Molecular mechanisms of antiatherogenic drugs action
Aleksey V. Lizunov , Evgenii R. Bychkov
Reviews on Clinical Pharmacology and Drug Therapy ›› 2021, Vol. 19 ›› Issue (3) : 291 -301.
Molecular mechanisms of antiatherogenic drugs action
The purpose of this review is the analysis of the molecular mechanisms of lipid metabolism, their disorders leading to atherosclerosis, and the influence of modern antiatherogenic and antihyperlipidemic agents on atherogenic mechanisms. At the beginning of the review, a general description of atherosclerosis as pathology, its main characteristics and factors is given. The question of the complexity of the treatment of atherosclerosis and the problems arising in connection with the complexity is considered. Current models of the nature of atherosclerotic lesions are described. Next, we consider modern anti-atherosclerotic drugs used in clinical practice. Their nomenclature is given. Their basic biochemical mechanisms and the nature of their action are analyzed. Their negative effects and side effects are also considered. Then, the molecular and genetic mechanisms associated with atherosclerosis are analyzed in detail. The genes associated with lipid metabolism and the formation of atherosclerotic plaques, their expression and regulation are considered. The question of the influence of known anti-atherosclerotic agents on their expression is also covered. A group of azole drugs and their effect on lipid metabolism are considered in the context of the search for new anti-atherogenic drugs. The final part of the review examines the relevance of the search for new anti-atherosclerotic agents and methods for modeling dyslipidemia as a model of conditions that correlate with anti-atherosclerotic vascular lesions. It was concluded that the search for antiatherogenic drugs among imidazole derivatives is promising.
atherosclerosis / experimental dyslipidemia / antiatherogenic drugs / apolipoprotein A1 / apolipoprotein C2 / SR-B1 / PDIA2
| [1] |
Akhmedzhanov NM, Nebieridze DV, Safaryan AS, et al. Analysis of hypercholesterolemia prevalence in the outpatient practice (according to the Аrgo study): part I. Rational pharmacotherapy in cardiology. 2015;11(3): 253–260. (In Russ.) DOI: 10.20996/1819-6446-2015-11-3-253-260 |
| [2] |
Ахмеджанов Н.М., Небиеридзе Д.В., Сафарян А.С., и др. Анализ распространенности гиперхолестеринемии в условиях амбулаторной практики (по данным исследования Арго): часть 1//Рациональная фармакотерапия в кардиологии. 2015. Т. 11, № 3. С. 253–260. DOI: 10.20996/1819-6446-2015-11-3-253-260 |
| [3] |
Belenkov YuN, Sergienko IV, Lyakishev AA, Kukharchuk VV. Statiny v sovremennoi kardiologicheskoi praktike. Moscow: 2010. 64 p. (In Russ.) |
| [4] |
Беленков Ю.Н., Сергиенко И.В., Лякишев А.А., Кухарчук В.В. Статины в современной кардиологической практике. М.: 2010, 64 с. |
| [5] |
Gusev EYu, Zotova NV, Zhuravleva YuA, Chereshnev VA. Physiological and pathogenic role of scavenger receptors in humans. Medical Immunology (Russia). 2020;22(1):7–48. (In Russ.) DOI: 10.15789/1563-0625-PAP-1893 |
| [6] |
Гусев Е.Ю., Зотова Н.В., Журавлева Ю.А., Черешнев В.А. Физиологическая и патогенетическая роль рецепторов-мусорщиков у человека//Медицинская иммунология. 2020. Т. 22, № 1. С. 7–48. DOI: 10.15789/1563-0625-PAP-1893 |
| [7] |
Klyueva NN, Okunevich IV, Parfenova NS, Shabanov PD. Correction of experimental dislipoproteinemia by the intranasal administration of an original enzyme preparation. Reviews on Clinical Pharmacology and Drug Therapy. 2020;18(2):155–160. (In Russ.) DOI: 10.17816/RCF182155-160 |
| [8] |
Клюева Н.Н., Окуневич И.В., Парфенова Н.С., Шабанов П.Д. Коррекция экпериментальной дислипопротеинемии интраназальным введением оригинального ферментного препарата//Обзоры по клинической фармакологии и лекарственной терапии. 2020. Т. 18, № 2. С. 155–160. DOI: 10.17816/RCF182155-160 |
| [9] |
Lizunov AV, Okunevich IV, Orlov SV, et al. Effects of сramizol on expression of the apoa1 gene in rats with experimental hyperlipidemia. Biomeditsinskaya Khimiya. 2019;65(5):403–406. (In Russ.) DOI: 10.18097/PBMC20196505403 |
| [10] |
Лизунов А.В., Окуневич И.В., Орлов С.В., и др. Влияние крамизола на экспрессию гена аполипопротеина А1 (АпоА1) в печени крыс при экспериментально индуцированной гиперлипидемии//Биомедицинская химия. 2019. Т. 65, № 5. С. 403–406. DOI: 10.18097/PBMC20196505403 |
| [11] |
Lizunov AV, Okunevich IV, Lebedev AA, et al. Molecular mechanisms of the cytoprotector cramizol effect in the experimental dyslipidemia model. Biomeditsinskaya Khimiya. 2020;66(4):326–331. (In Russ.) DOI: 10.18097/PBMC20206604326 |
| [12] |
Лизунов А.В., Окуневич И.В., Лебедев А.А., и др. Молекулярные механизмы гиполипидемического действия цитопротектора крамизола при экспериментальной дислипидемии//Биомедицинская химия. 2020. Т. 66, № 4. С. 326–331. DOI: 10.18097/PBMC20206604326 |
| [13] |
Nasonov EL, Popkova TV. Atherosclerosis: perspectives of anti-inflammatory therapy. Therapeutic archive. 2018;90(5):4–12. (In Russ.) DOI: 10.26442/terarkh20189054-12 |
| [14] |
Насонов Е.Л., Попкова Т.Е. Атеросклероз: перспективы противовоспалительной терапии//Терапевтический архив. 2018. Т. 90, № 5. С. 4–12. DOI: 10.26442/terarkh20189054-12 |
| [15] |
Okunevich IV. Gipolipidemicheskaya terapiya dislipoproteidemii statinami: ikh rol’ v kompleksnom lechenii ateroskleroza. Reviews on Clinical Pharmacology and Drug Therapy. 2004;3(4): 2–14. (In Russ.) |
| [16] |
Окуневич И.В. Гиполипидемическая терапия дислипопротеидемий статинами: их роль в комплексном лечении атеросклероза//Обзоры по клинической фармакологии и лекарственной терапии. 2004. Т. 3, № 4. С. 2–14. |
| [17] |
Okunevich IV, Klyueva NN, Parfenova NS, Belova EV. Lipid-lowering and anti-atherosclerotic activity of the natural original enzyme preparation in the experiment. Reviews on Clinical Pharmacology and Drug Therapy. 2019;17(3):79–84. (In Russ.) DOI: 10.17816/RCF17379-84 |
| [18] |
Окуневич И.В., Клюева Н.Н., Парфенова Н.С., Белова Е.В. Гиполипидемическое и антиатеросклеротическое действие отечественного оригинального ферментного препарата в эксперименте//Обзоры по клинической фармакологии и лекарственной терапии. 2019. Т. 17, № 3. С. 79–84. DOI: 10.17816/RCF17379-84 |
| [19] |
Okunevich IV, Sapronov NS. The analysis of the combined aplication of levopa: the contribution of the hypolipidemic property of l-dopa on the metabolic action in patients with cardiac heart disease. Reviews on Clinical Pharmacology and Drug Therapy. 2011;9(3): 65–70. (In Russ.) |
| [20] |
Окуневич И.В., Сапронов Н.С. Анализ результатов комплексного применения препарата Левопа: вклад гиполипидемического действия Л-ДОФА в метаболическую терапию больных ишемической болезнью сердца//Обзоры по клинической фармакологии и лекарственной терапии. 2011. Т. 9, № 3. С. 65–70. |
| [21] |
Okunevich IV, Khnychenko LK, Sapronov NS. The hypolipidemic and antiatherosclerotic activity of sympatholytic reserpine: the experimental data. Arterial’naya Gipertenziya. 2007;13(2):136–140. (In Russ.) DOI: 10.18705/1607-419X-2007-13-2-136-140 |
| [22] |
Окуневич И.В., Хныченко Л.К., Сапронов Н.С. Гиполипидемическое и антиатеросклеротическое действие симпатолитика резерпина: экспериментальные данные//Артериальная гипертензия. 2007. Т. 13, № 7. С. 136–140. DOI: 10.18705/1607-419X-2007-13-2-136-140 |
| [23] |
Okunevich IV, Khnychenko LK, Shabanov PD. Influence of hypoxen on the data changing of lipid metabolsim in the experimantal dislipoproteinemia. Reviews on Clinical Pharmacology and Drug Therapy. 2014;12(3):26–29. (In Russ). DOI: 10.17816/RCF12326-29 |
| [24] |
Окуневич И.В., Хныченко Л.К., Шабанов П.Д. Влияние гипоксена на изменение показателей липидного обмена в условиях экспериментальной дислипопротеинемии//Обзоры по клинической фармакологии и лекарственной терапии. 2014. Т. 12, № 3. С. 26–29. DOI: 10.17816/RCF12326-29 |
| [25] |
Patent RUS № 218.016.8363/2018. Piotrovskii LB, Brusina MA, Nikolaev DN. Sposob polucheniya 1- i 1,2-dialkil(aril)-imidazol-4,5-dikarbonovykh kislot. (In Russ.) |
| [26] |
Патент РФ на изобретение № 218.016.8363/2018. Пиотровский Л.Б., Брусина М.А., Николаев Д.Н. Способ получения 1- и 1,2-диалкил(арил)-имидазол-4,5-дикарбоновых кислот. |
| [27] |
Titova GI, Klyueva NN, Kozhevnikova KA, Klimov AN. Vzaimodeistvie kholesterina s apoproteinom E – argininbogatym belkom lipoproteinov ochen’ nizkoi plotnosti. Biochemistry. 1980;45(1):51–55. (In Russ). |
| [28] |
Титова Г.И., Клюева Н.Н., Кожевникова К.А., Климов А.Н. Взаимодействие холестерина с апопротеином Е — аргининбогатым белком липопротеинов очень низкой плотности//Биохимия. 1980. Т. 45, № 1. С. 51–55. |
| [29] |
Khnychenko LK, Selina EN, Rodionova OM, et al. Wound healing effect benzosulfonate 1-ethyl-3-methyl-4,5-bis(N-methylcarbamoyl) imidazolium. Reviews on Clinical Pharmacology and Drug Therapy. 2020;18(3):229–235 (In Russ.) DOI: 10.17816/RCF183229-235 |
| [30] |
Хныченко Л.К., Селина Е.Н., Родионова О.М., и др. Ранозаживляющее действие бензосульфоната 1-этил-3-метил-4,5-бис(N-метилкарбомоил) имидазолия//Обзоры по клинической фармакологии и лекарственной терапии. 2020. Т. 18, № 3. С. 229–235. DOI: 10.17816/RCF183229-235 |
| [31] |
Khnychenko LK, Okunevich IV, Losev NA, Sapronov NS. Hypolipidemic activity of n-cholinergic antagonist benzohexonium in the experiments. Pathological physiology and experimental therapy. 2016;60(1):36–43. (In Russ.) DOI: 10.25557/0031-2991.2016.01.%25p |
| [32] |
Хныченко Л.К., Окуневич И.В., Лосев Н.А., Сапронов Н.С. Исследование гиполипидемического свойства Н-холинолитика бензогексония в эксперименте//Патологическая физиология и экспериментальная терапия. 2016. Т. 60, № 1. С. 36–43. DOI: 10.25557/0031-2991.2016.01.%25p |
| [33] |
Khorolskaya VG, Gureev AP, Shaforostova EA, et al. The fenofibrate effect on genotoxicity in brain and liver and on the expression of genes regulating fatty acids metabolism of mice. Biomeditsinskaya Khimiya. 2019;65(5):388–397. (In Russ.) DOI: 10.18097/PBMC20196505388 |
| [34] |
Хорольская В.Г., Гуреев А.П., Шафоростова Е.А., и др. Влияние фенофибрата на генотоксичность в мозге и печени и на экспрессию генов, регулирующих метаболизм жирных кислот, у мышей//Биомедицинская химия. 2019. Т. 65, № 5. С. 388–397. DOI: 10.18097/PBMC20196505388 |
| [35] |
Adams SP, Sekhon SS, Wright JM. Lipid-lowering efficacy of rosuvastatin. Cochrane Database Syst Rev. 2014;11:1–217. DOI: 10.1002/14651858.CD010254.pub2 |
| [36] |
Adams S.P., Sekhon S.S., Wright J.M. Lipid-lowering efficacy of rosuvastatin//Cochrane Database Syst Rev. 2014. Vol. 11. P. 1–217. DOI: 10.1002/14651858.CD010254.pub2 |
| [37] |
Baigent C, Blackwell L, Emberson J. Efficacy and safety of more intensive lowering of LDL cholesterol: a meta-analysis of datafrom 170,000 participants in 26 randomised trials. Lancet. 2010;376(9753):1670–1681. DOI: 10.1016/S0140-6736(10)61350-5 |
| [38] |
Baigent C., Blackwell L., Emberson J. Efficacy and safety of more intensive lowering of LDL cholesterol: a meta-analysis of datafrom 170,000 participants in 26 randomised trials//Lancet. 2010. Vol. 376. No. 9753. P. 1670–1681. DOI: 10.1016/S0140-6736(10)61350-5 |
| [39] |
Barter PJ, Brandrup-Wognsen G, Palmer MK, Nicholls SJ. Effect of statins on HDL-C: a complex process unrelated to changesin LDL-C: analysis of the VOYAGER Database. J Lip Res. 2010;51(6):1546–1553. DOI: 10.1194/jlr.P002816 |
| [40] |
Barter P.J., Brandrup-Wognsen G., Palmer M.K., Nicholls S.J. Effect of statins on HDL-C: a complex process unrelated to changesin LDL-C: analysis of the VOYAGER Database//J Lip Res. 2010. Vol. 51. No. 6. P. 1546–1553. DOI: 10.1194/jlr.P002816 |
| [41] |
Bays H. Statin safety: an overview and assessment of the data 2005. Am J Cardiol. 2006;97(8):6–27. DOI: 10.1016/j.amjcard.2005.12.006 |
| [42] |
Bays H. Statin safety: an overview and assessment of the data 2005//Am J Cardiol. 2006. Vol. 97. No. 8. P. 6–27. DOI: 10.1016/j.amjcard.2005.12.006 |
| [43] |
Bodor ET, Offermanns S. Nicotinic acid: an old drug with a promising future. Br J Pharmacol. 2008;153(1):68–75. DOI: 10.1038/sj.bjp.0707528 |
| [44] |
Bodor E.T., Offermanns S. Nicotinic acid: an old drug with a promising future//Br J Pharmacol. 2008. Vol. 153. No. 1. P. 68–75. DOI: 10.1038/sj.bjp.0707528 |
| [45] |
Bolanos-Garcia VM, Miguel RN. Review: On the structure and function of apolipoproteins: more than a family of lipid-binding proteins. Progr Biophys Mol Biol. 2003;83(1):47–68. DOI: 10.1016/S0079-6107(03)00028-2 |
| [46] |
Bolanos-Garcia V.M., Miguel R.N. Review: On the structure and function of apolipoproteins: more than a family of lipid-binding proteins//Progr Biophys Mol Biol. 2003. Vol. 83. No. 1. P. 47–68. DOI: 10.1016/S0079-6107(03)00028-2 |
| [47] |
Burri L, Thoresen GH, Berge RK. The Role of PPAR Activation in Liver and Muscle. PPAR Res. 2010;2010:542359. DOI: 10.1155/2010/542359 |
| [48] |
Burri L., Thoresen G.H., Berge R.K. The Role of PPAR Activation in Liver and Muscle//PPAR Res. 2010. Vol. 2010. ID542359. DOI: 10.1155/2010/542359 |
| [49] |
Cannon CP, Blazing MA, Giugliano RP, et al. Ezetimibe added to Statin therapy after acute coronary syndromes. N Engl J Med. 2015;372(25):2387–2397. DOI: 10.1056/NEJMoa1410489 |
| [50] |
Cannon C.P., Blazing M.A., Giugliano R.P., et al. Ezetimibe added to Statin therapy after acute coronary syndromes//N Engl J Med. 2015. Vol. 372. No. 25. P. 2387–2397. DOI: 10.1056/NEJMoa1410489 |
| [51] |
Cohen JC, Wang Z, Grundy SM, et al. Variation at the hepatic lipase and apolipoprotein AI/CIII/AIV loci is a major cause of genetically determined variation in plasma HDL cholesterol levels. J Clin Invest. 1994;94(6):2377–2384. DOI: 10.1172/JCI117603 |
| [52] |
Cohen J.C., Wang Z., Grundy S.M., et al. Variation at the hepatic lipase and apolipoprotein AI/CIII/AIV loci is a major cause of genetically determined variation in plasma HDL cholesterol levels//J Clin Invest. 1994. Vol. 94. No. 6. P. 2377–2384. DOI: 10.1172/JCI117603 |
| [53] |
Collins RG, Velji R, Guevara NV, et al. P-selectin or intercellular adhesion molecule (ICAM-1) deficiency substantially protects against atherosclerosis in apolipoprotein E-deficient mice. J Exp Med. 2000;191(1):189–194. DOI: 10.1084/jem.191.1.189 |
| [54] |
Collins R.G., Velji R., Guevara N.V., et al. P-selectin or intercellular adhesion molecule (ICAM-1) deficiency substantially protects against atherosclerosis in apolipoprotein E-deficient mice//J Exp Med. 2000. Vol. 191. No. 1. P. 189–194. DOI: 10.1084/jem.191.1.189 |
| [55] |
Davignon J, Gregg RE, Sing CF. Apolipoprotein E polymorphism and atherosclerosis. Arteriosclerosis. 1988;8(1):1–21. DOI: 10.1161/01.atv.8.1.1 |
| [56] |
Davignon J., Gregg R.E., Sing C.F. Apolipoprotein E polymorphism and atherosclerosis//Arteriosclerosis. 1988. Vol. 8. No. 1. P. 1–21. DOI: 10.1161/01.atv.8.1.1 |
| [57] |
Debin L, Silver DL. Fenofibrate induces a novel degradation pathway for scavenger receptor B-I independent of PDZK1. J Biol Chem. 2005;280(24):23390–23396. DOI: 10.1074/jbc.M502777200 |
| [58] |
Debin L., Silver D.L. Fenofibrate induces a novel degradation pathway for scavenger receptor B-I independent of PDZK1//J Biol Chem. 2005. Vol. 280. No. 24. P. 23390–23396. DOI: 10.1074/jbc.M502777200 |
| [59] |
Fitz NF, Tapias V, Cronican AA, et al. Opposing effects of Apoe/Apoa1 double deletion on amyloid-β pathology and cognitive performance in APP mice. Brain. 2015;138(12):3699–3715. DOI: 10.1093/brain/awv293 |
| [60] |
Fitz N.F., Tapias V., Cronican A.A., et al. Opposing effects of Apoe/Apoa1 double deletion on amyloid-β pathology and cognitive performance in APP mice//Brain. 2015. Vol. 138. No. 12. P. 3699–3715. DOI: 10.1093/brain/awv293 |
| [61] |
Gabriel DA, Pinilla-Monsalve LJ, Pachajoa H, et al. Novel APOC2 Mutation in a Colombian Patient with Recurrent Hypertriglyceridemic Pancreatitis. Appl Clin Genetics. 2020;13:63–69. DOI: 10.2147/TACG.S243148 |
| [62] |
Gabriel D.A., Pinilla-Monsalve L.J., Pachajoa H., et al. Novel APOC2 Mutation in a Colombian Patient with Recurrent Hypertriglyceridemic Pancreatitis//Appl Clin Genetics. 2020. Vol. 13. P. 63–69. DOI: doi.org/10.2147/TACG.S243148 |
| [63] |
Garbacz WG, Peipei L, Miller TM, et al. Hepatic Overexpression of CD36 Improves Glycogen Homeostasis and Attenuates High-FatDiet-Induced Hepatic Steatosis and Insulin Resistance. Mol Cell Biol. 2016;36(21):2715–2727. DOI: 10.1128/MCB.00138-16 |
| [64] |
Garbacz W.G., Peipei L., Miller T.M., et al. Hepatic Overexpression of CD36 Improves Glycogen Homeostasis and Attenuates High-FatDiet-Induced Hepatic Steatosis and Insulin Resistance//Mol Cell Biol. 2016. Vol. 36. No. 21. P. 2715–2727. DOI: 10.1128/MCB.00138-16 |
| [65] |
Gibson CM, Korjian S, Tricoci P, et al. Safety and tolerability of CSL112, a reconstituted, infusible, plasma-derived apolipoprotein A-I, after acute myocardial infarction: the AEGIS-I trial (ApoA-I event reducing in ischemic syndromes I). Circulation. 2016;134(24):1918–1930. DOI: 10.1161/CIRCULATIONAHA.116.025687 |
| [66] |
Gibson C.M., Korjian S., Tricoci P., et al. Safety and tolerability of CSL112, a reconstituted, infusible, plasma-derived apolipoprotein A-I, after acute myocardial infarction: the AEGIS-I trial (ApoA-I event reducing in ischemic syndromes I)//Circulation. 2016. Vol. 134. No. 24. P. 1918–1930. DOI: 10.1161/CIRCULATIONAHA.116.025687 |
| [67] |
Ginsberg HN, Elam MB, Lovato LC, et al. Effects of combi-nation lipid therapy in type 2 diabetes mellitus. N Engl J Med. 2010;362(17):1563–1574. DOI: 10.1056/NEJMoa1001282 |
| [68] |
Ginsberg H.N., Elam M.B., Lovato L.C., et al. Effects of combination lipid therapy in type 2 diabetes mellitus//N Engl J Med. 2010. Vol. 362. No. 17. P. 1563–1574. DOI: 10.1056/NEJMoa1001282 |
| [69] |
Gsaller F, Hortschansky P, Furukawa C. Sterol Biosynthesis and Azole Tolerance Is Governed by the Opposing Actions of SrbA and the CCAAT Binding Complex. TPLoS Pathogens. 2016;12(12):1–22. DOI: 10.1371/journal.ppat.1005775 |
| [70] |
Gsaller F., Hortschansky P., Furukawa C. Sterol Biosynthesis and Azole Tolerance Is Governed by the Opposing Actions of SrbA and the CCAAT Binding Complex//TPLoS Pathogens. 2016. Vol. 12. No. 12. P. 1–22. DOI: 10.1371/journal.ppat.1005775 |
| [71] |
Gu L, Okada Y, Clinton SK, et al. Absence of monocyte chemoattractant protein-1 reduces atherosclerosis in low densitylipoprotein-deficient mice. Mol Cell. 1998;2(2):275–281. DOI: 10.1016/s1097-2765(00)80139-2 |
| [72] |
Gu L., Okada Y., Clinton S.K., et al. Absence of monocyte chemoattractant protein-1 reduces atherosclerosis in low densitylipoprotein-deficient mice//Mol Cell. 1998. Vol. 2. No. 2. P. 275–281. DOI: 10.1016/s1097-2765(00)80139-2 |
| [73] |
Gupta AK, Sexton RC, Rudney H. Differential regulation of low density lipoprotein suppression of HMG-CoA reductase activity in cultured cells by inhibitors of cholesterol biosynthesis. J Lipid Res. 1990;31:203–215. DOI: 10.1016/S0022-2275(20)43206-7 |
| [74] |
Gupta A.K., Sexton R. C., Rudney H. Differential regulation of low density lipoprotein suppression of HMG-CoA reductase activity in cultured cells by inhibitors of cholesterol biosynthesis//J Lipid Res. 1990. Vol. 31. P. 203–215. DOI: 10.1016/S0022-2275(20)43206-7 |
| [75] |
Jukema JW, Cannon CP, de Craen AJ, et al. The controversies of statin therapy: weighing the evidence. J Amer Coll Cardiol. 2012;60(10):875–881. DOI: 10.1016/j.jacc.2012.07.007 |
| [76] |
Jukema J.W., Cannon C.P., de Craen A.J., et al. The controversies of statin therapy: weighing the evidence//J Amer Coll Cardiol. 2012. Vol. 60. No. 10. P. 875–881. DOI: 10.1016/j.jacc.2012.07.007 |
| [77] |
Lizunov AV, Okunevich IV, Orlov SV, et al. The Effect of Сramizol on ApoA1 Gene Expression in Rats with Experimental Hyperlipidemia. Biochemistry (Moscow), Suppl Series B: Biomed Chem. 2020;14(5):82–85. DOI: 10.18097/PBMC20196505403 |
| [78] |
Lizunov A.V., Okunevich I.V., Orlov S.V., et al. The Effect of Сramizol on ApoA1 Gene Expression in Rats with Experimental Hyperlipidemia//Biochemistry (Moscow), Suppl Series B Biomed Chem. 2020. Vol. 14. No. 5. P. 82–85. DOI: 10.18097/PBMC20196505403 |
| [79] |
Mahley RW, Innerarity TL, Rall SC, Weisgraber KH Jr. Plasma lipoproteins: apolipoprotein structure and function. J Lipid Res. 1984;25:1277–1294. DOI: 10.1016/S0022-2275(20)34443-6 |
| [80] |
Mahley R.W., Innerarity T.L., Rall S.C., Weisgraber Jr. K.H. Plasma lipoproteins: apolipoprotein structure and function//J Lipid Res. 1984. Vol. 25. P. 1277–1294. DOI: 10.1016/S0022-2275(20)34443-6 |
| [81] |
Mihaylova B, Emberson J, Blackwell L, et al. The effects of lowering LDL cholesterol with statin therapy in people at low risk of vascular disease: meta-analysis of individual data from 27 randomisedtrials. Lancet. 2012;380(9841) 581–590. DOI: 10.1016/S0140-6736(12)60367-5 |
| [82] |
Mihaylova B., Emberson J., Blackwell L., et al. The effects of lowering LDL cholesterol with statin therapy in people at low risk of vascular disease: meta-analysis of individual data from 27 randomisedtrials//Lancet. 2012. Vol. 380. No. 9841. P. 581–590. DOI: 10.1016/S0140-6736(12)60367-5 |
| [83] |
Mineo C. Lipoprotein receptor signaling in atherosclerosis. Cardiovasc Res. 2020;116(7):1254–1274. DOI: 10.1093/cvr/cvz338 |
| [84] |
Mineo C. Lipoprotein receptor signaling in atherosclerosis//Cardiovasc Res. 2020. Vol. 116. No. 7. P. 1254–1274. DOI: 10.1093/cvr/cvz338 |
| [85] |
Moutzouri E, Kei A, Elisaf MS, Milionis HJ. Management of dyslipidemias with fibrates, alone and in combination with statins: role of delayed-release fenofibric acid. Vasc Health Risk Manag. 2010;6:525–539. DOI: 10.2147/vhrm.s5593 |
| [86] |
Moutzouri E., Kei A., Elisaf M.S., Milionis H.J. Management of dyslipidemias with fibrates, alone and in combination with statins: role of delayed-release fenofibric acid//Vasc Health Risk Manag. 2010. Vol. 6. P. 525–539. DOI: 10.2147/vhrm.s5593 |
| [87] |
Nicholls SJ, Ballantyne CM, Barter PJ, et al. Effect of two intensivestatin regimens on progression of coronary disease. N Engl J Med. 2011;365(22):2078–2087. DOI: 10.1056/NEJMoa1110874 |
| [88] |
Nicholls S.J., Ballantyne C.M., Barter P.J., et al. Effect of two intensivestatin regimens on progression of coronary disease//N Engl J Med. 2011. Vol. 365. No. 22. P. 2078–2087. DOI: 10.1056/NEJMoa1110874 |
| [89] |
Nicholls SJ, Lincoff AM, Barter PJ, et al. Assessment of the clinical effects of cholesteryl ester transfer protein inhibition with evacetrapib in patients at high-risk for vascular outcomes: rationale and design of the ACCELERATE trial. Am Heart J. 2015;170(6):1061–1069. DOI: 10.1016/j.ahj.2015.09.007 |
| [90] |
Nicholls S.J., Lincoff A.M., Barter P.J., et al. Assessment of the clinical effects of cholesteryl ester transfer protein inhibition with evacetrapib in patients at high-risk for vascular outcomes: rationale and design of the ACCELERATE trial//Am Heart J. 2015. Vol. 170. No. 6. P. 1061–1069. DOI: 10.1016/j.ahj.2015.09.007 |
| [91] |
Ouweneel AB, Zhao Y, Calpe-Berdiel L, et al. Impact of bone marrow ATP-binding cassette transporter A1 defciency on atherogenesis is independent of the presence of the low-density lipoprotein receptor. Atherosclerosis. 2021;319:79–85. DOI: 10.1016/j.atherosclerosis.2021.01.001 |
| [92] |
Ouweneel A.B., Zhao Y., Calpe-Berdiel L., et al. Impact of bone marrow ATP-binding cassette transporter A1 defciency on atherogenesis is independent of the presence of the low-density lipoprotein receptor//Atherosclerosis. 2021. Vol. 319. P. 79–85. DOI: 10.1016/j.atherosclerosis.2021.01.001 |
| [93] |
Rhainds D, Brissette L. The role of scavenger receptor class B type I (SR-BI) in lipid trafficking defining the rules for lipid traders. Int J Biochem Cell Biol. 2004;36(1):39–77. DOI: 10.1016/s1357-2725(03)00173-0 |
| [94] |
Rhainds D., Brissette L. The role of scavenger receptor class B type I (SR-BI) in lipid trafficking defining the rules for lipid traders//Int J Biochem Cell Biol. 2004. Vol. 36. No. 1. P. 39–77. DOI: 10.1016/s1357-2725(03)00173-0 |
| [95] |
DiMarco DM, Fernandez ML. The Regulation of Reverse Cholesterol Transport and Cellular Cholesterol Homeostasis by MicroRNAs. Biology. 2015;4:494–511. DOI: 10.3390/biology4030494. |
| [96] |
DiMarco D. M., Fernandez M. L. The Regulation of Reverse Cholesterol Transport and Cellular Cholesterol Homeostasis by MicroRNAs//Biology 2015. Vol. 4. P. 494–511. DOI: 10.3390/biology4030494. |
| [97] |
Sabatine MS, Giugliano RP, Keech A, et al. Rationale and design of the Further cardiovascular outcomes Research withPCSK9 Inhibition in subjects with Elevated Risk trial. Am Heart J. 2016;173:94–101. DOI: 10.1016/j.ahj.2015.11.015 |
| [98] |
Sabatine M.S., Giugliano R.P., Keech A., et al. Rationale and de-sign of the Further cardiovascular outcomes Research with PCSK9 Inhibition in subjects with Elevated Risk trial//Am Heart J. 2016. Vol. 173. P. 94–101. DOI: 10.1016/j.ahj.2015.11.015 |
| [99] |
Schwartz GG, Bessac L, Berdan LG, et al. Effect of alirocumab, a monoclonal antibody to PCSK9, on long-term cardiovascular outcomes following acute coronary syndromes: rationale and design of the ODYSSEY outcomes trial. Am Heart J. 2014;168(5):682–689. DOI: 10.1016/j.ahj.2014.07.028 |
| [100] |
Schwartz G.G., Bessac L., Berdan L.G., et al. Effect of alirocumab, a monoclonal antibody to PCSK9, on long-term cardiovascular outcomes following acute coronary syndromes: rationale and design of the ODYSSEY outcomes trial//Am Heart J. 2014. Vol. 168. No. 5. P. 682–689. DOI: 10.1016/j.ahj.2014.07.028 |
| [101] |
Seed M, O’Connor B, Perombelon N, et al. The effect of nicotinic acid and acipimox on lipoprotein(a) concentration and turnover. Atherosclerosis. 1993;101(1):61–68. DOI: 10.1016/0021-9150(93)90102-z |
| [102] |
Seed M., O’Connor B., Perombelon N., et al. The effect of nicotinic acid and acipimox on lipoprotein(a) concentration and turnover//Atherosclerosis. 1993. Vol. 101. No. 1. P. 61–68. DOI: 10.1016/0021-9150(93)90102-z |
| [103] |
Shavva VS, Bogomolova A, Nikitin AA, et al. Insulin-Mediated Downregulation of Apolipoprotein A-I Gene in Human Hepatoma Cell Line HepG2: The Role of Interaction Between FOXO1 and LXRβ Transcription Factors. J Cell Biochem. 2017;118(2):382–396. DOI: 10.1002/jcb.25651 |
| [104] |
Shavva V.S., Bogomolova A., Nikitin A.A., et al. Insulin-Mediated Downregulation of Apolipoprotein A-I Gene in Human Hepatoma Cell Line HepG2: The Role of Interaction Between FOXO1 and LXRβ Transcription Factors//J Cell Biochem. 2017. Vol. 118. No. 2. P. 382–396. DOI: 10.1002/jcb.25651 |
| [105] |
Squizzato A, Galli M, Romualdi E, et al. Statins, fibrates, and venous thromboembolism: a meta-analysis. Eur Heart J. 2010;31(10):1248–1256. DOI:10.1093/eurheartj/ehp556 |
| [106] |
Squizzato A., Galli M., Romualdi E., et al. Statins, fibrates, and venous thromboembolism: a meta-analysis//Eur Heart J. 2010. Vol. 31. No. 10. P. 1248–1256. DOI: 10.1093/eurheartj/ehp556 |
| [107] |
Srivastava RA, Srivastava N. High density lipoprotein, apolipoprotein A-I, and coronary artery disease. Mol Cell Biochem. 2000;209:131–144. DOI: 10.1023/a:1007111830472 |
| [108] |
Srivastava R.A., Srivastava N. High density lipoprotein, apolipoprotein A-I, and coronary artery disease//Mol Cell Biochem. 2000. Vol. 209. P. 131–144. DOI: 10.1023/a:1007111830472 |
| [109] |
Tomas M, Lattote G, Senti M, Marrugat J. The Antioxidant Function of High Density Lipoproteins: A New Paradigm in Atherosclerosis. Rev Esp Cardiol. 2004;57(6):557–569. DOI: 10.1016/S1885-5857(06)60630-0 |
| [110] |
Tomas M., Lattote G., Senti M., Marrugat J. The Antioxidant Function of High Density Lipoproteins: A New Paradigm in Atherosclerosis//Rev Esp Cardiol. 2004. Vol. 57. No. 6. P. 557–569. DOI: 10.1016/S1885-5857(06)60630-0 |
| [111] |
Traughber CA, Opoku E, Brubaker G, et al. SR-B1 uptake of HDL promotes prostate cancer proliferation and tumor progression. BioRxiv. 2020. DOI: 10.1101/2020.02.24.963454 |
| [112] |
Traughber C.A., Opoku E., Brubaker G., et al. SR-B1 uptake of HDL promotes prostate cancer proliferation and tumor progression//BioRxiv. 2020. DOI: 10.1101/2020.02.24.963454 |
| [113] |
Wen-Jun S, Asthana S, Kraemer FB, Azhar S. Scavenger receptor B type 1: Expression, Molecular Regulation, and Cholesterol Transport Function. J Lipid Res. 2018;59(7):1114–1131. DOI: 10.1194/jlr.R083121. |
| [114] |
Wen-Jun S., Asthana S., Kraemer F.B., Azhar S. Scavenger receptor B type 1: Expression, Molecular Regulation, and Cholesterol Transport Function//J Lipid Res. 2018. Vol. 59. No. 7. P. 1114–1131. DOI: 10.1194/jlr.R083121 |
| [115] |
Wiesbauer F, Kaun C, Zorn G, et al. HMG CoA reductase inhibitors affect the fibrinolytic system of human vascular cells in vitro: a comparative study using diferent statins. Br J Pharmacol. 2002;135(1):284–292. DOI: 10.1038/sj.bjp.0704454 |
| [116] |
Wiesbauer F., Kaun C., Zorn G., et al. HMG CoA reductase inhibitors affect the fibrinolytic system of human vascular cells in vitro: a comparative study using diferent statins//Br J Pharmacol. 2002. Vol. 135. No. 1. P. 284–292. DOI:10.1038/sj.bjp.0704454 |
| [117] |
Wolska A, Dunbarb RL, Freemana LA, et al. Apolipoprotein C-II: New findings related to genetics, biochemistry, and role in triglyceride metabolism. Atherosclerosis. 2017;267:49–60. DOI: 10.1016/j.atherosclerosis.2017.10.025 |
| [118] |
Wolska A., Dunbarb R.L., Freemana L.A., et al. Apolipoprotein C-II: New findings related to genetics, biochemistry, and role in triglyceride metabolism//Atherosclerosis. 2017. Vol. 267. P. 49–60. DOI: 10.1016/j.atherosclerosis.2017.10.025 |
| [119] |
Yujiao S, Ling C, Shijie Z, et al. Effects of nanoparticle-mediated delivery of pitavastatin on atherosclerotic plaques in ApoE-knockout mice and THP-1-derived macrophages. J Exp Theurap Med. 2020;19(6):3787–3797. DOI: 10.3892/etm.2020.8632 |
| [120] |
Yujiao S., Ling C., Shijie Z., et al. Effects of nanoparticle-mediated delivery of pitavastatin on atherosclerotic plaques in ApoE-knockout mice and THP-1-derived macrophages//J Exp Theurap Med. 2020. Vol. 19. No. 6. P. 3787–3797. DOI: 10.3892/etm.2020.8632 |
| [121] |
Zysk C, Williams S, Chavarria I, et al. Genetic Variants in Host Protein Disulfide Isomerase 2 (PDIA2) are Associated with Susceptibility to Chlamydia Trachomatis Infection. J Assoc Gen Technol. 2020;46(4):244–249. |
| [122] |
Zysk C., Williams S., Chavarria I., et al. Genetic Variants in Host Protein Disulfide Isomerase 2 (PDIA2) are Associated with Susceptibility to Chlamydia Trachomatis Infection//J Assoc Gen Technol. 2020. Vol. 46. No. 4. P. 244–249. |
Lizunov A.V., Bychkov E.R.
/
| 〈 |
|
〉 |