Modeling depression in zebrafish

David S. Galstyan , Tatyana O. Kolesnikova , Yurii M. Kositsyn , Konstantin N. Zabegalov , Mariya A. Gubaidullina , Gleb O. Maslov , Konstantin A. Demin , Sergey L. Khatsko , Allan V. Kalueff

Reviews on Clinical Pharmacology and Drug Therapy ›› 2022, Vol. 20 ›› Issue (2) : 149 -156.

PDF
Reviews on Clinical Pharmacology and Drug Therapy ›› 2022, Vol. 20 ›› Issue (2) : 149 -156. DOI: 10.17816/RCF202149-156
Original study articles
review-article

Modeling depression in zebrafish

Author information +
History +
PDF

Abstract

Depression is a widespread, severely debilitating mental disorder characterized by low mood, anhedonia, fatigue, decreased attention, suicidality and psychomotor retardation, accompanied by neuroendocrine and molecular disorders. Zebrafish have neuroendocrine and neurotransmitter systems similar to humans, as well as high genetic homology, and are rapidly becoming popular model organisms for modeling depressive-like conditions. Here, we discuss modern behavioral, pharmacological and genetic models of depression in zebrafish, their methodological applications and translational implications.

Keywords

zebrafish / depression / chronic stress / reserpine / despair

Cite this article

Download citation ▾
David S. Galstyan, Tatyana O. Kolesnikova, Yurii M. Kositsyn, Konstantin N. Zabegalov, Mariya A. Gubaidullina, Gleb O. Maslov, Konstantin A. Demin, Sergey L. Khatsko, Allan V. Kalueff. Modeling depression in zebrafish. Reviews on Clinical Pharmacology and Drug Therapy, 2022, 20(2): 149-156 DOI:10.17816/RCF202149-156

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

de Abreu MS, Friend AJ, Demin KA, et al. Zebrafish models: do we have valid paradigms for depression? J Pharmacol Toxicol Methods. 2018;94(Pt. 2):16–22. DOI: 10.1016/j.vascn.2018.07.002

[2]

de Abreu M.S., Friend A.J., Demin K.A., et al. Zebrafish models: do we have valid paradigms for depression? // J Pharmacol Toxicol Methods. 2018. Vol. 94, Pt. 2. P. 16–22. DOI: 10.1016/j.vascn.2018.07.002

[3]

Ma L, Demin KA, Kolesnikova TO, et al. Animal inflammation-based models of depression and their application to drug discovery. Expert Opin Drug Discov. 2017;12(10):995–1009. DOI: 10.1080/17460441.2017.1362385

[4]

Ma L., Demin K.A., Kolesnikova T.O., et al. Animal inflammation-based models of depression and their application to drug discovery // Expert Opin Drug Discov. 2017. Vol. 12, No. 10. P. 995–1009. DOI: 10.1080/17460441.2017.1362385

[5]

Venzala E, Garcia-Garcia AL, Elizalde N, Tordera RM. Social vs. environmental stress models of depression from a behavioural and neurochemical approach. Eur Neuropsychopharmacol. 2013;23(7):697–708. DOI: 10.1016/j.euroneuro.2012.05.010

[6]

Venzala E., Garcia-Garcia A.L., Elizalde N., Tordera R.M. Social vs. environmental stress models of depression from a behavioural and neurochemical approach // Eur Neuropsychopharmacol. 2013. Vol. 23, No. 7. P. 697–708. DOI: 10.1016/j.euroneuro.2012.05.010

[7]

Rutter M. Commentary: Nature–nurture interplay in emotional disorders. J Child Psychol Psychiatry. 2003;44(7):934–944. DOI: 10.1111/1469-7610.00178

[8]

Rutter M. Commentary: Nature–nurture interplay in emotional disorders // J Child Psychol Psychiatry. 2003. Vol. 44, No. 7. P. 934–944. DOI: 10.1111/1469-7610.00178

[9]

Haeffel GJ, Getchell M, Koposov RA, et al. Association between polymorphisms in the dopamine transporter gene and depression: evidence for a gene-environment interaction in a sample of juvenile detainees. Psychol Sci. 2008;19(1):62–69. DOI: 10.1111/j.1467-9280.2008.02047.x

[10]

Haeffel G.J., Getchell M., Koposov R.A., et al. Association between polymorphisms in the dopamine transporter gene and depression: evidence for a gene-environment interaction in a sample of juvenile detainees // Psychol Sci. 2008. Vol. 19, No. 1. P. 62–69. DOI: 10.1111/j.1467-9280.2008.02047.x

[11]

Risch N, Herrell R, Lehner T, et al. Interaction between the serotonin transporter gene (5-HTTLPR), stressful life events, and risk of depression: a meta-analysis. JAMA. 2009;301(23):2462–2471. DOI: 10.1001/jama.2009.878

[12]

Risch N., Herrell R., Lehner T., et al. Interaction between the serotonin transporter gene (5-HTTLPR), stressful life events, and risk of depression: a meta-analysis // JAMA. 2009. Vol. 301, No. 23. P. 2462–2471. DOI: 10.1001/jama.2009.878

[13]

Vahia VN. Diagnostic and statistical manual of mental disorders 5. Ind J Psychiatry. 2013;55(3):220–223. DOI: 10.4103/0019-5545.117131

[14]

Vahia V.N. Diagnostic and statistical manual of mental disorders 5 // Ind J Psychiatry. 2013. Vol. 55, No. 3. P. 220–223. DOI: 10.4103/0019-5545.117131

[15]

The International Schizophrenia Consortium. Common polygenic variation contributes to risk of schizophrenia and bipolar disorder. Nature. 2009;460(7256):748–752. DOI: 10.1038/nature08185

[16]

The International Schizophrenia Consortium. Common polygenic variation contributes to risk of schizophrenia and bipolar disorder // Nature. 2009. Vol. 460, No. 7256. P. 748–752. DOI: 10.1038/nature08185

[17]

Vawter MP, Freed WJ, Kleinman JE. Neuropathology of bipolar disorder. Biol Psychiatry. 2000;48(6):486–504. DOI: 10.1016/s0006-3223(00)00978-1

[18]

Vawter M.P., Freed W.J., Kleinman J.E. Neuropathology of bipolar disorder // Biol Psychiatry. 2000. Vol. 48, No. 6. P. 486–504. DOI: 10.1016/s0006-3223(00)00978-1

[19]

Benes FM, Berretta S. GABAergic interneurons: implications for understanding schizophrenia and bipolar disorder. Neuropsychopharmacology. 2001;25:1–27. DOI: 10.1016/S0893-133X(01)00225-1

[20]

Benes F.M., Berretta S. GABAergic interneurons: implications for understanding schizophrenia and bipolar disorder // Neuropsychopharmacology. 2001. Vol. 25. P. 1–27. DOI: 10.1016/S0893-133X(01)00225-1

[21]

Demin KA, Lakstygal AM, Chernysh MV, et al. The zebrafish tail immobilization (ZTI) test as a new tool to assess stress-related behavior and a potential screen for drugs affecting despair-like states. J Neurosci Methods. 2020;337:108637. DOI: 10.1016/j.jneumeth.2020.108637

[22]

Demin K.A., Lakstygal A.M., Chernysh M.V., et al. The zebrafish tail immobilization (ZTI) test as a new tool to assess stress-related behavior and a potential screen for drugs affecting despair-like states // J Neurosci Methods. 2020. Vol. 337. ID 108637. DOI: 10.1016/j.jneumeth.2020.108637

[23]

Nguyen M, Stewart AM, Kalueff AV. Aquatic blues: modeling depression and antidepressant action in zebrafish. Prog Neuropsychopharmacol Biol Psychiatry. 2014;55:26–39. DOI: 10.1016/j.pnpbp.2014.03.003

[24]

Nguyen M., Stewart A.M., Kalueff A.V. Aquatic blues: modeling depression and antidepressant action in zebrafish // Prog Neuropsychopharmacol Biol Psychiatry. 2014. Vol. 55. P. 26–39. DOI: 10.1016/j.pnpbp.2014.03.003

[25]

Fonseka TM, Wen X-Y, Foster J., Kennedy SH. Zebrafish models of major depressive disorders. J Neurosci Res. 2016;94(1):3–14. DOI: 10.1002/jnr.23639

[26]

Fonseka T.M., Wen X.-Y., Foster J.A., Kennedy S.H. Zebrafish models of major depressive disorders // J Neurosci Res. 2016. Vol. 94, No. 1. P. 3–14. DOI: 10.1002/jnr.23639

[27]

Demin KA, Lakstygal AM, Krotova NA, et al. Understanding complex dynamics of behavioral, neurochemical and transcriptomic changes induced by prolonged chronic unpredictable stress in zebrafish. Sci Rep. 2020;10:19981. DOI: 10.1038/s41598-020-75855-3

[28]

Demin K.A., Lakstygal A.M., Krotova N.A., et al. Understanding complex dynamics of behavioral, neurochemical and transcriptomic changes induced by prolonged chronic unpredictable stress in zebrafish // Sci Rep. 2020. Vol. 10. ID 19981. DOI: 10.1038/s41598-020-75855-3

[29]

Nestler EJ, Barrot M, DiLeone RJ, et al. Neurobiology of depression. Neuron. 2002;34(1):13–25. DOI: 10.1016/s0896-6273(02)00653-0

[30]

Nestler E.J., Barrot M., DiLeone R.J., et al. Neurobiology of depression // Neuron. 2002. Vol. 34, No. 1. P. 13–25. DOI: 10.1016/s0896-6273(02)00653-0

[31]

Halmai Z, Dome P, Vereczkei A, et al. Associations between depression severity and purinergic receptor P2RX7 gene polymorphisms. J Affect Disord. 2013;150(1):104–109. DOI: 10.1016/j.jad.2013.02.033

[32]

Halmai Z., Dome P., Vereczkei A., et al. Associations between depression severity and purinergic receptor P2RX7 gene polymorphisms // J Affect Disord. 2013. Vol. 150, No. 1. P. 104–109. DOI: 10.1016/j.jad.2013.02.033

[33]

Roger S, Mei Z-Z, Baldwin JM, et al. Single nucleotide polymorphisms that were identified in affective mood disorders affect ATP-activated P2X7 receptor functions. J Psychiatr Res. 2010;44(6): 347–355. DOI: 10.1016/j.jpsychires.2009.10.005

[34]

Roger S., Mei Z.-Z., Baldwin J.M., et al. Single nucleotide polymorphisms that were identified in affective mood disorders affect ATP-activated P2X7 receptor functions // J Psychiatr Res. 2010. Vol. 44, No. 6. P. 347–355. DOI: 10.1016/j.jpsychires.2009.10.005

[35]

Kyzar E, Stewart AM, Landsman S, et al. Behavioral effects of bidirectional modulators of brain monoamines reserpine and d-amphetamine in zebrafish. Brain Res. 2013;1527:108–116. DOI: 10.1016/j.brainres.2013.06.033

[36]

Kyzar E., Stewart A.M., Landsman S., et al. Behavioral effects of bidirectional modulators of brain monoamines reserpine and d-amphetamine in zebrafish // Brain Res. 2013. Vol. 1527. P. 108–116. DOI: 10.1016/j.brainres.2013.06.033

[37]

Jie Z, Li T, Jia-Yun H, et al. Trans-2-phenylcyclopropylamine induces nerve cells apoptosis in zebrafish mediated by depression of LSD1 activity. Brain Res Bull. 2009;80(1–2):79–84. DOI: 10.1016/j.brainresbull.2009.04.013

[38]

Jie Z., Li T., Jia-Yun H., et al. Trans-2-phenylcyclopropylamine induces nerve cells apoptosis in zebrafish mediated by depression of LSD1 activity // Brain Res Bull. 2009. Vol. 80, No. 1–2. P. 79–84. DOI: 10.1016/j.brainresbull.2009.04.013

[39]

Airhart MJ, Lee DH, Wilson TD, et al. Movement disorders and neurochemical changes in zebrafish larvae after bath exposure to fluoxetine (PROZAC). Neurotoxicol Teratol. 2007;29(6):652–664. DOI: 10.1016/j.ntt.2007.07.005

[40]

Airhart M.J., Lee D.H., Wilson T.D., et al. Movement disorders and neurochemical changes in zebrafish larvae after bath exposure to fluoxetine (PROZAC) // Neurotoxicol Teratol. 2007. Vol. 29, No. 6. P. 652–664. DOI: 10.1016/j.ntt.2007.07.005

[41]

Demin KA, Kolesnikova TO, Khatsko SL, et al. Acute effects of amitriptyline on adult zebrafish: Potential relevance to antidepressant drug screening and modeling human toxidromes. Neurotoxicol Teratol. 2017;62:27–33. DOI: 10.1016/j.ntt.2017.04.002

[42]

Demin K.A., Kolesnikova T.O., Khatsko S.L., et al. Acute effects of amitriptyline on adult zebrafish: Potential relevance to antidepressant drug screening and modeling human toxidromes // Neurotoxicol Teratol. 2017. Vol. 62. P. 27–33. DOI: 10.1016/j.ntt.2017.04.002

[43]

Sackerman J, Donegan JJ, Cunningham CS, et al. Zebrafish behavior in novel environments: effects of acute exposure to anxiolytic compounds and choice of Danio rerio line. Int J Comp Psychol. 2010;23(1):43–61.

[44]

Sackerman J., Donegan J.J., Cunningham C.S., et al. Zebrafish behavior in novel environments: effects of acute exposure to anxiolytic compounds and choice of Danio rerio line // Int J Comp Psychol. 2010. Vol. 23, No. 1. P. 43–61.

[45]

Wen D, Liu A, Chen F, et al. Validation of visualized transgenic zebrafish as a high throughput model to assay bradycardia related cardio toxicity risk candidates. J Appl Toxicol. 2012;32(10):834–842. DOI: 10.1002/jat.2755

[46]

Wen D., Liu A., Chen F., et al. Validation of visualized transgenic zebrafish as a high throughput model to assay bradycardia related cardio toxicity risk candidates // J Appl Toxicol. 2012. Vol. 32, No. 10. P. 834–842. DOI: 10.1002/jat.2755

[47]

Griffiths BB, Schoonheim PJ, Ziv L, et al. A zebrafish model of glucocorticoid resistance shows serotonergic modulation of the stress response. Front Behav Neurosci. 2012;6:68. DOI: 10.3389/fnbeh.2012.00068

[48]

Griffiths B.B., Schoonheim P.J., Ziv L., et al. A zebrafish model of glucocorticoid resistance shows serotonergic modulation of the stress response // Front Behav Neurosci. 2012. Vol. 6. ID 68. DOI: 10.3389/fnbeh.2012.00068

[49]

Ranft K, Dobrowolny H, Krell D, et al. Evidence for structural abnormalities of the human habenular complex in affective disorders but not in schizophrenia. Psychol Med. 2010;40(40):557–567. DOI: 10.1017/S0033291709990821

[50]

Ranft K., Dobrowolny H., Krell D., et al. Evidence for structural abnormalities of the human habenular complex in affective disorders but not in schizophrenia // Psychol Med. 2010. Vol. 40, No. 4. P. 557–567. DOI: 10.1017/S0033291709990821

RIGHTS & PERMISSIONS

Galstyan D.S., Kolesnikova T.O., Kositsyn Y.M., Zabegalov K.N., Gubaidullina M.A., Maslov G.O., Demin K.A., Khatsko S.L., Kalueff A.V.

AI Summary AI Mindmap
PDF

211

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/