Using zebrafish (Danio rerio) to assess short-term memory: the habituation and the homebase tests
David S. Galstyan , Tatyana O. Kolesnikova , Yurii M. Kositsyn , Konstantin N. Zabegalov , Mariya A. Gubaidullina , Gleb O. Maslov , Konstantin A. Demin , Allan V. Kalueff
Reviews on Clinical Pharmacology and Drug Therapy ›› 2022, Vol. 20 ›› Issue (2) : 169 -175.
Using zebrafish (Danio rerio) to assess short-term memory: the habituation and the homebase tests
Environmental novelty is one of the most potent stressors in animals and is often used in behavioral neuroscience to study affective and cognitive impairments. However, in the process of studying an unfamiliar environment in experimental animals, there is a decrease in stress due to habituation (adaptation, habituation). In various behavioral tests in zebrafish, this manifests as swimming in areas that pose a potential danger to them: the upper part of the aquarium in the novel tank test and the central part in the open field test. When building an effective survival strategy, it is important to navigate in an unfamiliar environment from a home base — the safest area that serves as a starting point in exploring a novel arena. Both discussed here, habitation and establishing the home base, are important for assessing cognitive behavioral traits in zebrafish related to short-term spatial working memory.
zebrafish / habitation / home base / stress / behavior
| [1] |
Wong K, Elegante M, Bartels B, et al. Analyzing habituation responses to novelty in zebrafish (Danio rerio). Behav Brain Res. 2010;208(2):450–457. DOI: 10.1016/j.bbr.2009.12.023 |
| [2] |
Wong K., Elegante M., Bartels B., et al. Analyzing habituation responses to novelty in zebrafish (Danio rerio) // Behav Brain Res. 2010. Vol. 208, No. 2. P. 450–457. DOI: 10.1016/j.bbr.2009.12.023 |
| [3] |
Maximino C, de Brito TM, da Silva Batista AW, et al. Measuring anxiety in zebrafish: a critical review. Behav Brain Res. 2010;214(20):157–171. DOI: 10.1016/j.bbr.2010.05.031 |
| [4] |
Maximino C., de Brito T.M., da Silva Batista A.W., et al. Measuring anxiety in zebrafish: a critical review // Behav Brain Res. 2010. Vol. 214, No. 2. P. 157–171. DOI: 10.1016/j.bbr.2010.05.031 |
| [5] |
Chanin S, Fryar C, Varga D, et al. Assessing startle responses and their habituation in adult zebrafish. In: Kalueff AV, Stewart AM. Zebrafish protocols for neurobehavioral research. Springer: 2012. P. 287–300. DOI:10.1007/978-1-61779-597-8_22 |
| [6] |
Chanin S., Fryar C., Varga D., et al. Assessing startle responses and their habituation in adult zebrafish. In: Kalueff A.V., Stewart A.M. Zebrafish protocols for neurobehavioral research. Springer: 2012. P. 287–300. DOI:10.1007/978-1-61779-597-8_22 |
| [7] |
Clark KJ, Boczek NJ, Ekker SC. Stressing zebrafish for behavioral genetics. Rev Neurosci. 2011;22(1). DOI: 10.1515/RNS.2011.007 |
| [8] |
Clark K.J., Boczek N.J., Ekker S.C. Stressing zebrafish for behavioral genetics // Rev Neurosci. 2011. Vol. 22. No. 1. DOI: 10.1515/RNS.2011.007 |
| [9] |
Zurn J, Falls W, Motai Y. Detecting startle responses in the zebrafish using novel digital imaging techniques. Neuroscience Meeting Planner. Society for Neuroscience. San Diego, CA. 2006. |
| [10] |
Zurn J., Falls W., Motai Y. Detecting startle responses in the zebra fish using novel digital imaging techniques. Neuroscience Meeting Planner. Society for Neuroscience. SanDiego, CA. 2006. |
| [11] |
Burgess HA, Johnson SL, Granato M. Unidirectional startle responses and disrupted left–right coordination of motor behaviors in robo3 mutant zebrafish. Genes Brain Behav. 2009;8(5):500–511. DOI: 10.1111/j.1601-183X.2009.00499.x |
| [12] |
Burgess H.A., Johnson S.L., Granato M. Unidirectional startle responses and disrupted left–right coordination of motor behaviors in robo3 mutant zebrafish // Genes Brain Behav. 2009. Vol. 8, No. 5. P. 500–511. DOI: 10.1111/j.1601-183X.2009.00499.x |
| [13] |
Pelkowski SD, Kapoor M, Richendrfer HA, et al. A novel high-throughput imaging system for automated analyses of avoidance behavior in zebrafish larvae. Behav Brain Res. 2011;223(1):135–144. DOI: 10.1016/j.bbr.2011.04.033 |
| [14] |
Pelkowski S.D., Kapoor M., Richendrfer H.A., et al. A novel high-throughput imaging system for automated analyses of avoidance behavior in zebrafish larvae // Behav Brain Res. 2011. Vol. 223, No. 1. P. 135–144. DOI: 10.1016/j.bbr.2011.04.033 |
| [15] |
Mann KD, Hoyt C, Feldman S, et al. Cardiac response to startle stimuli in larval zebrafish: sympathetic and parasympathetic components. Am J Physiol Regul Integr Comp Physiol. 2010;298(5): R1288–R1297. DOI: 10.1152/ajpregu.00302.2009 |
| [16] |
Mann K.D., Hoyt C., Feldman S., et al. Cardiac response to startle stimuli in larval zebrafish: sympathetic and parasympathetic components // Am J Physiol Regul Integr Comp Physiol. 2010. Vol. 298, No. 5. P. R1288–R1297. DOI: 10.1152/ajpregu.00302.2009 |
| [17] |
Roberts AC, Reichl J, Song MY, et al. Habituation of the C-start response in larval zebrafish exhibits several distinct phases and sensitivity to NMDA receptor blockade. PLOS one. 2011;6(12):e29132. DOI: 10.1371/journal.pone.0029132 |
| [18] |
Roberts A.C., Reichl J., Song M.Y., et al. Habituation of the C-start response in larval zebrafish exhibits several distinct phases and sensitivity to NMDA receptor blockade // PLOS one. 2011. Vol. 6, No. 12. ID e29132. DOI: 10.1371/journal.pone.0029132 |
| [19] |
Vorhees CV, Williams MT. Assessing spatial learning and memory in rodents. ILAR J. 2014;55(2):310–32. DOI: 10.1093/ilar/ilu013 |
| [20] |
Vorhees C.V., Williams M.T. Assessing spatial learning and memory in rodents // ILAR J. 2014. Vol. 55, No. 2. P. 310–32. DOI: 10.1093/ilar/ilu013 |
| [21] |
Eilam D, Golani I. Home base behavior of rats (Rattus norvegicus) exploring a novel environment. Behav Brain Res. 1989;34(3): 199–211. DOI: 10.1016/s0166-4328(89)80102-0 |
| [22] |
Eilam D., Golani I. Home base behavior of rats (Rattus norvegicus) exploring a novel environment // Behav Brain Res. 1989. Vol. 34, No. 3. P. 199–211. DOI: 10.1016/s0166-4328(89)80102-0 |
| [23] |
Benjamini Y, Tchernichovski O, Golani I. Constraints and the emergence of ‘free’ exploratory behavior in rat ontogeny. Behaviour. 1996;133(7/8):519–539. DOI: 10.1163/156853996X00198 |
| [24] |
Benjamini Y., Tchernichovski O., Golani I. Constraints and the emergence of ‘free’ exploratory behavior in rat ontogeny // Behaviour. 1996. Vol. 133, No. 7/8. P. 519–539. DOI: 10.1163/156853996X00198 |
| [25] |
Magara S, Holst S, Lundberg S, et al. Altered explorative strategies and reactive coping style in the FSL rat model of depression. Front Behav Neurosci. 2015;9:89. DOI: 10.3389/fnbeh.2015.00089 |
| [26] |
Magara S., Holst S., Lundberg S., et al. Altered explorative strategies and reactive coping style in the FSL rat model of depression // Front Behav Neurosci. 2015. Vol. 9. ID 89. DOI: 10.3389/fnbeh.2015.00089 |
| [27] |
Leke R, de Oliveira DL, Mussulini BHM, et al. Impairment of the organization of locomotor and exploratory behaviors in bile duct-ligated rats. PLOS ONE. 2012;7(5):e36322. DOI: 10.1371/journal.pone.0036322 |
| [28] |
Leke R., de Oliveira D.L., Mussulini B.H.M., et al. Impairment of the organization of locomotor and exploratory behaviors in bile duct-ligated rats // PLOS ONE. 2012. Vol. 7, No. 5. ID e36322. DOI: 10.1371/journal.pone.0036322 |
| [29] |
Gorny JH, Gorny B, Wallace DG, Whishaw IQ. Fimbria-fornix lesions disrupt the dead reckoning (homing) component of exploratory behavior in mice. Learning and Memory. 2002;9(6):387–394. DOI: 10.1101/lm.53002 |
| [30] |
Gorny J.H., Gorny B., Wallace D.G., Whishaw I.Q. Fimbria-fornix lesions disrupt the dead reckoning (homing) component of exploratory behavior in mice // Learning and Memory. 2002. Vol. 9, No. 6. P. 387–394. DOI: 10.1101/lm.53002 |
| [31] |
Stewart A, Cachat JM, Wong K, et al. Phenotyping of zebrafish homebase behaviors in novelty-based tests. In: Kalueff AV, Cachat JM, editors. Zebrafish Neurobehavioral Protocols. Totowa, NJ: Humana Press, 2011. P. 143–155. DOI: 10.1007/978-1-60761-953-6_12 |
| [32] |
Stewart A., Cachat J.M., Wong K., et al. Phenotyping of zebrafish homebase behaviors in novelty-based tests. In: Kalueff A.V., Cachat J.M., editors. Zebrafish neurobehavioral protocols. Totowa, NJ: Humana Press, 2011. P. 143–155. DOI: 10.1007/978-1-60761-953-6_12 |
| [33] |
Rosemberg DB, Rico EP, Mussulini BHM, et al. Differences in spatio-temporal behavior of zebrafish in the open tank paradigm after a short-period confinement into dark and bright environments. PLOS ONE. 2011;6(5): e19397. DOI: 10.1371/journal.pone.0019397 |
| [34] |
Rosemberg D.B., Rico E.P., Mussulini B.H.M., et al. Differences in spatio-temporal behavior of zebrafish in the open tank paradigm after a short-period confinement into dark and bright environments // PLOS ONE. 2011. Vol. 6, No. 5. ID e19397. DOI: 10.1371/journal.pone.0019397 |
| [35] |
Stewart A, Cachat J, Wong K, et al. Homebase behavior of zebrafish in novelty-based paradigms. Behav Processes. 2010;85(2): 198–203. DOI: 10.1016/j.beproc.2010.07.009 |
| [36] |
Stewart A., Cachat J., Wong K., et al. Homebase behavior of zebrafish in novelty-based paradigms // Behav Processes. 2010. Vol. 85, No. 2. P. 198–203. DOI: 10.1016/j.beproc.2010.07.009 |
Galstyan D.S., Kolesnikova T.O., Kositsyn Y.M., Zabegalov K.N., Gubaidullina M.A., Maslov G.O., Demin K.A., Kalueff A.V.
/
| 〈 |
|
〉 |