13030260

[92]

Gao K., Wang J., Li L., et al. Polymorphisms in four genes (KCNQ1 rs151290, KLF14 rs972283, GCKR rs780094 and MTNR1B rs10830963) and their correlation with type 2 diabetes mellitus in han chinese in Henan Province, China // Int J Environ Res Public Health. 2016. Vol. 13, No. 3. P. 260. DOI: 10.3390/ijerph13030260

[93]

Morris AP, Voight BF, Teslovich TM, et al. Large-scale association analysis provides insights into the genetic architecture and pathophysiology of type 2 diabetes. Nat Genet. 2012;44(9):981–990. DOI: 10.1038/ng.2383

[94]

Morris A.P., Voight B.F., Teslovich T.M., et al. Large-scale association analysis provides insights into the genetic architecture and pathophysiology of type 2 diabetes // Nat Genet. 2012. Vol. 44, No. 9. P. 981–990. DOI: 10.1038/ng.2383

[95]

Hart LM, Fritsche A, Nijpels G, et al. The CTRB1/2 locus affects diabetes susceptibility and treatment via the incretin pathway. Diabetes. 2013;62(9):3275–3281. DOI: 10.2337/db13-0227

[96]

Hart L.M., Fritsche A., Nijpels G., et al. The CTRB1/2 locus affects diabetes susceptibility and treatment via the incretin pathway // Diabetes. 2013. Vol. 62, No. 9. P. 3275–3281. DOI: 10.2337/db13-0227

[97]

PRKD1 Gene [Internet]. GeneCards: The Human Gene Database [cited 2022 Feb 26]. Available from: https://www.genecards.org/cgi-bin/carddisp.pl?gene=PRKD1

[98]

PRKD1 Gene [Электронный ресурс]. GeneCards: The Human Gene Database. Режим доступа: https://www.genecards.org/cgi-bin/carddisp.pl?gene=PRKD1. Дата обращения: 22.02.2022.

[99]

CDKAL1 Gene [Internet]. GeneCards: The Human Gene Database [cited 2022 Feb 26]. Available from: https://www.genecards.org/cgi-bin/carddisp.pl?gene=CDKAL1

[100]

CDKAL1 Gene [Электронный ресурс]. GeneCards: The Human Gene Database. Режим доступа: https://www.genecards.org/cgi-bin/carddisp.pl?gene=CDKAL1. Дата обращения: 22.02.2022.

[101]

IL6 Gene [Internet]. GeneCards: The Human Gene [cited 2022 Feb 26]. Available from: https://www.genecards.org/cgi-bin/carddisp.pl?gene=IL6#summaries

[102]

IL6 Gene [Электронный ресурс]. GeneCards: The Human Gene Database. Режим доступа: https://www.genecards.org/cgi-bin/carddisp.pl?gene=IL6#summaries. Дата обращения: 22.02.2022.

[103]

Urakov AL, Urakova NA. COVID-19: Cause of death and medications. International Journal of Comprehensive and Advanced Pharmacology. 2020;5(2):45–48. DOI: 10.18231/j.ijcaap.2020.011

[104]

Urakov A.L., Urakova N.A. COVID-19: Cause of death and medications // International Journal of Comprehensive and Advanced Pharmacology. 2020. Vol. 5, No 2. P. 45–48. DOI: 10.18231/j.ijcaap.2020.011

[105]

Vashchenko VI, Vilyaninov VN, Shabanov PD. Strategies for search of pharmacological drugs against SARS-CoV-2 on the base of studying the structural-genetic features of coronaviruses SARS-CoV, MERS-CoV and SARS-CoV-2. Reviews on Clinical Pharmacology and Drug Therapy. 2020;18(4):269–296. DOI: 10.17816/RCF184269-296

[106]

Ващенко В.И., Вильянинов В.Н., Шабанов П.Д. Стратегии поиска фармакологических средств против SARS-CoV-2 на основе изучения структурно-генетических особенностей коронавирусов SARS-CoV, MERS-CoV и SARS-CoV-2 // Обзоры по клинической фармакологии и лекарственной терапии. 2020. Т. 18, № 4. С. 269–296. DOI: 10.17816/RCF184269-296

[107]

Kozlova AS, Pyatibrat AO, Buznik GV, et al. Probable molecular genetic predictors for development of the locomotor system pathology in the extreme physical exertion. Reviews on Clinical Pharmacology and Drug Therapy. 2015;13(3):53–62. DOI: 10.17816/RCF13353-62

[108]

Козлова А.С., Пятибрат А.О., Бузник Г.В., др. Возможные молекулярно-генетические предикторы развития патологии локомоторной системы при экстремальных физических нагрузках // Обзоры по клинической фармакологии и лекарственной терапии. 2015. Т. 13, № 3. С. 53–62. DOI: 10.17816/RCF13353-62

RIGHTS & PERMISSIONS

Gurevich K.G., Sorokina Y.A., Urakov A.L., Sinyushkina S.D., Pryazhnikova M.I., Gorinova A.V., Lovtsova L.V., Zanozina O.V.

AI Summary AI Mindmap
PDF

52

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/