Modeling the drug withdrawal syndrome in zebrafish (Danio rerio)
Konstantin N. Zabegalov , David S. Galstyan , Tatyana O. Kolesnikova , Yurii M. Kositsyn , Mariya A. Gubaidullina , Gleb O. Maslov , Konstantin A. Demin , Sergey L. Khatsko , Allan V. Kalueff
Reviews on Clinical Pharmacology and Drug Therapy ›› 2022, Vol. 20 ›› Issue (2) : 185 -191.
Modeling the drug withdrawal syndrome in zebrafish (Danio rerio)
The central pathological link in addictive states is the drug withdrawal syndrome. Usually, severe manifestations of the withdrawal syndrome are associated with reduced sensitivity of postsynaptic receptors (desensitization), lower density of receptors and impaired transport of neurotransmitters, and the rebound effect. Zebrafish is an effective tool in the study of classic withdrawal symptoms and special cases of withdrawal of other selected psychoactive drugs.
zebrafish / withdrawal syndrome / addiction / morphine / ethanol
| [1] |
Piper ME. Withdrawal: expanding a key addiction construct. Nicotine Tob Res. 2015;17(12):1405–1415. DOI: 10.1093/ntr/ntv048 |
| [2] |
Piper M.E. Withdrawal: Expanding a key addiction construct // Nicotine Tob Res. 2015. Vol. 17, No. 12. P. 1405–1415. DOI: 10.1093/ntr/ntv048 |
| [3] |
Jesse S, Bråthen G, Ferrara M, et al. Alcohol withdrawal syndrome: mechanisms, manifestations, and management. Acta Neurologica Scandinavica. 2017;135(1):4–16. DOI: 10.1111/ane.12671 |
| [4] |
Jesse S., Bråthen G., Ferrara M., et al. Alcohol withdrawal syndrome: mechanisms, manifestations, and management // Acta Neurologica Scandinavica. 2017. Vol. 135, No. 1. P. 4–16. DOI: 10.1111/ane.12671 |
| [5] |
Sachdeva A, Choudhary M, Chandra M. Alcohol withdrawal syndrome: benzodiazepines and beyond. J Clin Diagn Res. 2015;9(9): VE01–VE7. DOI: 10.7860/JCDR/2015/13407.6538 |
| [6] |
Sachdeva A., Choudhary M., Chandra M. Alcohol withdrawal syndrome: benzodiazepines and beyond // J Clin Diagn Res. 2015. Vol. 9, No. 9. P. VE01–VE7. DOI: 10.7860/JCDR/2015/13407.6538 |
| [7] |
Lerner A, Klein M. Dependence, withdrawal and rebound of CNS drugs: an update and regulatory considerations for new drugs development. Brain Commun. 2019;1(1): fcz025. DOI: 10.1093/braincomms/fcz025 |
| [8] |
Lerner A., Klein M. Dependence, withdrawal and rebound of CNS drugs: an update and regulatory considerations for new drugs development // Brain Commun. 2019. Vol. 1, No. 1. ID fcz025. DOI: 10.1093/braincomms/fcz025 |
| [9] |
Koob GF, Volkow ND. Neurocircuitry of addiction. Neuropsychopharmacology. 2010;35:217–238. DOI: 10.1038/npp.2009.110 |
| [10] |
Koob G.F., Volkow N.D. Neurocircuitry of addiction // Neuropsychopharmacology. 2010. Vol. 35. P. 217–238. DOI: 10.1038/npp.2009.110 |
| [11] |
Littleton J. Neurochemical mechanisms underlying alcohol withdrawal. Alcohol Health Res World. 1998;22(1):13–24. |
| [12] |
Littleton J. Neurochemical mechanisms underlying alcohol withdrawal // Alcohol Health Res World. 1998. Vol. 22, No. 1. P. 13–24. |
| [13] |
Pergolizzi JV Jr, Raffa RB, Rosenblatt MH. Opioid withdrawal symptoms, a consequence of chronic opioid use and opioid use disorder: Current understanding and approaches to management. J Clin Pharm Ther. 2020;45(5):892–903. DOI: 10.1111/jcpt.13114 |
| [14] |
Pergolizzi J.V. Jr., Raffa R.B., Rosenblatt M.H. Opioid withdrawal symptoms, a consequence of chronic opioid use and opioid use disorder: Current understanding and approaches to management // J Clin Pharm Ther. 2020. Vol. 45, No. 5. P. 892–903. DOI: 10.1111/jcpt.13114 |
| [15] |
Wills L, Kenny PJ. Addiction-related neuroadaptations following chronic nicotine exposure. J Neurochem. 2021;157(5):1652–1673. DOI: 10.1111/jnc.15356 |
| [16] |
Wills L., Kenny P.J. Addiction-related neuroadaptations following chronic nicotine exposure // J Neurochem. 2021. Vol. 157, No. 5. P. 1652–1673. DOI: 10.1111/jnc.15356 |
| [17] |
Meredith SE, Juliano LM, Hughes JR, Griffiths RR. Caffeine use disorder: a comprehensive review and research agenda. J Caffeine Res. 2013;3(3):114–130. DOI: 10.1089/jcr.2013.0016 |
| [18] |
Meredith S.E., Juliano L.M., Hughes J.R., Griffiths R.R. Caffeine use disorder: a comprehensive review and research agenda // J Caffeine Res. 2013. Vol. 3, No. 3. P. 114–130. DOI: 10.1089/jcr.2013.0016 |
| [19] |
Bonnet U, Preuss UW. The cannabis withdrawal syndrome: current insights. Subst Abuse Rehabil. 2017;8:9–37. DOI: 10.2147/SAR.S109576 |
| [20] |
Bonnet U., Preuss U.W. The cannabis withdrawal syndrome: current insights // Subst Abuse Rehabil. 2017. Vol. 8. P. 9–37. DOI: 10.2147/SAR.S109576 |
| [21] |
Russo SJ, Dietz DM, Dumitriu D, et al. The addicted synapse: mechanisms of synaptic and structural plasticity in nucleus accumbens. Trends Neurosci. 2010;33(6):267–276. DOI: 10.1016/j.tins.2010.02.002 |
| [22] |
Russo S.J., Dietz D.M., Dumitriu D., et al. The addicted synapse: mechanisms of synaptic and structural plasticity in nucleus accumbens // Trends Neurosci. 2010. Vol. 33, No. 6. P. 267–276. DOI: 10.1016/j.tins.2010.02.002 |
| [23] |
Sulzer D. How Addictive drugs disrupt presynaptic dopamine neurotransmission. Neuron. 2011;69(4):628–649. DOI: 10.1016/j.neuron.2011.02.010 |
| [24] |
Sulzer D. How Addictive drugs disrupt presynaptic dopamine neurotransmission // Neuron. 2011. Vol. 69, No. 4. P. 628–649. DOI: 10.1016/j.neuron.2011.02.010 |
| [25] |
Teixeira MZ. Rebound effect of modern drugs: serious adverse event unknown by health professionals. Revista da Associacao Medica Brasileira. 2013;59(6):629–638. DOI: 10.1016/j.ramb.2013.05.003 |
| [26] |
Teixeira M.Z. Rebound effect of modern drugs: serious adverse event unknown by health professionals // Revista da Associacao Medica Brasileira. 2013. Vol. 59, No. 6. P. 629–638. DOI: 10.1016/j.ramb.2013.05.003 |
| [27] |
Becker HC. Kindling in alcohol withdrawal. Alcohol Health Res World. 1998;22(1):25–33. |
| [28] |
Becker H.C. Kindling in alcohol withdrawal // Alcohol Health Res World. 1998. Vol. 22, No. 1. P. 25–33. |
| [29] |
Schubert M, Siegmund H, Pape H-C, Albrecht D. Kindling-induced changes in plasticity of the rat amygdala and hippocampus. Learning and Memory. 2005;12(5):520–526. DOI: 10.1101/lm.4205 |
| [30] |
Schubert M., Siegmund H., Pape H.-C., Albrecht D. Kindling-induced changes in plasticity of the rat amygdala and hippocampus // Learning and Memory. 2005. Vol. 12, No. 5. P. 520–526. DOI: 10.1101/lm.4205 |
| [31] |
Welsch L, Bailly J, Darcq E, Kieffer BL. The negative affect of protracted opioid abstinence: progress and perspectives from rodent models. Biol Psychiatry. 2020;87(1):54–63. DOI: 10.1016/j.biopsych.2019.07.027 |
| [32] |
Welsch L., Bailly J., Darcq E., Kieffer B.L. The negative affect of protracted opioid abstinence: progress and perspectives from rodent models // Biol Psychiatry. 2020. Vol. 87, No. 1. P. 54–63. DOI: 10.1016/j.biopsych.2019.07.027 |
| [33] |
Buccafusco JJ, Shuster L. Frontiers in neuroscience contextually induced drug seeking during protracted abstinence in rats. In: Buccafusco JJ, editor. Methods of Behavior Analysis in Neuroscience. Boca Raton (FL): Taylor and Francis Group, LLC, 2009. DOI: 10.1201/NOE1420052343.ch10 |
| [34] |
Buccafusco J.J., Shuster L. Frontiers in neuroscience contextually induced drug seeking during protracted abstinence in rats. In: Buccafusco J.J. , editor. Methods of Behavior Analysis in Neuroscience. Boca Raton (FL): Taylor and Francis Group, LLC, 2009. DOI: 10.1201/NOE1420052343.ch10 |
| [35] |
Kuhn BN, Kalivas PW, Bobadilla A-C. Understanding addiction using animal models. Front Behav Neurosci. 2019;13:262. DOI: 10.3389/fnbeh.2019.00262 |
| [36] |
Kuhn B.N., Kalivas P.W., Bobadilla A.-C. Understanding addiction using animal models // Front Behav Neurosci. 2019. Vol. 13. ID 262. DOI: 10.3389/fnbeh.2019.00262 |
| [37] |
Markou A, Li J, Tse K, Li X. Cue-induced nicotine-seeking behavior after withdrawal with or without extinction in rats. Addict Biol. 2018;23(1):111–119. DOI: 10.1111/adb.12480 |
| [38] |
Markou A., Li J., Tse K., Li X. Cue-induced nicotine-seeking behavior after withdrawal with or without extinction in rats // Addict Biol. 2018. Vol. 23, No. 1. P. 111–119. DOI: 10.1111/adb.12480 |
| [39] |
Shaham Y, Rajabi H, Stewart J. Relapse to heroin-seeking in rats under opioid maintenance: the effects of stress, heroin priming, and withdrawal. J Neurosci. 1996;16(5):1957–1963. DOI: 10.1523/JNEUROSCI.16-05-01957.1996 |
| [40] |
Shaham Y., Rajabi H., Stewart J. Relapse to heroin-seeking in rats under opioid maintenance: the effects of stress, heroin priming, and withdrawal // J Neurosci. 1996. Vol. 16, No. 5. P. 1957–1963. DOI: 10.1523/JNEUROSCI.16-05-01957.1996 |
| [41] |
Perez EE, De Biasi M. Assessment of affective and somatic signs of ethanol withdrawal in C57BL/6J mice using a short-term ethanol treatment. Alcohol. 2015;49(3):237–243. DOI: 10.1016/j.alcohol.2015.02.003 |
| [42] |
Perez E.E., De Biasi M. Assessment of affective and somatic signs of ethanol withdrawal in C57BL/6J mice using a short-term ethanol treatment // Alcohol. 2015. Vol. 49, No. 3. P. 237–243. DOI: 10.1016/j.alcohol.2015.02.003 |
| [43] |
Valverde O, Mantamadiotis T, Torrecilla M, et al. Modulation of anxiety-like behavior and morphine dependence in CREB-deficient mice. Neuropsychopharmacology. 2004;29(6):1122–1133. DOI: 10.1038/sj.npp.1300416 |
| [44] |
Valverde O., Mantamadiotis T., Torrecilla M., et al. Modulation of anxiety-like behavior and morphine dependence in CREB-deficient mice // Neuropsychopharmacology. 2004. Vol. 29, No. 6. P. 1122–1133. DOI: 10.1038/sj.npp.1300416 |
| [45] |
Sartori SB, Landgraf R, Singewald N. The clinical implications of mouse models of enhanced anxiety. Future Neurol. 2011;6(4): 531–571. DOI: 10.2217/fnl.11.34 |
| [46] |
Sartori S.B., Landgraf R., Singewald N. The clinical implications of mouse models of enhanced anxiety // Future Neurol. 2011. Vol. 6, No. 4. P. 531–571. DOI: 10.2217/fnl.11.34 |
| [47] |
Stewart AM, Braubach O, Spitsbergen J, et al. Zebrafish models for translational neuroscience research: from tank to bedside. Trends Neurosci. 2014;37(5):264–278. DOI: 10.1016/j.tins.2014.02.011 |
| [48] |
Stewart A.M., Braubach O., Spitsbergen J., et al. Zebrafish models for translational neuroscience research: from tank to bedside // Trends Neurosci. 2014. Vol. 37, No. 5. P. 264–278. DOI: 10.1016/j.tins.2014.02.011 |
| [49] |
Cassar S, Adatto I, Freeman JL, et al. Use of zebrafish in drug discovery toxicology. Chem Res Toxicol. 2020;33(1):95–118. DOI: 10.1021/acs.chemrestox.9b00335 |
| [50] |
Cassar S., Adatto I., Freeman J.L., et al. Use of zebrafish in drug discovery toxicology // Chem Res Toxicol. 2020. Vol. 33, No. 1. P. 95–118. DOI: 10.1021/acs.chemrestox.9b00335 |
| [51] |
Cachat J, Canavello P, Elegante M, et al. Modeling withdrawal syndrome in zebrafish. Behav Brain Res. 2010;208(2):371–376. DOI: 10.1016/j.bbr.2009.12.004 |
| [52] |
Cachat J., Canavello P., Elegante M., et al. Modeling withdrawal syndrome in zebrafish // Behav Brain Res. 2010. Vol. 208, No. 2. P. 371–376. DOI: 10.1016/j.bbr.2009.12.004 |
| [53] |
Khor B-S, Amar Jamil MF, Adenan MI, Shu-Chien AC. Mitragynine attenuates withdrawal syndrome in morphine-withdrawn zebrafish. PloS One. 2011;6(12): e28340-e. DOI: 10.1371/journal.pone.0028340 |
| [54] |
Khor B.-S., Amar Jamil M.F., Adenan M.I., Shu-Chien A.C. Mitragynine attenuates withdrawal syndrome in morphine-withdrawn zebrafish // PloS one. 2011. Vol. 6, No. 12. ID e28340-e. DOI: 10.1371/journal.pone.0028340 |
| [55] |
López-Patiño MA, Yu L, Cabral H, Zhdanova IV. Anxiogenic effects of cocaine withdrawal in zebrafish. Physiol Behav. 2008;93(1–2): 160–171. DOI: 10.1016/j.physbeh.2007.08.013 |
| [56] |
López-Patiño M.A., Yu L., Cabral H., Zhdanova I.V. Anxiogenic effects of cocaine withdrawal in zebrafish // Physiol Behav. 2008. Vol. 93, No. 1–2. P. 160–171. DOI: 10.1016/j.physbeh.2007.08.013 |
| [57] |
Ponzoni L, Melzi G, Marabini L, et al. Conservation of mechanisms regulating emotional-like responses on spontaneous nicotine withdrawal in zebrafish and mammals. Progr Neuropsychopharmacol Biol Psychiatry. 2021;111:110334. DOI: 10.1016/j.pnpbp.2021.110334 |
| [58] |
Ponzoni L., Melzi G., Marabini L., et al. Conservation of mechanisms regulating emotional-like responses on spontaneous nicotine withdrawal in zebrafish and mammals // Progr Neuropsychopharmacol Biol Psychiatry. 2021. Vol. 111. ID110334. DOI: 10.1016/j.pnpbp.2021.110334 |
| [59] |
Renoir T. Selective serotonin reuptake inhibitor antidepressant treatment discontinuation syndrome: a review of the clinical evidence and the possible mechanisms involved. Front Pharmacol. 2013;4:45. DOI: 10.3389/fphar.2013.00045 |
| [60] |
Renoir T. Selective serotonin reuptake inhibitor antidepressant treatment discontinuation syndrome: a review of the clinical evidence and the possible mechanisms involved // Front Pharmacol. 2013. Vol. 4. ID 45. DOI: 10.3389/fphar.2013.00045 |
| [61] |
Bhat V, Kennedy SH. Recognition and management of antidepressant discontinuation syndrome. J Psychiatry Neurosci. 2017;42(4): E7–E8. DOI: 10.1503/jpn.170022 |
| [62] |
Bhat V., Kennedy S.H. Recognition and management of antidepressant discontinuation syndrome // J Psychiatry Neurosci. 2017. Vol. 42, No. 4. P. E7–E8. DOI: 10.1503/jpn.170022 |
| [63] |
Demin KA, Kolesnikova TO, Khatsko SL, et al. Acute effects of amitriptyline on adult zebrafish: Potential relevance to antidepressant drug screening and modeling human toxidromes. Neurotoxicol Teratol. 2017;62:27–33. DOI: 10.1016/j.ntt.2017.04.002 |
| [64] |
Demin K.A., Kolesnikova T.O., Khatsko S.L., et al. Acute effects of amitriptyline on adult zebrafish: Potential relevance to antidepressant drug screening and modeling human toxidromes // Neurotoxicol Teratol. 2017. Vol. 62. P. 27–33. DOI: 10.1016/j.ntt.2017.04.002 |
| [65] |
Serpa BJ. Modeling and mapping addiction in the zebrafish, Danio rerio. Master of Science in Integrative Biology Thesis. Kennesaw, Georgia, United States: Kennesaw State, 2018. 35 p. |
| [66] |
Serpa B.J. Modeling and mapping addiction in the zebrafish, Danio rerio // Master of Science in Integrative Biology Thesis. Kennesaw, Georgia, United States: Kennesaw State, 2018. 35 p. |
Zabegalov K.N., Galstyan D.S., Kolesnikova T.O., Kositsyn Y.M., Gubaidullina M.A., Maslov G.O., Demin K.A., Khatsko S.L., Kalueff A.V.
/
| 〈 |
|
〉 |