Comparative characteristics of antimicrobial activity of water dispersions of silver and gold nanoparticles stabilized with native and synthetic polymers
Tatiana A. Shulgina , Kseniya V. Zubova , Elena V. Glinskaya , Olga V. Nechaeva , Natalya V. Bespalova
Reviews on Clinical Pharmacology and Drug Therapy ›› 2021, Vol. 19 ›› Issue (4) : 405 -411.
Comparative characteristics of antimicrobial activity of water dispersions of silver and gold nanoparticles stabilized with native and synthetic polymers
BACKGROUND: The construction and application of antimicrobial drugs on the basis of nanoparticles of metals, silver and gold in particular, are staying casual up to now.
AIM: was to study the spectrum of antimicrobial activity of nanoparticles of silver and gold developed by means of chemical recovery and stabilized with native and synthetic compounds.
MATERIALS AND METHODS: The paper presents the results of a study of the antimicrobial activity of aqueous dispersions of silver and gold nanoparticles against standard and clinical strains of Staphylococcus aureus, which were sensitive to methicillin. Natural (carboxymethylcellulose, sodium oleate) and synthetic (polyvinyl alcohol, sodium dodecyl sulfate, polyazolidylammonium modified with iodine hydrate ions) polymeric compounds were used as stabilizers.
RESULTS: The high antistaphylococcal activity of the studied drugs was established, which depended on the stabilizer used. The highest efficiency of biocidal action was revealed for aqueous dispersions of metal nanoparticles stabilized with polyvinyl alcohol and polyazolidylammonium modified with iodine hydrate ions, which did not depend on the strain differences of microorganisms.
CONCLUSIONS: The results obtained open up prospects for the use of aqueous dispersions of silver and gold nanoparticles as active components in the development of new antiseptic preparations and photosensitizers for antimicrobial photodynamic therapy.
silver nanoparticles / gold nanoparticles / natural and synthetic stabilizers / Staphylococcus aureus / antimicrobial activity
| [1] |
Namazova-Baranova LS, Baranov AA. Antibiotic Resistance in Modern World. Pediatric Pharmacology. 2017;14(5):341–354. (In Russ.) DOI: 10.15690/pf.v14i5.1782 |
| [2] |
Намазова-Баранова Л.С., Баранов А.А. Антибиотикорезистентность в современном мире // Педиатрическая фармакология. 2017. Т. 14, № 5. С. 341–354. DOI: 10.15690/pf.v14i5.1782 |
| [3] |
Zeng L, Zhan Z, Hu L, et al. Genetic Characterization of a blaVIM-24-Carrying IncP-7β Plasmid p1160-VIM and a blaVIM-4-Harboring Integrative and Conjugative Element Tn6413 From Clinical Pseudomonas aeruginosa. Front Microbiol. 2019;10:213. DOI: 10.3389/fmicb.2019.00213 |
| [4] |
Zeng L., Zhan Z., Hu L., et al. Genetic Characterization of a blaVIM-24-Carrying IncP-7β Plasmid p1160-VIM and a blaVIM-4-Harboring Integrative and Conjugative Element Tn6413 From Clinical Pseudomonas aeruginosa. // Front Microbiol. 2019. Vol. 10. ID 213. DOI: 10.3389/fmicb.2019.00213 |
| [5] |
Vsemirnaya Organizatsiya Zdravookhraneniya [Internet]. Global’naya strategiya VOZ po sderzhivaniyu ustoichivosti k antimikrobnym preparatam ot 2001 [update 2018 April 15]. Available from: https://www.who.int/drugresistance/WHO_Global_Strategy_ Russian.pdf |
| [6] |
Всемирная Организация Здравоохранения [Internet]. Глобальная стратегия ВОЗ по сдерживанию устойчивости к антимикробным препаратам от 2001 г. [дата обращения 15.04.2018]. Доступ по ссылке: https://www.who.int/drugresistance/WHO_Global_Strategy_Russian.pdf |
| [7] |
Strachunskii LS, Kozlov SN. Sovremennaya antimikrobnaya khimioterapiya: rukovodstvo dlya vrachei. Moscow: Borges, 2002. 432 p. (In Russ.) |
| [8] |
Страчунский Л.С., Козлов С.Н. Современная антимикробная химиотерапия: руководство для врачей. М.: Боргес, 2002. 432 с. |
| [9] |
Shcherbakov AB, Korchak GI, Surmasheva EV. Preparaty serebra: vchera, segodnya i zavtra. Farmatsevticheskii zhurnal. 2006;(5): 45–57. (In Russ.) |
| [10] |
Щербаков А.Б., Корчак Г.И., Сурмашева Е.В. Препараты серебра: вчера, сегодня и завтра // Фармацевтический журнал. 2006. № 5. С. 45–57. |
| [11] |
Kim JS. Antimicrobial effects of silver nanoparticles. Nanomedecine: Nanotechnology, Biology and Medicine. 2007;3(1):95–101. DOI: 10.1016/j.nano.2006.12.001 |
| [12] |
Kim J.S. Antimicrobial effects of silver nanoparticles // Nanomedecine: Nanotechnology, Biology and Medicine. 2007. Vol. 3. No. 1. P. 95–101. DOI: 10.1016/j.nano.2006.12.001 |
| [13] |
Kuz’mina LN. Poluchenie nanochastits serebra metodom khimicheskogo vosstanovleniya. Zhurnal Rossiiskogo khimicheskogo obshchestva imeni DI Mendeleeva. 2007;(8):7–12. (In Russ.) |
| [14] |
Кузьмина Л.Н. Получение наночастиц серебра методом химического восстановления // Журнал Российского химического общества имени Д.И. Менделеева. 2007. № 8. С. 7–12. |
| [15] |
Bukina YuA, Sergeeva EA. Antibakterial’nye svoistva i mekhanizm bakteritsidnogo deistviya nanochastits i ionov serebra. Vestnik Kazanskogo tekhnologicheskogo universiteta. 2012;15(14):170–172. (In Russ.) |
| [16] |
Букина Ю.А., Сергеева Е.А. Антибактериальные свойства и механизм бактерицидного действия наночастиц и ионов серебра // Вестник Казанского технологического университета. 2012. Т. 15, № 14. С. 170–172. |
| [17] |
Park SJ, Jang YS. Preparation and characterization of activated carbon fibers supported with silver metal for antibacterial behavior. J Colloid Interface Sci. 2003;261(2):238–243. DOI: 10.1016/S0021-9797(03)00083-3 |
| [18] |
Park S.J., Jang Y.S. Preparation and characterization of activated carbon fibers supported with silver metal for antibacterial behavior // J Colloid Interface Sci. 2003. Vol. 261. No. 2. P. 238–243. DOI: 10.1016/S0021-9797(03)00083-3 |
| [19] |
Litmanovich OE. Vzaimodeistvie makromolekul s nanochastitsami metallov i psevdomatrichnyi sintez zolei polimer – metallicheskikh nanokompozitov [dissertation abstract]. Moscow, 2006. 32 p. |
| [20] |
Литманович О.Е. Взаимодействие макромолекул с наночастицами металлов и псевдоматричный синтез золей полимер-металлических нанокомпозитов: автореф. дис. … д-ра. хим. наук. Москва, 2006. 32 с. |
| [21] |
Nazarchuk OA, Faustova MO, Kolodii SA. Microbiological characteristics of infectious complications, actual aspects of their prevention and treatment in surgical patients. Novosti Khirurgii. 2019;27(3):318–327. (In Russ.) DOI: 10.18484/2305-0047.2019.3.318 |
| [22] |
Назарчук А.А., Фаустова М.А., Колодий С.А. Микробиологическая характеристика инфекционных осложнений, актуальные аспекты их профилактики и лечения у хирургических пациентов // Новости хирургии. 2019. Т. 27, № 3. С. 318–327. DOI: 10.18484/2305-0047.2019.3.318 |
| [23] |
Tiller JC, Liao C-J, Lewis K, Klibanov AM. Designing surfaces that kill bacteria on contact. Proceedings of the national academy of science. 2001;98(11):5981–5985. DOI: 10.1073/pnas.111143098 |
| [24] |
Tiller J.C., Liao C.-J., Lewis K., Klibanov A.M. Designing surfaces that kill bacteria on contact // Proceedings of the national academy of science. 2001. Vol. 98. No. 11. P. 5981–5985. DOI: 10.1073/pnas.111143098 |
| [25] |
Kittler S, Greulich C, Diendorf J, et al. Toxicity of Silver Nanoparticles Increases during Storage Because of Slow Dissolution under Release of Silver Ions. Chem Mater. 2010;22(16):4548–4554. DOI: 10.1021/cm100023p |
| [26] |
Kittler S., Greulich C., Diendorf J., et al. Toxicity of Silver Nanoparticles Increases during Storage Because of Slow Dissolution under Release of Silver Ions // Chem Mater. 2010. Vol. 22. No. 16. P. 4548–4554. DOI: 10.1021/cm100023p |
| [27] |
Shulgina T, Nechaeva O, Torgashova A., Darin N. Using the method of biotesting to assess the toxicity of waste medical and biological practices containing nanomaterials. IOP Conf. Series: Earth and Environmental Science. 2019;337:012012. DOI: 10.1088/1755-1315/337/1/012012 |
| [28] |
Shulgina T., Nechaeva O., Torgashova A., Darin N. Using the method of biotesting to assess the toxicity of waste medical and biological practices containing nanomaterials // IOP Conf Series: Earth and Environmental Science. 2019. Vol. 337. ID 012012. DOI: 10.1088/1755-1315/337/1/012012 |
| [29] |
Verkhovskii R, Kozlova A, Atkin V, et al. Physical properties and cytotoxicity of silver nanoparticles under different polymeric stabilizers. Heliyon. 2019;5(3): e01305. DOI: 10.1016/j.heliyon.2019.e01305 |
| [30] |
Verkhovskii R., Kozlova A., Atkin V., et al. Physical properties and cytotoxicity of silver nanoparticles under different polymeric stabilizers // Heliyon. 2019. Vol. 5. No. 3. ID e01305. DOI: 10.1016/j.heliyon.2019.e01305 |
| [31] |
Pomogailo AD, Rozenberg AS, Uflyand IE. Nanochastitsy metallov v polimerakh. Moscow: Khimiya, 2000. 672 p. (In Russ.) |
| [32] |
Помогайло А.Д., Розенберг А.С., Уфлянд И.Е. Наночастицы металлов в полимерах. Москва: Химия, 2000. 672 с. |
| [33] |
Federal’nyi tsentr gossanehpidnadzora Minzdrava Rossii. Opredelenie chuvstvitel’nosti mikroorganizmov k antibakterial’nym preparatam: metodicheskie ukazaniya. Moscow: Federal’nyi tsentr gossanehpidnadzora Minzdrava Rossii, 2004. 91 p. (In Russ.) |
| [34] |
Федеральный центр госсанэпиднадзора Минздрава России. Определение чувствительности микроорганизмов к антибактериальным препаратам: Методические указания. Москва: Федеральный центр госсанэпиднадзора Минздрава России, 2004. 91 с. |
| [35] |
D’yachenko SV, Kondrashkova IS, Zhernovoi AI. NMR studies of the sedimentation of ferromagnetic nanoparticles in a magnetic fluid. Technical Physics. 2017;87(10):1596–1598. (In Russ.) DOI: 10.1134/S1063784217100097 |
| [36] |
Дьяченко C.B., Кондрашкова И.С., Жерновой А.И. Исследование седиментации ферромагнитных наночастиц в магнитной жидкости методом ЯМР // Журнал технической физики. 2017. Т. 87, № 10. С. 1596–1598. DOI: 10.21883/JTF.2017.10.45007.2213 |
| [37] |
Shulgina TA, Verkhovsky RA, Nechaeva OV, Mylnikov AM. Evaluation of the cytotoxic effect of gold nanoparticles stabilized by polymer compounds on the mouse fibroblast cell culture L929. Problems in medical mycology. 2020;22(3):151. (In Russ.) |
| [38] |
Шульгина Т.А., Верховский Р.А., Нечаева О.В., Мыльников А.М. Оценка цитотоксического действия наночастиц золота, стабилизированных полимерными соединениями, на культуру клеток фибробластов мыши L929 // Проблемы медицинской микологии. 2020. Т. 22, № 3. С. 151. |
Shulgina T.A., Zubova K.V., Glinskaya E.V., Nechaeva O.V., Bespalova N.V.
/
| 〈 |
|
〉 |