Studying social behavior in zebrafish (Danio rerioo) in the tests of social interaction, social preference, behavior in the shoaling and aggression tasks
David S. Galstyan , Tatyana O. Kolesnikova , Yurii M. Kositsyn , Konstantin N. Zabegalov , Mariya A. Gubaidullina , Gleb O. Maslov , Konstantin A. Demin , Allan V. Kalueff
Reviews on Clinical Pharmacology and Drug Therapy ›› 2022, Vol. 20 ›› Issue (2) : 135 -147.
Studying social behavior in zebrafish (Danio rerioo) in the tests of social interaction, social preference, behavior in the shoaling and aggression tasks
Social interactions between conspecifics are an important factor in normal development of an individual in a community, and their deficits correlate with multiple psychiatric disorders. Several methods for assessing social behavior and its deficits have been described for zebrafish (Danio rerio), and include tests for social preference and social interaction. These tests are commonly used to model a wide range of social phenotypes that are potentially relevant to studying depression, pathological aggression, schizophrenia, autism, and other brain diseases. An important and widely used method for determining social behavior is the shoaling test, based on the innate, genetically fixed feature of zebrafish to form shoals/schools, the density of which depends on many factors, such as the presence of a predator, the effect of pharmacological drugs, etc. Aggression, along with shoaling, is an important manifestation of social behavior, which is also a core symptoms of multiple brain diseases, such as control disorder and conduct disorder. Here, we discuss various methods for assessing aggressive behavior in zebrafish (e.g., the mirror reflection tests), and their shoaling agonistic behaviors.
zebrafish / social interaction / social preference / group behavior / shoaling / aggression
| [1] |
House JS, Landis KR, Umberson D. Social relationships and health. Science. 1988;241(4865):540–545. DOI: 10.1126/science.3399889 |
| [2] |
House J.S., Landis K.R., Umberson D. Social relationships and health // Science. 1988. Vol. 241, No. 4865. P. 540–545. DOI: 10.1126/science.3399889 |
| [3] |
Engeszer RE, Ryan MJ, Parichy DM. Learned social preference in zebrafish. Curr Biol. 2004;14(10):881–884. DOI: 10.1016/j.cub.2004.04.042 |
| [4] |
Engeszer R.E., Ryan M.J., Parichy D.M. Learned social preference in zebrafish // Curr Biol. 2004. Vol. 14, No. 10. P. 881–884. DOI: 10.1016/j.cub.2004.04.042 |
| [5] |
Semenova AA, Lopatina OL, Salmina AB. Autism models and assessment techniquesfor autistic-like behavior in animals. I.P. Pavlov Journal of Higher Nervous Activity. 2020;70(2):147–162. (In Russ.) DOI: 10.31857/S0044467720020112 |
| [6] |
Семёнова А.А., Лопатина О.Л., Салмина А.Б. Модели аутизма и методики оценки аутистически-подобного поведения у животных // Журнал высшей нервной деятельности им. И.П. Павлова. 2020. Т. 70, № 2. С. 147–162. DOI: 10.31857/S0044467720020112 |
| [7] |
Stednitz SJ. The Social Brain of Zebrafish: [dissertation]. University of Oregon, 2019. 84 p. |
| [8] |
Stednitz S.J. The Social Brain of Zebrafish: [dissertation]. University of Oregon, 2019. 84 p. |
| [9] |
Stewart AM, Nguyen M, Wong K, et al. Developing zebrafish models of autism spectrum disorder (ASD). Prog Neuropsychopharmacol Biol Psychiatry. 2014;50:27–36. DOI: 10.1016/j.pnpbp.2013.11.014 |
| [10] |
Stewart A.M., Nguyen M., Wong K., et al. Developing zebrafish models of autism spectrum disorder (ASD) // Prog Neuropsychopharmacol Biol Psychiatry. 2014. Vol. 50. P. 27–36. DOI: 10.1016/j.pnpbp.2013.11.014 |
| [11] |
Stednitz SJ, McDermott EM, Ncube D, et al. Forebrain control of behaviorally driven social orienting in zebrafish. Curr Biol. 2018;28(15):2445–2451.e3. DOI: 10.1016/j.cub.2018.06.016 |
| [12] |
Stednitz S.J., McDermott E.M., Ncube D., et al. Forebrain control of behaviorally driven social orienting in zebrafish // Curr Biol. 2018. Vol. 28, No. 15. P. 2445–2451. e3. DOI: 10.1016/j.cub.2018.06.016 |
| [13] |
Orger MB, de Polavieja GG. Zebrafish behavior: opportunities and challenges. Ann Rev Neurosci. 2017;40:125–147. DOI: 10.1146/annurev-neuro-071714-033857 |
| [14] |
Orger M.B., de Polavieja G.G. Zebrafish behavior: opportunities and challenges // Ann Rev Neurosci. 2017. Vol. 40. P. 125–147. DOI: 10.1146/annurev-neuro-071714-033857 |
| [15] |
Saverino C, Gerlai R. The social zebrafish: behavioral responses to conspecific, heterospecific, and computer animated fish. Behav Brain Res. 2008;191(1):77–87. DOI: 10.1016/j.bbr.2008.03.013 |
| [16] |
Saverino C., Gerlai R. The social zebrafish: behavioral responses to conspecific, heterospecific, and computer animated fish // Behav Brain Res. 2008. Vol. 191, No. 1. P. 77–87. DOI: 10.1016/j.bbr.2008.03.013 |
| [17] |
Kalueff AV, Stewart AM. Zebrafish protocols for neurobehavioral research. New York: Humana Press, 2012. 357 p. DOI: 10.1007/978-1-61779-597-8 |
| [18] |
Kalueff A.V., Stewart A.M. Zebrafish protocols for neurobehavioral research. New York: Humana Press, 2012. 357 p. DOI: 10.1007/978-1-61779-597-8 |
| [19] |
Grossman L, Stewart A, Gaikwad S, et al. Effects of piracetam on behavior and memory in adult zebrafish. Brain Res Bull. 2011; 85(1–2):58–63. DOI: 10.1016/j.brainresbull.2011.02.008 |
| [20] |
Grossman L., Stewart A., Gaikwad S., et al. Effects of piracetam on behavior and memory in adult zebrafish // Brain Res Bull. 2011. Vol. 85, No. 1–2. P. 58–63. DOI: 10.1016/j.brainresbull.2011.02.008 |
| [21] |
Veness C, Prior M, Bavin E, et al. Early indicators of autism spectrum disorders at 12 and 24 months of age: A prospective, longitudinal comparative study. Autism. 2012;16(2):163–177. DOI: 10.1177/1362361311399936 |
| [22] |
Veness C., Prior M., Bavin E., et al. Early indicators of autism spectrum disorders at 12 and 24 months of age: A prospective, longitudinal comparative study // Autism. 2012. Vol. 16, No. 2. P. 163–177. DOI: 10.1177/1362361311399936 |
| [23] |
Figueira ML, Brissos S. Measuring psychosocial outcomes in schizophrenia patients. Curr Opin Psychiatry. 2011;24(2):91–99. DOI: 10.1097/YCO.0b013e3283438119 |
| [24] |
Figueira M.L., Brissos S. Measuring psychosocial outcomes in schizophrenia patients // Curr Opin Psychiatry. 2011. Vol. 24, No. 2. P. 91–99. DOI: 10.1097/YCO.0b013e3283438119 |
| [25] |
Kasumyan AO, Pavlov DS. Stainoe povedenie ryb. Moscow: Tovarishchestvo nauchnykh izdanii KMK, 2018. 274 p. (In Russ.) |
| [26] |
Касумян А.О., Павлов Д.С. Стайное поведение рыб. Москва: Товарищество научных изданий КМК, 2018. 274 с. |
| [27] |
Miller N, Gerlai R. Quantification of shoaling behaviour in zebrafish (Danio rerio). Behav Brain Res. 2007;184(2):157–166. DOI: 10.1016/j.bbr.2007.07.007 |
| [28] |
Miller N., Gerlai R. Quantification of shoaling behaviour in zebrafish (Danio rerio) // Behav Brain Res. 2007. Vol. 184, No. 2. P. 157–166. DOI: 10.1016/j.bbr.2007.07.007 |
| [29] |
Green J, Collins C, Kyzar EJ, et al. Automated high-throughput neurophenotyping of zebrafish social behavior. J Neurosci methods. 2012;210(2):266–271. DOI: 10.1016/j.jneumeth.2012.07.017 |
| [30] |
Green J., Collins C., Kyzar E.J., et al. Automated high-throughput neurophenotyping of zebrafish social behavior // J Neurosci methods. 2012. Vol. 210, No. 2. P. 266–271. DOI: 10.1016/j.jneumeth.2012.07.017 |
| [31] |
Cachat J, Kyzar EJ, Collins C, et al. Unique and potent effects of acute ibogaine on zebrafish: the developing utility of novel aquatic models for hallucinogenic drug research. Behav Brain Res. 2013;236:258–269. DOI: 10.1016/j.bbr.2012.08.041 |
| [32] |
Cachat J., Kyzar E.J., Collins C., et al. Unique and potent effects of acute ibogaine on zebrafish: the developing utility of novel aquatic models for hallucinogenic drug research // Behav Brain Res. 2013. Vol. 236. P. 258–269. DOI: 10.1016/j.bbr.2012.08.041 |
| [33] |
Kyzar EJ, Collins C, Gaikwad S, et al. Effects of hallucinogenic agents mescaline and phencyclidine on zebrafish behavior and physiology. Prog Neuropsychopharmacol Biol Psychiatry. 2012;37(1): 194–202. DOI: 10.1016/j.pnpbp.2012.01.003 |
| [34] |
Kyzar E.J., Collins C., Gaikwad S., et al. Effects of hallucinogenic agents mescaline and phencyclidine on zebrafish behavior and physiology // Prog Neuropsychopharmacol Biol Psychiatry. 2012. Vol. 37, No. 1. P. 194–202. DOI: 10.1016/j.pnpbp.2012.01.003 |
| [35] |
Schaefer IC, Siebel AM, Piato AL, et al. The side-by-side exploratory test: a simple automated protocol for the evaluation of adult zebrafish behavior simultaneously with social interaction. Behav Pharmacol. 2015;26(7):691–696. DOI: 10.1097/FBP.0000000000000145 |
| [36] |
Schaefer I.C., Siebel A.M., Piato A.L., et al. The side-by-side exploratory test: a simple automated protocol for the evaluation of adult zebrafish behavior simultaneously with social interaction // Behav Pharmacol. 2015. Vol. 26, No. 7. P. 691–696. DOI: 10.1097/FBP.0000000000000145 |
| [37] |
Buske C, Gerlai R. Early embryonic ethanol exposure impairs shoaling and the dopaminergic and serotoninergic systems in adult zebrafish. Neurotoxicol Teratol. 2011;33(6):698–707. DOI: 10.1016/j.ntt.2011.05.0009 |
| [38] |
Buske C., Gerlai R. Early embryonic ethanol exposure impairs shoaling and the dopaminergic and serotoninergic systems in adult zebrafish // Neurotoxicol Teratol. 2011. Vol. 33, No. 6. P. 698–707. DOI: 10.1016/j.ntt.2011.05.0009 |
| [39] |
Riehl R, Kyzar E, Allain A, et al. Behavioral and physiological effects of acute ketamine exposure in adult zebrafish. Neurotoxicol Teratol. 2011;33(6):658–667. DOI: 10.1016/j.ntt.2011.05.011 |
| [40] |
Riehl R., Kyzar E., Allain A., et al. Behavioral and physiological effects of acute ketamine exposure in adult zebrafish // Neurotoxicol Teratol. 2011. Vol. 33, No. 6. P. 658–667. DOI: 10.1016/j.ntt.2011.05.011 |
| [41] |
Speedie N, Gerlai R. Alarm substance induced behavioral responses in zebrafish (Danio rerio). Behav Brain Res. 2008;188(1): 168–177. DOI: 10.1016/j.bbr.2007.10.031 |
| [42] |
Speedie N., Gerlai R. Alarm substance induced behavioral responses in zebrafish (Danio rerio) // Behav Brain Res. 2008. Vol. 188, No. 1. P. 168–177. DOI: 10.1016/j.bbr.2007.10.031 |
| [43] |
Kurta A, Palestis BG. Effects of ethanol on the shoaling behavior of zebrafish (Danio rerio). Dose-Response. 2010;8(4): dose-response.10–008.Palestis. DOI: 10.2203/dose-response.10-008.Palestis |
| [44] |
Kurta A., Palestis B.G. Effects of ethanol on the shoaling behavior of zebrafish (Danio rerio) // Dose-Response. 2010. Vol. 8, No. 4. ID dose-response. 10–008. Palestis. DOI: 10.2203/dose-response.10-008.Palestis |
| [45] |
Lindeyer CM, Langen EM, Swaney WT, Reader SM. Nonapeptide influences on social behaviour: effects of vasotocin and isotocin on shoaling and interaction in zebrafish. Behaviour. 2015;152(7–8): 897–915. DOI: 10.1163/1568539X-00003261 |
| [46] |
Lindeyer C.M., Langen E.M., Swaney W.T., Reader S.M. Nonapeptide influences on social behaviour: effects of vasotocin and isotocin on shoaling and interaction in zebrafish // Behaviour. 2015. Vol. 152, No. 7–8. P. 897–915. DOI: 10.1163/1568539X-00003261 |
| [47] |
Delaney M, Follet C, Ryan N, et al. Social interaction and distribution of female zebrafish (Danio rerio) in a large aquarium. Biol Bull. 2002;203(20):240–241. DOI: 10.2307/1543418 |
| [48] |
Delaney M., Follet C., Ryan N., et al. Social interaction and distribution of female zebrafish (Danio rerio) in a large aquarium // Biol Bull. 2002. Vol. 203, No. 2. P. 240–241. DOI: 10.2307/1543418 |
| [49] |
Liu C-x, Li C-y, Hu C-c, et al. CRISPR/Cas9-induced shank3b mutant zebrafish display autism-like behaviors. Mol Autism. 2018;9:23. DOI: 10.1186/s13229-018-0204-x |
| [50] |
Liu C.-x., Li C.-y., Hu C.-c., et al. CRISPR/Cas9-induced shank3b mutant zebrafish display autism-like behaviors // Mol Autism. 2018. Vol. 9. ID23. DOI: 10.1186/s13229-018-0204-x |
| [51] |
Peper JS, de Reus MA, van den Heuvel MP, Schutter DJ. Short fused? Associations between white matter connections, sex steroids, and aggression across adolescence. Hum Brain Map. 2015;36: 1043–1052. DOI: 10.1002/hbm.22684 |
| [52] |
Peper J.S., de Reus M.A., van den Heuvel M.P., Schutter D.J. Short fused? Associations between white matter connections, sex steroids, and aggression across adolescence // Hum Brain Map. 2015. Vol. 36. P. 1043–1052. DOI: 10.1002/hbm.22684 |
| [53] |
Wrangham RW. Two types of aggression in human evolution. PNAS USA. 2018;115(2):245–253. DOI: 10.1073/pnas.1713611115 |
| [54] |
Wrangham R.W. Two types of aggression in human evolution // PNAS USA. 2018. Vol. 115, No. 2. P. 245–253. DOI: 10.1073/pnas.1713611115 |
| [55] |
American Psychiatric Association. Diagnostic and Statistical Manual of mental disorders. 5th ed. DSM-V. USA: American Psychiatric Publishing, 2013. 947 p. |
| [56] |
de Almeida RMM, Cabral JCC, Narvaes R. Behavioural, hormonal and neurobiological mechanisms of aggressive behaviour in human and nonhuman primates. Physiol Behav. 2015;143:121–135. DOI: 10.1016/j.physbeh.2015.02.053 |
| [57] |
de Almeida R.M.M., Cabral J.C.C., Narvaes R. Behavioural, hormonal and neurobiological mechanisms of aggressive behaviour in human and nonhuman primates // Physiol Behav. 2015. Vol. 143. P. 121–135. DOI: 10.1016/j.physbeh.2015.02.053 |
| [58] |
Liu J, Zhong R, Xiong W, et al. Melatonin increases reactive aggression in humans. Psychopharmacology. 2017;234(19):2971–2978. DOI: 10.1007/s00213-017-4693-7 |
| [59] |
Liu J., Zhong R., Xiong W., et al. Melatonin increases reactive aggression in humans // Psychopharmacology. 2017. Vol. 234, No. 19. P. 2971–2978. DOI: 10.1007/s00213-017-4693-7 |
| [60] |
Lischinsky JE, Lin D. Neural mechanisms of aggression across species. Nat Neurosci. 2020;23(11):1317–1328. DOI: 10.1038/s41593-020-00715-2 |
| [61] |
Lischinsky J.E., Lin D. Neural mechanisms of aggression across species // Nat Neurosci. 2020. Vol. 23, No. 11. P. 1317–1328. DOI: 10.1038/s41593-020-00715-2 |
| [62] |
Kolla NJ, Mishra A. The endocannabinoid system, aggression, and the violence of synthetic cannabinoid use, borderline personality disorder, antisocial personality disorder, and other psychiatric disorders. Front Behav Neurosci. 2018;12:41. DOI: 10.3389/fnbeh.2018.00041 |
| [63] |
Kolla N.J., Mishra A. The endocannabinoid system, aggression, and the violence of synthetic cannabinoid use, borderline personality disorder, antisocial personality disorder, and other psychiatric disorders // Front Behav Neurosci. 2018. Vol. 12. ID 41. DOI: 10.3389/fnbeh.2018.00041 |
| [64] |
Kudryavtseva NN, Smagin DA, Kovalenko IL, et al. Serotonergic genes in the development of anxiety/depression-like state and pathology of aggressive behavior in male mice: RNA-SEQ data. Molekulyarnaya biologiya. 2017;51(2):288–300. (In Russ.) DOI: 10.7868/S0026898417020136 |
| [65] |
Кудрявцева Н.Н., Смагин Д.А., Коваленко И.Л. Серотонергические гены в развитии тревожно/депрессивного расстройства и патологии агрессивного поведения у самцов мышей: данные RNA-SEQ // Молекулярная биология. 2017. Т. 51, № 2. С. 288–300. DOI: 10.7868/S0026898417020136 |
| [66] |
O’Leary A, Laas K, Vaht M, et al. Nitric oxide synthase genotype interacts with stressful life events to increase aggression in male subjects in a population-representative sample. Eur Neuropsychopharmacol. 2020;30:56–65. DOI: 10.1016/j.euroneuro.2019.07.241 |
| [67] |
O’Leary A., Laas K., Vaht M., et al. Nitric oxide synthase genotype interacts with stressful life events to increase aggression in male subjects in a population-representative sample // Eur Neuropsychopharmacol. 2020. Vol. 30. P. 56–65. DOI: 10.1016/j.euroneuro.2019.07.241 |
| [68] |
Suzuki H, Lucas LR. Neurochemical correlates of accumbal dopamine D2 and amygdaloid 5-HT 1B receptor densities on observational learning of aggression. Cogn Affect Behav Neurosci. 2015;15(2):460–474. DOI: 10.3758/s13415-015-0337-8 |
| [69] |
Suzuki H., Lucas L.R. Neurochemical correlates of accumbal dopamine D2 and amygdaloid 5-HT 1B receptor densities on observational learning of aggression // Cogn Affect Behav Neurosci. 2015. Vol. 15, No. 2. P. 460–474. DOI: 10.3758/s13415-015-0337-8 |
| [70] |
Oliveira RF, Silva JF, Simões JM. Fighting zebrafish: characterization of aggressive behavior and winner-loser effects. Zebrafish. 2011;8(2):73–81. DOI: 10.1089/zeb.2011.0690 |
| [71] |
Oliveira R.F., Silva J.F., Simões J.M. Fighting zebrafish: characterization of aggressive behavior and winner-loser effects // Zebrafish. 2011. Vol. 8, No. 2. P. 73–81. DOI: 10.1089/zeb.2011.0690 |
| [72] |
Lumley LA, Charles RF, Charles RC, et al. Effects of social defeat and of diazepam on behavior in a resident–intruder test in male DBA/2 mice. Pharmacol Biochem Behav. 2000;67(3):433–447. DOI: 10.1016/s0091-3057(00)00382-8 |
| [73] |
Lumley L.A., Charles R.F., Charles R.C., et al. Effects of social defeat and of diazepam on behavior in a resident–intruder test in male DBA/2 mice // Pharmacol Biochem Behav. 2000. Vol. 67, No. 3. P. 433–447. DOI: 10.1016/s0091-3057(00)00382-8 |
| [74] |
Jones LJ, Norton WHJ. Using zebrafish to uncover the genetic and neural basis of aggression, a frequent comorbid symptom of psychiatric disorders. Behav Brain Res. 2015;276:171–180. DOI: 10.1016/j.bbr.2014.05.055 |
| [75] |
Jones L.J., Norton W.H.J. Using zebrafish to uncover the genetic and neural basis of aggression, a frequent comorbid symptom of psychiatric disorders // Behav Brain Res. 2015. Vol. 276. P. 171–180. DOI: 10.1016/j.bbr.2014.05.055 |
| [76] |
Norton W, Bally-Cuif L. Adult zebrafish as a model organism for behavioural genetics. BMC Neuroscience. 2010;11:90. DOI: 10.1186/1471-2202-11-90 |
| [77] |
Norton W., Bally-Cuif L. Adult zebrafish as a model organism for behavioural genetics // BMC Neuroscience. 2010. Vol. 11. ID 90. DOI: 10.1186/1471-2202-11-90 |
| [78] |
Pham M, Raymond J, Hester J, et al. Assessing social behavior phenotypes in adult zebrafish: shoaling, social preference, and mirror biting tests. In: Kalueff AV, Stewart AM, editors. Zebrafish protocols for neurobehavioral research. Totowa, NJ: Humana Press, 2012. P. 231–246. DOI: 10.1007/978-1-61779-597-8_17 |
| [79] |
Pham M., Raymond J., Hester J., et al. Assessing social behavior phenotypes in adult zebrafish: shoaling, social preference, and mirror biting tests. In: Kalueff A.V., Stewart A.M., editors. Zebrafish protocols for neurobehavioral research. Totowa, NJ: Humana Press, 2012. P. 231–246. DOI: 10.1007/978-1-61779-597-8_17 |
| [80] |
Zabegalov KN, Kolesnikova TO, Khatsko SL, et al. Understanding zebrafish aggressive behavior. Behav Processes. 2019;158:200–210. DOI: 10.1016/j.beproc.2018.11.010 |
| [81] |
Zabegalov K.N., Kolesnikova T.O., Khatsko S.L., et al. Understanding zebrafish aggressive behavior // Behav Processes. 2019. Vol. 158. P. 200–210. DOI: 10.1016/j.beproc.2018.11.010 |
| [82] |
Sterling ME, Karatayev O, Chang G-Q, et al. Model of voluntary ethanol intake in zebrafish: Effect on behavior and hypothalamic orexigenic peptides. Behav Brain Res. 2015;278:29–39. DOI: 10.1016/j.bbr.2014.09.024 |
| [83] |
Sterling M.E., Karatayev O., Chang G.-Q., et al. Model of voluntary ethanol intake in zebrafish: Effect on behavior and hypothalamic orexigenic peptides // Behav Brain Res. 2015. Vol. 278. P. 29–39. DOI: 10.1016/j.bbr.2014.09.024 |
| [84] |
Echevarria DJ, Toms CN, Jouandot DJ. Alcohol-induced behavior change in zebrafish models. Rev Neurosci. 2011;22(1):85–93. DOI: 10.1515/RNS.2011.010 |
| [85] |
Echevarria D.J., Toms C.N., Jouandot D.J. Alcohol-induced behavior change in zebrafish models // Rev Neurosci. 2011. Vol. 22, No. 1. P. 85–93. DOI: 10.1515/RNS.2011.010 |
| [86] |
Parker MO, Annan LV, Kanellopoulos AH, et al. The utility of zebrafish to study the mechanisms by which ethanol affects social behavior and anxiety during early brain development. Prog Neuropsychopharmacol Biol Psychiatry. 2014;55:94–100. DOI: 10.1016/j.pnpbp.2014.03.011 |
| [87] |
Parker M.O., Annan L.V., Kanellopoulos A.H., et al. The utility of zebrafish to study the mechanisms by which ethanol affects social behavior and anxiety during early brain development // Prog Neuropsychopharmacol Biol Psychiatry. 2014. Vol. 55. P. 94–100. DOI: 10.1016/j.pnpbp.2014.03.011 |
| [88] |
Fontana BD, Meinerz DL, Rosa LV, et al. Modulatory action of taurine on ethanol-induced aggressive behavior in zebrafish. Pharmacol Biochem Behav. 2016;141:18–27. DOI: 10.1016/j.pbb.2015.11.011 |
| [89] |
Fontana B.D., Meinerz D.L., Rosa L.V., et al. Modulatory action of taurine on ethanol-induced aggressive behavior in zebrafish // Pharmacol Biochem Behav. 2016. Vol. 141. P. 18–27. DOI: 10.1016/j.pbb.2015.11.011 |
| [90] |
Giacomini ACVV, Abreu MS, Giacomini LV, et al. Fluoxetine and diazepam acutely modulate stress induced-behavior. Behav Brain Res. 2016;296:301–310. DOI: 10.1016/j.bbr.2015.09.027 |
| [91] |
Giacomini A.C.V.V., Abreu M.S., Giacomini L.V., et al. Fluoxetine and diazepam acutely modulate stress induced-behavior // Behav Brain Res. 2016. Vol. 296. P. 301–310. DOI: 10.1016/j.bbr.2015.09.027 |
| [92] |
Theodoridi A, Tsalafouta A, Pavlidis M. Acute exposure to fluoxetine alters aggressive behavior of zebrafish and expression of genes involved in serotonergic system regulation. Front Neurosci. 2017;11:223. DOI: 10.3389/fnins.2017.00223 |
| [93] |
Theodoridi A., Tsalafouta A., Pavlidis M. Acute exposure to fluoxetine alters aggressive behavior of zebrafish and expression of genes involved in serotonergic system regulation // Front Neurosci. 2017. Vol. 11. ID223. DOI: 10.3389/fnins.2017.00223 |
| [94] |
Michelotti P, Quadros VA, Pereira ME, Rosemberg DB. Ketamine modulates aggressive behavior in adult zebrafish. Neurosci Lett. 2018;684:164–168. DOI: 10.1016/j.neulet.2018.08.009 |
| [95] |
Michelotti P., Quadros V.A., Pereira M.E., Rosemberg D.B. Ketamine modulates aggressive behavior in adult zebrafish // Neurosci Lett. 2018. Vol. 684. P. 164–168. DOI: 10.1016/j.neulet.2018.08.009 |
| [96] |
Colman JR, Baldwin D, Johnson LL, Scholz NL. Effects of the synthetic estrogen, 17α-ethinylestradiol, on aggression and courtship behavior in male zebrafish (Danio rerio). Aquat Toxicol. 2009;91(4):346–354. DOI: 10.1016/j.aquatox.2008.12.001 |
| [97] |
Colman J.R., Baldwin D., Johnson L.L., Scholz N.L. Effects of the synthetic estrogen, 17α-ethinylestradiol, on aggression and courtship behavior in male zebrafish (Danio rerio) // Aquat Toxicol. 2009. Vol. 91, No. 4. P. 346–354. DOI: 10.1016/j.aquatox.2008.12.001 |
| [98] |
Filby AL, Paull GC, Searle F, et al. Environmental estrogen-induced alterations of male aggression and dominance hierarchies in fish: A mechanistic analysis. Environ Sci Technol. 2012;46(6): 3472–3479. DOI: 10.1021/es204023d |
| [99] |
Filby A.L., Paull G.C., Searle F., et al. Environmental estrogen-induced alterations of male aggression and dominance hierarchies in fish: A mechanistic analysis // Environ Sci Technol. 2012. Vol. 46, No. 6. P. 3472–3479. DOI: 10.1021/es204023d |
| [100] |
Norton WHJ, Stumpenhorst K, Faus-Kessler T, et al. Modulation of Fgfr1a signaling in zebrafish reveals a genetic basis for the aggression-boldness syndrome. J Neurosci. 2011;31(39): 13796–13807. DOI: 10.1523/JNEUROSCI.2892-11.2011 |
| [101] |
Norton W.H.J., Stumpenhorst K., Faus-Kessler T., et al. Modulation of Fgfr1a signaling in zebrafish reveals a genetic basis for the aggression-boldness syndrome // J Neurosci. 2011. Vol. 31, No. 39. P. 13796–13807. DOI: 10.1523/JNEUROSCI.2892-11.2011 |
| [102] |
Aliczki M, Varga ZK, Balogh Z, Haller J. Involvement of 2-arachidonoylglycerol signaling in social challenge responding of male CD1 mice. Psychopharmacology. 2015;232:2157–2167. DOI: 10.1007/s00213-014-3846-1 |
| [103] |
Aliczki M., Varga Z.K., Balogh Z., Haller J. Involvement of 2-arachidonoylglycerol signaling in social challenge responding of male CD1 mice // Psychopharmacology. 2015. Vol. 232. P. 2157–2167. DOI: 10.1007/s00213-014-3846-1 |
| [104] |
Krug RG II, Lee HB, El Khoury LY, et al. The endocannabinoid gene faah2a modulates stress-associated behavior in zebrafish. PloS one. 2018;13(1):e0190897-e. DOI: 10.1371/journal.pone.0190897 |
| [105] |
Krug R.G. II, Lee H.B., El Khoury L.Y., et al. The endocannabinoid gene faah2a modulates stress-associated behavior in zebrafish // PloS one. 2018. Vol. 13, No. 1. ID e0190897-e. DOI: 10.1371/journal.pone.0190897 |
| [106] |
Carreño Gutiérrez H, O’Leary A, Freudenberg F, et al. Nitric oxide interacts with monoamine oxidase to modulate aggression and anxiety-like behavior. Eur Neuropsychopharmacol. 2020;30:30–43. DOI: 10.1016/j.euroneuro.2017.09.004 |
| [107] |
Carreño Gutiérrez H., O’Leary A., Freudenberg F., et al. Nitric oxide interacts with monoamine oxidase to modulate aggression and anxiety-like behavior // Eur Neuropsychopharmacol. 2020. Vol. 30. P. 30–43. DOI: 10.1016/j.euroneuro.2017.09.004 |
Galstyan D.S., Kolesnikova T.O., Kositsyn Y.M., Zabegalov K.N., Gubaidullina M.A., Maslov G.O., Demin K.A., Kalueff A.V.
/
| 〈 |
|
〉 |