Role of glutamate receptor complex in the organism. Ligands of NMDA receptors in neurodegenerative processes – a modern state of the problem

Vladimir D. Dergachev , Ekaterina E. Yakovleva , Eugenii R. Bychkov , Levon B. Piotrovskiy , Petr D. Shabanov

Reviews on Clinical Pharmacology and Drug Therapy ›› 2022, Vol. 20 ›› Issue (1) : 17 -28.

PDF
Reviews on Clinical Pharmacology and Drug Therapy ›› 2022, Vol. 20 ›› Issue (1) : 17 -28. DOI: 10.17816/RCF20117-28
Reviews
review-article

Role of glutamate receptor complex in the organism. Ligands of NMDA receptors in neurodegenerative processes – a modern state of the problem

Author information +
History +
PDF

Abstract

(S)-glutamic acid (glutamate) is the main excitatory mediator in the central nervous system, responsible for regulating of many physiological functions. Dysfunction of the glutamatergic system characterizes of many pathological conditions in neurology and psychiatry, and the aberrant function of glutamate receptors plays a key role in the development of neurodegenerative processes. Glutamate is crucial for many aspects of normal brain function, including memory, learning, and motor planning. In addition, glutamate is involved in the regulation of the peripheral nervous and endocrine systems. Glutamate receptors are critically important molecules necessary for the physiological functioning of the brain: they modulate neurotransmission and regulate the strength of excitatory and inhibitory transmission in the nervous system. In this regard, the use of drugs that affect glutamatergic transmission has an impact on the most important processes of neuronal transmission. The research and development of pharmacological agents involved in the processes of glutamate transmission is a relevant task of modern neuropsychopharmacology and has a purpose to improve the effectiveness and safety of available glutamatergic molecules.

Keywords

glutamate / glutamate receptor / neurodegeneration / NMDA antagonists / safety

Cite this article

Download citation ▾
Vladimir D. Dergachev, Ekaterina E. Yakovleva, Eugenii R. Bychkov, Levon B. Piotrovskiy, Petr D. Shabanov. Role of glutamate receptor complex in the organism. Ligands of NMDA receptors in neurodegenerative processes – a modern state of the problem. Reviews on Clinical Pharmacology and Drug Therapy, 2022, 20(1): 17-28 DOI:10.17816/RCF20117-28

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Bespalov AJu, Zvartau Je. Neirofarmakologiya antagonistov NMDA-retseptorov. Saint Petersburg: Nevskii dialekt; 2000. 297 p. (In Russ.)

[2]

Беспалов А.Ю., Звартау Э.Э. Нейрофармакология антагонистов NMDA-рецепторов. Санкт Петербург: Невский диалект, 2000. 297 c.

[3]

Gereau RW, Swanson G, ed. The glutamate receptors. Springer Science & Business Media; 2008. 587 p.

[4]

Gereau R.W., Swanson G., eds. The glutamate receptors. Springer Science & Business Media, 2008. 587 p.

[5]

Fernández-Montoya J, Avendaño C, Negredo P. The glutamatergic system in primary somatosensory neurons and its involvement in sensory input-dependent plasticity. Int J Mol Sci. 2018;19(1):69. DOI: 10.3390/ijms19010069

[6]

Fernández-Montoya J., Avendaño C., Negredo P. The glutamatergic system in primary somatosensory neurons and its involvement in sensory input-dependent plasticity // Int J Mol Sci 2018. Vol. 19, No. 1. P. 69. DOI: 10.3390/ijms19010069

[7]

Márquez J, Campos-Sandoval JA, Peñalver A, et al. Glutamate and brain glutaminases in drug addiction. Neurochem Res. 2017;42(3):846–857. DOI: 10.1007/s11064-016-2137-0

[8]

Márquez J., Campos-Sandoval J.A., Peñalver A., et al. Glutamate and brain glutaminases in drug addiction // Neurochem Res. 2017. Vol. 42, No. 3. P. 846–857. DOI: 10.1007/s11064-016-2137-0

[9]

Traunelis SF, Wollmuth LP, McBain CJ, et al. Glutamate receptor ion channels: structure, regulation, and function. Pharmacol Rev. 2010;62(3):405–496. DOI: 10.1124/pr.109.002451

[10]

Traunelis S.F., Wollmuth L.P., McBain C.J., et al. Glutamate receptor ion channels: structure, regulation, and function // Pharmacol Rev. 2010. Vol. 62, No. 3. P. 405–496. DOI: 10.1124/pr.109.002451

[11]

Kadieva MG, Oganesjan JeT, Zefirova ON. AMRA/KA and NMDA (glycine site) glutamate receptor subtypes antagonists. Kimiko-farmatsevticheskii zhurnal. 2008;42(2):21–30. (In Russ.) DOI: 10.1007/s11094-008-0063-4

[12]

Кадиева М.Г., Оганесян Э.Т., Зефирова О.Н. Антагонисты АМРА/КА и NMDA (глициновый сайт) подтипов глутаматных рецепторов // Химико-фармацевтический журнал. 2008. Т. 42, № 2. P. 21–30. DOI: 10.1007/s11094-008-0063-4

[13]

Orth A, Tapken D, Hollmann M. The delta subfamily of glutamate receptors: characterization of receptor chimeras and mutants. Europ J Neurosci. 2013;37(10):1620–1630. DOI: 10.1111/ejn.12193

[14]

Orth A., Tapken D., Hollmann M. The delta subfamily of glutamate receptors: characterization of receptor chimeras and mutants // Europ J Neurosci. 2013. Vol. 37, No. 10. P. 1620–1630. DOI: 10.1111/ejn.12193

[15]

Hellyer S, Leach K, Gregory KJ. Neurobiological insights and novel therapeutic opportunities for CNS disorders from mGlu receptor allosteric and biased modulation. Curr Opin Pharmacol. 2017;32:49–55. DOI: 10.1016/j.coph.2016.10.007

[16]

Hellyer S., Leach K., Gregory K.J. Neurobiological insights and novel therapeutic opportunities for CNS disorders from mGlu receptor allosteric and biased modulation // Curr Opin Pharmacol. 2017. Vol. 32. P. 49–55. DOI: 10.1016/j.coph.2016.10.007

[17]

Karakas E, Furukawa H. Crystal structure of a heterotetrameric NMDA receptor ion channel. Science. 2014;344(6187):992–997. DOI: 10.1126/science.1251915

[18]

Karakas E., Furukawa H. Crystal structure of a heterotetrameric NMDA receptor ion channel // Science. 2014. Vol. 344, No. 6187. P. 992–997. DOI: 10.1126/science.1251915

[19]

Pachernegg S, Strutz-Seebohm N, Hollmann M. GluN3 subunit-containing NMDA receptors: not just one-trick ponies. Trends Neurosci. 2012;35(4):240–249. DOI: 10.1016/j.tins.2011.11.010

[20]

Pachernegg S., Strutz-Seebohm N., Hollmann M. GluN3 subunit-containing NMDA receptors: not just one-trick ponies // Trends Neurosci. 2012. Vol. 35, No. 4. P. 240–249. DOI: 10.1016/j.tins.2011.11.010

[21]

Vyklicky V, Korinek M, Smejkalova T, et al. Structure, function, and pharmacology of NMDA receptor channels. Physiol Res. 2014;63(1):191–203. DOI: 10.33549/physiolres.932678

[22]

Vyklicky V., Korinek M., Smejkalova T., et al. Structure, function, and pharmacology of NMDA receptor channels // Physiol Res. 2014. Vol. 63, No. 1. P. 191–203. DOI: 10.33549/physiolres.932678

[23]

Vance KM, Hansen KB, Traynelis SF. GluN1 splice variant control of GluN1/GluN2D NMDA receptors. J Physiol. 2012;590(16): 3857–3875. DOI: 10.1113/jphysiol.2012.234062

[24]

Vance K.M., Hansen K.B., Traynelis S.F. GluN1 splice variant control of GluN1/GluN2D NMDA receptors // J Physiol. 2012. Vol. 590, No. 16. P. 3857–3875. DOI: 10.1113/jphysiol.2012.234062

[25]

Lee CH, Lü W, Michel JC, et al. NMDA receptor structures reveal subunit arrangement and pore architecture. Nature. 2014;511(7508):191–197. DOI: 10.1038/nature13548

[26]

Lee C.H., Lü W., Michel J.C., et al. NMDA receptor structures reveal subunit arrangement and pore architecture // Nature. 2014. Vol. 511, No. 7508. P. 191–197. DOI: 10.1038/nature13548

[27]

Gezelius H, López-Bendito G. Thalamic neuronal specification and early circuit formation. Dev Neurobiol. 2017;77(7):830–843. DOI: 10.1002/dneu.22460

[28]

Gezelius H., López-Bendito G. Thalamic neuronal specification and early circuit formation // Dev Neurobiol 2017. Vol. 77, No. 7. P. 830–843. DOI: 10.1002/dneu.22460

[29]

Acker TM, Yuan H, Hansen KB, et al. Mechanism for noncompetitive inhibition by novel GluN2C/D N-methyl-D-aspartate receptor subunit-selective modulators. Mol Pharmacol. 2011;80(5):782–795. DOI: 10.1124/mol.111.073239

[30]

Acker T.M., Yuan H., Hansen K.B., et al. Mechanism for noncompetitive inhibition by novel GluN2C/D N-methyl-D-aspartate receptor subunit-selective modulators // Mol Pharmacol. 2011. Vol. 80, No. 5. P. 782–795. DOI: 10.1124/mol.111.073239

[31]

Gielen M, Retchless SB, Mony L, et al. Mechanism of differential control of NMDA receptor activity by NR2 subunits. Nature. 2009;459(7247):703–707. DOI: 10.1038/nature07993

[32]

Gielen M., Retchless S.B., Mony L., et al. Mechanism of differential control of NMDA receptor activity by NR2 subunits // Nature. 2009. Vol. 459, No. 7247. P. 703–707. DOI: 10.1038/nature07993

[33]

Mony L, Zhu S, Carvalho S, et al. Molecular basis of positive allosteric modulation of GluN2B NMDA receptors by polyamines. EMBO J. 2011;30(15):3134–3146. DOI: 10.1038/emboj.2011.203

[34]

Mony L., Zhu S., Carvalho S., et al. Molecular basis of positive allosteric modulation of GluN2B NMDA receptors by polyamines // EMBO J. 2011. Vol. 30, No. 15. P. 3134–3146. DOI: 10.1038/emboj.2011.203

[35]

Eriksson M, Nilsson A, Froelich-Fabre S, et al. Cloning and expression of the human N-methyl-D-aspartate receptor subunit NR3A. Neurosci Lett. 2002;321(3):177–181. DOI: 10.1016/S0304-3940(01)02524-1

[36]

Eriksson M., Nilsson A., Froelich-Fabre S., et al. Cloning and expression of the human N-methyl-D-aspartate receptor subunit NR3A // Neurosci Lett. 2002. Vol. 321, No. 3. P. 177–181. DOI: 10.1016/S0304-3940(01)02524-1

[37]

Jewett B.E., Thapa B. Physiology, NMDA Receptor. 2021 Des 15. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing, 2022 Jan. PMID: 30137779. Available from: https://www.ncbi.nlm.nih.gov/books/NBK519495/. Accessed: March 17, 2022.

[38]

Jewett B.E., Thapa B. Physiology, NMDA Receptor. 2021 Des 15. StatPearls [Электронный ресурс]. Treasure Island (FL): StatPearls Publishing, 2022 Jan. PMID: 30137779. Режим доступа: https://www.ncbi.nlm.nih.gov/books/NBK519495/. Дата обращения: 17.03.2022.

[39]

Van Zundert B, Yoshii A, Constantine-Paton M. Receptor compartmentalization and trafficking at glutamate synapses: a developmental proposal. Trends Neurosci. 2004;27(7):428–437. DOI: 10.1016/j.tins.2004.05.010

[40]

Van Zundert B., Yoshii A., Constantine-Paton M. Receptor compartmentalization and trafficking at glutamate synapses: a developmental proposal // Trends Neurosci. 2004. Vol. 27, No. 7. P. 428–437. DOI: 10.1016/j.tins.2004.05.010

[41]

Roberts AC, Díez-García J, Rodriguiz RM, et al. Downregulation of NR3A-containing NMDARs is required for synapse maturation and memory consolidation. Neuron. 2009;63(3):342–356. DOI: 10.1016/j.neuron.2009.06.016

[42]

Roberts A.C., Díez-García J., Rodriguiz R.M., et al. Downregulation of NR3A-containing NMDARs is required for synapse maturation and memory consolidation // Neuron. 2009. Vol. 63, No. 3. P. 342–356. DOI: 10.1016/j.neuron.2009.06.016

[43]

Papouin T, Ladepiche L, Ruel J, et al. Synaptic and extrasynaptic NMDA-receptors are gated by different endogenous coagonists. Cell. 2012;150(3):633–646. DOI: 10.1016/j.cell.2012.06.029

[44]

Papouin T., Ladepiche L., Ruel J., et al. Synaptic and extrasynaptic NMDA-receptors are gated by different endogenous coagonists // Cell. 2012. Vol. 150, No. 3. P. 633–646. DOI: 10.1016/j.cell.2012.06.029

[45]

Novytska-Usenko LV, Muslin VP, Kryshtafor AA. Two opposite effects of NMDA-receptors in terms of increased range of pharmacological neuroprotection in acute cerebral ischemia. Medicina neotlojnyh sostoyaniy. 2016;1(72):24–29. (In Russ.)

[46]

Новицкая-Усенко Л.В., Муслин В.П., Криштафор А.А. Два противоположных эффекта NMDA-рецепторов с точки зрения расширения диапазона фармакологической нейропротекции при острой ишемии головного мозга // Медицина неотложных состояний. 2016. Т. 1, № 72. С. 24–29.

[47]

Gladding CM, Raymond LA. Mechanisms underlying NMDA receptor synaptic/extrasynaptic distribution and function. Mol Cell Neurosci. 2011;48(4):308–320. DOI: 10.1016/j.mcn.2011.05.001

[48]

Gladding C.M., Raymond L.A. Mechanisms underlying NMDA receptor synaptic/extrasynaptic distribution and function // Mol Cell Neurosci. 2011. Vol. 48, No. 4. P. 308–320. DOI: 10.1016/j.mcn.2011.05.001

[49]

Perfilova VN, Tyurenkov IN. Glutamate ionotropic receptors: structure, localisation, function. Progress Physiol Sci. 2016;47(1): 80–96. (In Russ.)

[50]

Перфилова В. Н., Тюренков И. Н. Глутаматные ионотропные рецепторы: структура, локализация, функции // Успехи физиологических наук. 2016. Т. 47, № 1. С. 80–96.

[51]

Akkuratov EE, Westin L, Vazquez-Juarez E, et al. Ouabain Modulates the Functional Interaction Between Na, K-ATPase and NMDA Receptor. Mol Neurobiol. 2020;57(10):4018–4030 (2020). DOI: 10.1007/s12035-020-01984-5

[52]

Akkuratov E.E., Westin L., Vazquez-Juarez E., et al. Ouabain Modulates the Functional Interaction Between Na, K-ATPase and NMDA Receptor // Mol Neurobiol. 2020. Vol. 57, No. 10. P. 4018–4030. DOI: 10.1007/s12035-020-01984-5

[53]

Traynelis SF, Burgess MF, Zheng F, et al. Control of voltage-independent zinc inhibition of NMDA receptors by the NR1 subunit. J Neurosci. 1998;18(16):6163–6175. DOI: 10.1523/JNEUROSCI.18-16-06163.1998

[54]

Traynelis S.F., Burgess M.F., Zheng F., et al. Control of voltage-independent zinc inhibition of NMDA receptors by the NR1 subunit // J Neurosci. 1998. Vol. 18, No. 16. P. 6163–6175. DOI: 10.1523/JNEUROSCI.18-16-06163.1998

[55]

Kew JN, Kemp JA. Ionotropic and metabotropic glutamate receptor structure and pharmacology. Psychopharmacology (Berl). 2005;179(1):4–29. DOI: 10.1007/s00213-005-2200-z

[56]

Kew J.N., Kemp J.A. Ionotropic and metabotropic glutamate receptor structure and pharmacology // Psychopharmacology (Berl). 2005. Vol. 179, No. 1. P. 4–29. DOI: 10.1007/s00213-005-2200-z

[57]

Mehta A, Prabhakar M, Kumar P, et al. Excitotoxicity: bridge to various triggers in neurodegenerative disorders. Eur J Pharmacol. 2013;698(1–3):6–18. DOI: 10.1016/j.ejphar.2012.10.032

[58]

Mehta A., Prabhakar M., Kumar P., et al. Exitotoxicity: bridge to various triggers in neurodegenerative disorders // Eur J Pharmacol. 2013. Vol. 698, No. 1–3. P. 6–18. DOI: 10.1016/j.ejphar.2012.10.032

[59]

Wang CC, Wee HY, Hu CY, et al. The effects of memantine on glutamic receptor associated nitrosative stress in a traumatic brain injury rat model. World Neurosurg. 2018;112: e719–e731. DOI: 10.1016/j.wneu.2018.01.140

[60]

Wang C.C., Wee H.Y., Hu C.Y., et al. The effects of memantine on glutamic receptor associated nitrosative stress in a traumatic brain injury rat model // World Neurosurg. 2018. Vol. 112. P. e719–e731. DOI: 10.1016/j.wneu.2018.01.140

[61]

Cadinu D, Grayson B, Podda G, et al. NMDA receptor antagonist rodent models for cognition in schizophrenia and identification of novel drug treatments, an update. Neuropharmacol. 2018;142:41–62. DOI: 10.1016/j.neuropharm.2017.11.045

[62]

Cadinu D., Grayson B., Podda G., et al. NMDA receptor antagonist rodent models for cognition in schizophrenia and identification of novel drug treatments, an update // Neuropharmacol. 2018. Vol. 142. P. 41–62. DOI: 10.1016/j.neuropharm.2017.11.045

[63]

Theibert HPM, Carroll BT. NMDA antagonists in the treatment of catatonia: A review of case studies from the last 10 years. Gen Hosp Psychiatry. 2018;51:132–133. DOI: 10.1016/j.genhosppsych.2017.10.010

[64]

Theibert H.P.M., Carroll B.T. NMDA antagonists in the treatment of catatonia: A review of case studies from the last 10 years // Gen Hosp Psychiatry. 2018. Vol. 51. P. 132–133. DOI: 10.1016/j.genhosppsych.2017.10.010

[65]

Aroniadou-Anderjaska V, Pidoplichko VI, Figueiredo TH, et al. Oscillatory Synchronous Inhibition in the Basolateral Amygdala and its Primary Dependence on NR2A-containing NMDA Receptors. Neuroscience. 2018;373:145–158. DOI: 10.1016/j.neuroscience.2018.01.021

[66]

Aroniadou-Anderjaska V., Pidoplichko V.I., Figueiredo T.H., et al. Oscillatory Synchronous Inhibition in the Basolateral Amygdala and its Primary Dependence on NR2A-containing NMDA Receptors // Neuroscience. 2018. Vol. 373. P. 145–158. DOI: 10.1016/j.neuroscience.2018.01.021

[67]

Zhou JJ, Gao Y, Zhang X, et al. Enhanced Hypothalamic NMDA Receptor Activity Contributes to Hyperactivity of HPA Axis in Chronic Stress in Male Rats. Endocrinology. 2018;159(3):1537–1546. DOI: 10.1210/en.2017-03176

[68]

Zhou J.J., Gao Y., Zhang X., et al. Enhanced Hypothalamic NMDA Receptor Activity Contributes to Hyperactivity of HPA Axis in Chronic Stress in Male Rats // Endocrinology. 2018. Vol. 159, No. 3. P. 1537–1546. DOI: 10.1210/en.2017-03176

[69]

Mathews MJ, Mead RN, Galizio M. Effects of N-Methyl-D-aspartate (NMDA) antagonists ketamine, methoxetamine, and phencyclidine on the odor span test of working memory in rats. Exp Clin Psychopharmacol. 2018;26(1):6–17. DOI: 10.1037/pha0000158

[70]

Mathews M.J., Mead R.N., Galizio M. Effects of N-Methyl-D-aspartate (NMDA) antagonists ketamine, methoxetamine, and phencyclidine on the odor span test of working memory in rats // Exp Clin Psychopharmacol. 2018. Vol. 26, No. 1. P. 6–17. DOI: 10.1037/pha0000158

[71]

Jackson AC, Nicoll RA. The expanding social network of ionotropic glutamate receptors: TARPs and other transmembrane auxiliary subunits. Neuron. 2011;70(2):178–199. DOI: 10.1016/j.neuron.2011.04.007

[72]

Jackson A.C., Nicoll R.A. The expanding social network of ionotropic glutamate receptors: TARPs and other transmembrane auxiliary subunits // Neuron. 2011. Vol. 70, No. 2. P. 178–199. DOI: 10.1016/j.neuron.2011.04.007

[73]

McBain СJ, Mayer ML. N-methyl-D-aspartate receptor structure and function. Physiol Rev. 1994;74(3):723–760. DOI: 10.1152/physrev.1994.74.3.723

[74]

McBain С.J., Mayer M.L. N-methyl-D-aspartate receptor structure and function // Physiol Rev. 1994. Vol. 74, No. 3. P. 723–760. DOI: 10.1152/physrev.1994.74.3.723

[75]

Rogawski MA. Therapeutic potential of excitatory ammo acid antagonists channel blockers and 2,3-benzodiazepines. Trends Pharmacol Sci. 1993;14(9):325–331. DOI: 10.1016/0165-6147(93)90005-5

[76]

Rogawski M.A. Therapeutic potential of excitatory ammo acid antagonists channel blockers and 2,3-benzodiazepines // Trends Pharmacol Sci. 1993. Vol. 14, No. 9. P. 325–331. DOI: 10.1016/0165-6147(93)90005-5

[77]

Danysz W, Parsons CG, Kornhuber J, et al. Aminoadamantanes as NMDA receptor antagonists and antiparkinsonian agents – preclinical studies. Neurosci Biobeh Rev. 1997;21(4):455–468. DOI: 10.1016/S0149-7634(96)00037-1

[78]

Danysz W., Parsons C.G., Kornhuber J., et al. Aminoadamantanes as NMDA receptor antagonists and antiparkinsonian agents — preclinical studies // Neurosci Biobeh Rev. 1997. Vol. 21, No. 4. P. 455–468. DOI: 10.1016/S0149-7634(96)00037-1

[79]

Priestley Т, Laughton P, Macaulay AJ, et al. Electrophysiological characterization of the antagonist properties of two novel NMDA receptor glycine site antagonists, L-695,902 and L-701,324. Neuropharmacology. 1996;35(11):1573–1581. DOI: 10.1016/S0028-3908(96)00141-4

[80]

Priestley Т., Laughton P., Macaulay A.J., et al. Electrophysiological characterization of the antagonist properties of two novel NMDA receptor glycine site antagonists, L-695,902 and L-701,324 // Neuropharmacology. 1996. Vol. 35, No. 11. P. 1573–1581. DOI: 10.1016/S0028-3908(96)00141-4

[81]

Bonina FP, Arenareb L, Ippolito R, et al. Synthesis, pharmacokinetics and anticonvulsant activity of 7-chlorokynurenic acid prodrugs. Int J Pharm. 2000;202(1–2):79–88. DOI: 10.1016/S0378-5173(00)00421-X

[82]

Bonina F.P., Arenareb L., Ippolito R., et al. Synthesis, pharmacokinetics and anticonvulsant activity of 7-chlorokynurenic acid prodrugs // Int J Pharm. 2000. Vol. 202, No. 1–2. P. 79–88. DOI: 10.1016/S0378-5173(00)00421-X

[83]

Kohl BK, Dannhardt G. The NMDA receptor complex: a promising target for novel antiepileptic strategies. Curr Med Chem. 2001;8(11):1275–1289. DOI: 10.2174/0929867013372328

[84]

Kohl B.K., Dannhardt G. The NMDA receptor complex: a promising target for novel antiepileptic strategies // Curr Med Chem. 2001. Vol. 8, No. 11. P. 1275–1289. DOI: 10.2174/0929867013372328

[85]

Carter C, Avenet P, Benavides J, et al. Ifenprodil and eliprodil: neuroprotective NMDA receptor antagonists and calcium channel blockers. In: Excitatory Amino Acids. 1st edition. P. Herrling ed. USA: Academic Press; 1997. P. 57–80.

[86]

Carter C., Avenet P., Benavides J., et al. Ifenprodil and eliprodil: neuroprotective NMDA receptor antagonists and calcium channel blockers. In: Excitatory Amino Acids. 1st edition. P. Herrling ed. USA: Academic Press; 1997. P. 57–80.

[87]

Avenet P, Leonardon J, Besnard F, et al. Antagonist properties of eliprodil and other NMDA receptor antagonists at rat NR1A/NR2A and NR1A/NR2B receptors expressed in Xenopus oocytes. Neurosci Lett. 1997;223(2):133–136. DOI: 10.1016/S0304-3940(97)13422-X

[88]

Avenet P., Leonardon J., Besnard F., et al. Antagonist properties of eliprodil and other NMDA receptor antagonists at rat NR1A/NR2A and NR1A/NR2B receptors expressed in Xenopus oocytes // Neurosci Lett. 1997. Vol. 223, No. 2. P. 133–136. DOI: 10.1016/S0304-3940(97)13422-X

[89]

Chistoffersen СL, Meltzer LT. Evidence for N-methyl-D-aspartate and AMPA subtypes of the glutamate receptor on substantia nigra dopamine neurons possible preferential role for N-methyl D aspartate receptors. Neuroscience. 1995;67(2):373–381. DOI: 10.1016/0306-4522(95)00047-M

[90]

Chistoffersen С.L., Meltzer L.T. Evidence for N-methyl-D-aspartate and AMPA subtypes of the glutamate receptor on substantia nigra dopamine neurons possible preferential role for N-methyl D aspartate receptors // Neuroscience. 1995. Vol. 67, No. 2. P. 373–381. DOI: 10.1016/0306-4522(95)00047-M

[91]

Criddle MW, Godfrey DA, Kaltenbach JA. Attenuation of noise-induced hyperactivity in the dorsal cochlear nucleus by pre-treatment with MK-801. Brain Res. 2018;1682:71–77. DOI: 10.1016/j.brainres.2018.01.002

[92]

Criddle M.W., Godfrey D.A., Kaltenbach J.A. Attenuation of noise-induced hyperactivity in the dorsal cochlear nucleus by pre-treatment with MK-801 // Brain Res. 2018. Vol. 1682. P. 71–77. DOI: 10.1016/j.brainres.2018.01.002

[93]

Shabanov PD, Lebedev AA, Sheveleva MV. Uchastie prilezhashchego yadra v mekhanizmakh uslovnogo podkrepleniya u krys. Narkology. 2014;13(7(151)):52–59. (In Russ.)

[94]

Шабанов П.Д., Лебедев А.А., Шевелева М.В. Участие прилежащего ядра в механизмах условного подкрепления у крыс // Наркология. 2014. Т. 13, № 7(151). С. 52–59.

[95]

Shi LL, Dong J, Ni H, et al. Felbamate as an add-on therapy for refractory partial epilepsy. Cochrane Database Syst Rev. 2017;7(7): CD008295. DOI: 10.1002/14651858.CD008295

[96]

Shi L.L., Dong J., Ni H., et al. Felbamate as an add-on therapy for refractory partial epilepsy // Cochrane Database Syst Rev. 2017. Vol. 7, No. 7. P. CD008295. DOI: 10.1002/14651858.CD008295

[97]

Hanrahan B., Carson R.P. Felbamate. 2021 Aug 25. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2021 Jan. PMID: 30969621. Available at: https://www.ncbi.nlm.nih.gov/books/NBK539799/. Accessed: March 10, 2022.

[98]

Hanrahan B., Carson R.P. Felbamate. 2021 Aug 25. In: StatPearls [Электронный ресурс]. Treasure Island (FL): StatPearls Publishing; 2021 Jan. PMID: 30969621. Режим доступа: https://www.ncbi.nlm.nih.gov/books/NBK539799/. Дата обращения: 10.03.2022.

[99]

Vlasov PN, Naumova GI, Drozhzhina GR. Novye protivoepilepticheskie preparaty. Good Clinical Practice. 2018;(3):12–28. (In Russ.)

[100]

Власов П.Н., Наумова Г.И., Дрожжина Г.Р. Новые противоэпилептические препараты // Качественная клиническая практика. 2018. Т. 3. С. 12–28.

[101]

Mellone M, Gardoni F. Glutamatergic mechanisms in L-DOPA-induced dyskinesia and therapeutic implications. J Neural Transm (Viena). 2018;125(8):1225–1236. DOI: 10.1007/s00702-018-1846-8

[102]

Mellone M., Gardoni F. Glutamatergic mechanisms in L-DOPA-induced dyskinesia and therapeutic implications // J Neural Transm (Viena). 2018. Vol. 125, No. 8. P. 1225–1236. DOI: 10.1007/s00702-018-1846-8

[103]

Nuzzo T, Punzo D, Devoto P, et al. The levels of the NMDA receptor co-agonist D-serine are reduced in the substantia nigra of MPTP-lesioned macaques and in the cerebrospinal fluid of Parkinson’s disease patients. Sci Rep. 2019;9(1):8898. DOI: 10.1038/s41598-019-45419-1

[104]

Nuzzo T., Punzo D., Devoto P., et al. The levels of the NMDA receptor co-agonist D-serine are reduced in the substantia nigra of MPTP-lesioned macaques and in the cerebrospinal fluid of Parkinson’s disease patients // Sci Rep. 2019. Vol. 9, No. 1. P. 8898. DOI: 10.1038/s41598-019-45419-1

[105]

Wolosker H, Balu DT, Coyle JT. The Rise and Fall of the d-Serine-Mediated Gliotransmission Hypothesis. Trends Neurosci. 2016;39(11):712–721. DOI: 10.1016/j.tins.2016.09.007

[106]

Wolosker H., Balu D.T., Coyle J.T. The Rise and Fall of the d-Serine-Mediated Gliotransmission Hypothesis // Trends Neurosci. 2016. Vol. 39, No. 11. P. 712–721. DOI: 10.1016/j.tins.2016.09.007.

[107]

Consolo S, Salmoiraghi P, Amoroso D, et al. Treatment with oxitracetam or choline restores cholinergic biochemical and pharmacological activities in striata of decorticated rats. J Neurochem. 1990;54(2):571–577. DOI: 10.1111/j.1471-4159.1990.tb01909.x

[108]

Consolo S., Salmoiraghi P., Amoroso D., et al. Treatment with oxitracetam or choline restores cholinergic biochemical and pharmacological activities in striata of decorticated rats // J Neurochem. 1990. Vol. 54, No. 2. P. 571–577. DOI: 10.1111/j.1471-4159.1990.tb01909.x

[109]

Damsma G, Robertson GS, Tham CS, et al. Dopaminergic regulation of striatal acetylcholine release: importance of Dl and N-methyl-D-aspartate receptors. J Pharmacol Exp Ther. 1991;259(3):1064–1072.

[110]

Damsma G., Robertson G.S., Tham C.S., et al. Dopaminergic regulation of striatal acetylcholine release: importance of Dl and N-methyl-D-aspartate receptors // J Pharmacol Exp Ther. 1991. Vol. 259, No. 3. P. 1064–1072.

[111]

Lancelot E, Callebert J, Plotkine M, et al. Striatal dopamine participates in glutamate-induced hydroxyl radical generation. Neuroreport. 1995;6(7):1033–1036. DOI: 10.1097/00001756-199505090-00021

[112]

Lancelot E., Callebert J., Plotkine M., et al. Striatal dopamine participates in glutamate-induced hydroxyl radical generation // Neuroreport. 1995. Vol. 6, No. 7. P. 1033–1036. DOI: 10.1097/00001756-199505090-00021

[113]

Bhattacharya S, Ma Y, Dunn AR, et al. NMDA receptor blockade ameliorates abnormalities of spike firing of subthalamic nucleus neurons in a parkinsonian nonhuman primate. J Neurosci Res. 2018;96(7):1324–1335. DOI: 10.1002/jnr.24230

[114]

Bhattacharya S., Ma Y., Dunn A.R., et al. NMDA receptor blockade ameliorates abnormalities of spike firing of subthalamic nucleus neurons in a parkinsonian nonhuman primate // J Neurosci Res. 2018. Vol. 96, No. 7. P. 1324–1335. DOI: 10.1002/jnr.24230

[115]

Espay AJ, Morgante F, Merola A, et al. Levodopa-induced dyskinesia in Parkinson disease: Current and evolving concepts. Ann Neurol. 2018;84(6):797–811. DOI: 10.1002/ana.25364

[116]

Espay A.J., Morgante F., Merola A., et al. Levodopa-induced dyskinesia in Parkinson disease: Current and evolving concepts // Ann Neurol. 2018. Vol. 84, No. 6. P. 797–811. DOI: 10.1002/ana.25364

[117]

Kim A, Kim YE, Yun JY, et al. Amantadine and the risk of dyskinesia in patients with early Parkinson’s disease: an open-label, pragmatic trial. J Mov Disord. 2018;11(2):65–71. DOI: 10.14802/jmd.18005

[118]

Kim A., Kim Y.E., Yun J.Y., et al. Amantadine and the risk of dyskinesia in patients with early Parkinson’s disease: an open-label, pragmatic trial // J Mov Disord. 2018. Vol. 11, No. 2. P. 65–71. DOI: 10.14802/jmd.18005

[119]

Poewe W, Seppi K, Tanner CM, et al. Parkinson disease. Nat Rev Dis Primers. 2017;3:17013. DOI: 10.1038/nrdp.2017.13

[120]

Poewe W., Seppi K., Tanner C. M., et al. Parkinson disease // Nat Rev Dis Primers. 2017. Vol. 3. P. 17013. DOI: 10.1038/nrdp.2017.13

RIGHTS & PERMISSIONS

Dergachev V.D., Yakovleva E.E., Bychkov E.R., Piotrovskiy L.B., Shabanov P.D.

AI Summary AI Mindmap
PDF

88

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/