Silver nanoparticles: safety and efficiency for human health
Yuliya A. Morozova , Dmitry S. Dergachev , Mikhail A. Subotyalov
Reviews on Clinical Pharmacology and Drug Therapy ›› 2021, Vol. 19 ›› Issue (3) : 247 -257.
Silver nanoparticles: safety and efficiency for human health
Over the past few decades, nanoparticles of metals, and in particular silver, with a diameter of less than 100 nm have significantly expanded their field of application for various biomedical purposes. So, silver nanoparticles have great potential in a wide range of applications as antimicrobial agents, coatings for biomedical products, carriers for drug delivery, bioengineering, since they have discrete physical properties and wide biochemical functionality. Studies have shown that the size, morphology, stability and properties (chemical and physical) of metal nanoparticles are strongly influenced by the conditions of the experiment, the kinetics of the interaction of metal ions with reducing agents and the adsorption processes of the stabilizer with metal nanoparticles. This review aims to analyze the use of silver nanoparticles in modern medicine based on data from domestic and foreign literature over the past five years. The study confirmed the high biological activity of drugs with nanoserebrum as anti-inflammatory, antimicrobial agents, antifungals, the presence of an inhibitory effect on protozoa, antioxidant and anticancer effects, and substantiated the relevance of use in bioengineering and dentistry. However, rapid advances and advances in technology have led to concerns about the potential risk associated with the use and application of silver nanoparticles to human health and the environment. Therefore, this review attempts to characterize and quantify the potential harmful effects of silver nanoparticles on the health of laboratory animals and humans, and focuses on ways to neutralize or reduce the toxic effects of silver nanoparticles on the human body.
silver nanoparticles / colloidal silver / review / safety / stabilization of nanoparticles / antibacterial activity / cytotoxicity / human health
| [1] |
Bekkeri S. A Review on Metallic Silver Nanoparticles. IOSR J Of Pharm. 2015;4(7):38–44. DOI: 10.9790/3013-0407038044 |
| [2] |
Bekkeri S. A Review on Metallic Silver Nanoparticles//IOSR J Of Pharm. 2015. Vol. 4. No. 7. P. 38–44. DOI: 10.9790/3013-0407038044 |
| [3] |
Zaporotskova IV. Nanotechnologies and nanomaterials: scientific, economic and political realia of the new century. Journal of Volgograd State University. Economics. 2015;1(30):18–29. (In Russ.) DOI: 10.15688/jvolsu3.2015.1.2 |
| [4] |
Запороцкова И.В. Нанотехнологии и наноматериалы: научные, экономические и политические реалии нового века//Вестник Волгоградского государственного университета. Серия 3. Экономика. Экология. 2015. № 1. С. 18–29. DOI: 10.15688/jvolsu3.2015.1.2 |
| [5] |
Grigor’ev MG, Babich LN. Ispol’zovanie nanochastits serebra protiv sotsial’no znachimykh zabolevanii. Molodoi uchenyi. 2015;(9):396–401. (In Russ.) |
| [6] |
Григорьев М.Г., Бабич Л.Н. Использование наночастиц серебра против социально значимых заболеваний//Молодой ученый. 2015. № 9. С. 396–401. |
| [7] |
Voeikova TA, Krest’yanova IN, Sakhibgaraeva LF, et al. Biosynthesis of silver sulfide nanoparticles by microscopic fungi. Aktual’naya biotekhnologiya. 2015;3(14):51–51. (In Russ.) |
| [8] |
Воейкова Т.А., Крестьянова И.Н., Сахибгараева Л.Ф., и др. Биосинтез наночастиц сульфида серебра микроскопическими грибами//Актуальная биотехнология. 2015. № 3. С. 51–51. |
| [9] |
Stanishevskaya IE, Stoinova AM, Marakhova AI, Stanishevskiy YaM. Silver nanoparticles: preparation and use for medical purposes. Drug development & registration. 2016;(1):66–69. (In Russ.) |
| [10] |
Станишевская И.Е., Стойнова А.М., Марахова А.И., Станишевский Я.М. Наночастицы серебра: получение и применение в медицинских целях//Разработка и регистрация лекарственных средств. 2016. № 1. С. 66–69. |
| [11] |
Mashrai A, Dar AM, Sherwani MA, et al. Biosynthesis of silver nanoparticles as a platform for biomedicinal application. J Nanosci Nanomed. 2018;2(1):25–33. DOI: 10.2147/IJN.S72313 |
| [12] |
Mashrai A., Dar A.M., Sherwani M.A., et al. Biosynthesis of silver nanoparticles as a platform for biomedicinal application//J Nanosci Nanomed. 2018. Vol. 2. No. 1. P. 25–33. DOI: 10.2147/IJN.S72313 |
| [13] |
Franci G, Falanga A, Galdiero S, et al. Silver nanoparticles as potential antibacterial agents. Molecules. 2015;20(5):8856–8874. DOI: 10.3390/molecules20058856 |
| [14] |
Franci G., Falanga A., Galdiero S., et al. Silver nanoparticles as potential antibacterial agents//Molecules. 2015. Vol. 20. No. 7. P. 8856–8874. DOI: 10.3390/molecules20058856 |
| [15] |
Khorrami S, Zarrabi A, Khaleghi M, et al. Selective cytotoxicity of green synthesized silver nanoparticles against the MCF-7 tumor cell line and their enhanced antioxidant and antimicrobial properties. Int J Nanomedicine. 2018;13:8013–8024. DOI: 10.2147/IJN.S189295 |
| [16] |
Khorrami S., Zarrabi A., Khaleghi M., et al. Selective cytotoxicity of green synthesized silver nanoparticles against the MCF-7 tumor cell line and their enhanced antioxidant and antimicrobial properties//Int J Nanomedicine. 2018. Vol. 13. P. 8013–8024. DOI: 10.2147/IJN.S189295 |
| [17] |
Tippayawat P, Phromviyo N, Boueroy P, Chompoosor А. Green synthesis of silver nanoparticles in aloe vera plant extract prepared by a hydrothermal method and their synergistic antibacterial activity. Peer J. 2016;4(10):2589. DOI: 10.7717/peerj.2589 |
| [18] |
Tippayawat P., Phromviyo N., Boueroy P., Chompoosor А. Green synthesis of silver nanoparticles in aloe vera plant extract prepared by a hydrothermal method and their synergistic antibacterial activity//Peer J. 2016. Vol. 4. No. 10. P. 2589. DOI: 10.7717/peerj.2589 |
| [19] |
Jafari A, Pourakba RL, Farhadi K, et al. Biological synthesis of silver nanoparticles and evaluation of antibacterial and antifungal properties of silver and copper nanoparticles. Turk J Biol. 2015;39:556–561. DOI: 10.3906/biy-1406-81 |
| [20] |
Jafari A., Pourakba R.L., Farhadi K., et al. Biological synthesis of silver nanoparticles and evaluation of antibacterial and antifungal properties of silver and copper nanoparticles//Turk J Biol. 2015. Vol. 39. P. 556–561. DOI: 10.3906/biy-1406-81 |
| [21] |
Dulta K, Avinash K, Pankaj K. Eco-friendly Synthesis of Silver Nanoparticles Using Carica Papaya Leaf Extract and Its Antibiogram Activity. International Conference on New Horizons in Green Chemistry & Technology (ICGCT), December 10, 2018. DOI: 10.2139/ssrn.3298711 |
| [22] |
Dulta K., Avinash K., Pankaj K. Eco-friendly Synthesis of Silver Nanoparticles Using Carica Papaya Leaf Extract and its Antibiogram Activity. International Conference on New Horizons in Green Chemistry & Technology (ICGCT); 2018 Dec 10. DOI: 10.2139/ssrn.3298711 |
| [23] |
Balu SK, Andra S, Kannan S, et al. Facile synthesis of Silver nanoparticles with medicinal grass and its biological assessment. Materials Letters. 2020;259:126900. DOI: 10.1016/j.matlet.2019.126900 |
| [24] |
Balu S.K., Andra S., Kannan S., et al. Facile synthesis of Silver nanoparticles with medicinal grass and its biological assessment. Materials Letters. 2020;259:126900. DOI: 10.1016/j.matlet.2019.126900 |
| [25] |
Selvamuthumari J, Meenakshi S, Ganesan M, et al. Antibacterial and catalytic properties of silver nanoparticles loaded zeolite: green method for synthesis of silver nanoparticles using lemon juice as reducing agent. Nanosystems: physics, chemistry, mathematics. 2016;7(4):768–773. DOI: 10.17586/2220-8054-2016-7-4-768-773 |
| [26] |
Selvamuthumari J., Meenakshi S., Ganesan M., et al. Antibacterial and catalytic properties of silver nanoparticles loaded zeolite: green method for synthesis of silver nanoparticles using lemon juice as reducing agent//Nanosystems: physics, chemistry, mathematics. 2016. Vol. 7. No. 4. P. 768–773. DOI: 10.17586/2220-8054-2016-7-4-768-773 |
| [27] |
Sacco P, Travan A, Borgogna M, et al. Silver-containing antimicrobial membrane based on chitosan-TPP hydrogel for the treatment of wounds. J Mater Sci Mater Med. 2015;26:128. DOI: 10.1007/s10856-015-5474-7 |
| [28] |
Sacco P., Travan A., Borgogna M., et al. Silver-containing antimicrobial membrane based on chitosan-TPP hydrogel for the treatment of wounds//J Mater Sci Mater Med. 2015. Vol. 26. ID128. DOI: 10.1007/s10856-015-5474-7 |
| [29] |
Zaharov AV, Khokhlov AL, Ergeshov AE. Silver nanoparticles in the solution of the problem of drug resistance in mycobacterium tuberculosis. The Russian Archives of Internal Medicine. 2017;7(3):188–199. (In Russ.) DOI: 10.20514/2226-6704-2017-7-3-188-199 |
| [30] |
Захаров А.В., Хохлов А.Л., Эргешов А.Э. Наночастицы серебра в решении проблемы лекарственной устойчивости возбудителя//Архивъ внутренней медицины. 2017. № 7. С. 188–199. DOI: 10.20514/2226-6704-2017-7-3-188-199 |
| [31] |
Qais FA, Shafiq A, Khan HM, et al. Antibacterial Effect of Silver Nanoparticles Synthesized Using Murraya koenigii (L.) against Multidrug-Resistant Pathogens. Bioinorganic Chemistry and Applications. 2019;2019:11. DOI: 10.1155/2019/4649506 |
| [32] |
Qais F.A., Shafiq A., Khan H.M., et al. Antibacterial Effect of Silver Nanoparticles Synthesized Using Murraya koenigii (L.) against Multidrug-Resistant Pathogens//Bioinorganic Chemistry and Applications. 2019. Vol. 2019. ID11. DOI: 10.1155/2019/4649506 |
| [33] |
Deljou A, Goudarzi S. Green Extracellular Synthesis of the Silver Nanoparticles Using Thermophilic Bacillus Sp. AZ1 and its Antimicrobial Activity Against Several Human Pathogenetic Bacteria. Iran J Biotech. 2016;14(2):25–32. DOI: 10.15171/IJB.1259 |
| [34] |
Deljou A., Goudarzi S. Green Extracellular Synthesis of the Silver Nanoparticles Using Thermophilic Bacillus Sp. AZ1 and its Antimicrobial Activity Against Several Human Pathogenetic Bacteria//Iran J Biotech. 2016. Vol. 14. No. 2. P. 25–32. DOI: 10.15171/IJB.1259 |
| [35] |
Uraskulova BB, Gyusan AO. The clinical and bacteriological study of the effectiveness of the application of silver nanoparticle for the treatment of tuberculosis. Bulletin of otorhinolaryngology. 2017;82(3):54–57. (In Russ.) DOI: 10.17116/otorino201782354-57 |
| [36] |
Ураскулова Б.Б., Гюсан А.О. Клинико-бактериологическое исследование эффективности использования наночастиц серебра для лечения туберкулеза верхних дыхательных путей//Вестник оториноларингологии. 2017. № 82. C. 54–57. DOI: 10.17116/otorino201782354-57 |
| [37] |
Selim A, Tlhaig MM, Taha SA, Nasr EA. Antibacterial activity of silver nanoparticles against field and reference strains of Mycobacterium tuberculosis, Mycobacterium bovis and multiple-drug-resistant tuberculosis strains. Rev Sci Tech Off Int Epiz. 2018;37(3):823–830. DOI: 10.20506/rst.37.3.2888 |
| [38] |
Selim A., Tlhaig M.M., Taha S.A., Nasr E.A. Antibacterial activity of silver nanoparticles against field and reference strains of Mycobacterium tuberculosis, Mycobacterium bovis and multiple-drug-resistant tuberculosis strains//Rev Sci Tech Off Int Epiz. 2018. Vol. 37. No. 3. P. 823–830. DOI: 10.20506/rst.37.3.2888 |
| [39] |
Zakharov AV, Khokhlov AL. The results of experimental studies of the use of silver nanoparticles in tuberculosis drug-resistant pathogen. Medical news of north Caucasus. 2019;14(1–2):195–199. (In Russ.) DOI: 10.14300/mnnc.2019.14013 |
| [40] |
Захаров А.В., Хохлов А.Л. Результаты экспериментальных исследований применения наночастиц серебра при туберкулезе с лекарственной устойчивостью возбудителя//Медицинский вестник Северного Кавказа. 2019. Т. 14, № 1–2. C. 195–199. DOI: 10.14300/mnnc.2019.14013 |
| [41] |
Zаkhаrov AV, Ergeshov AE, Khokhlov AL, Kibrik BS. Effectiveness of combination of isoniazid and silver nanoparticles in the treatment of experimental tuberculosis. Tuberculosis and Lung Diseases. 2017;95(6):51–58. (In Russ.) DOI: 10.21292/2075-1230-2017-95-651-58 |
| [42] |
Захаров А.В., Эргешов А.Э., Хохлов А.Л., Кибрик Б.С. Эффективность сочетания изониазида и наночастиц серебра в лечении экспериментального туберкулеза//Туберкулез и болезни легких. 2017. Т. 95, № 6. С. 51–58. DOI: 10.21292/2075-1230-2017-95-651-58 |
| [43] |
Jafari A, Pourakba RL, Farhadi K, et al. Biological synthesis of silver nanoparticles and evaluation of antibacterial and antifungal properties of silver and copper nanoparticles. Turk J Biol. 2015;39:556–561. DOI: 10.3906/biy-1406-81 |
| [44] |
Jafari A., PourakbaR L., Farhadi K., et al. Biological synthesis of silver nanoparticles and evaluation of antibacterial and antifungal properties of silver and copper nanoparticles//Turk J Biol. 2015. Vol. 39. P. 556–561. DOI: 10.3906/biy-1406-81 |
| [45] |
Maquiaveli CC, Rochetti AL, Fukumasu H, et al. Antileishmanil activity of verbascoside: Selective arginase inhibition of intracellular amastigotes of Leishmania (Leishmania) amazonensis with resistance induced by LPS plus IFN-γ. Biochem Pharmacol. 2017;127:28–33. DOI: 10.1016/j.bcp.2016.12.018 |
| [46] |
Maquiaveli C.C., Rochetti A.L., Fukumasu H., et al. Antileishmanil activity of verbascoside: Selective arginase inhibition of intracellular amastigotes of Leishmania (Leishmania) amazonensis with resistance induced by LPS plus IFN-γ//Biochem Pharmacol. 2017. Vol. 127. P. 28–33. DOI: 10.1016/j.bcp.2016.12.018 |
| [47] |
Lourdes CS, Brito LL, Bezerra TT, et al. Silver and gold nanoparticles from tannic acid: synthesis, characterization and evaluation of antileishmanial and cytotoxic activities. An Acad Bras Cienc. 2017;90(3):2679–2689. DOI: 10.1590/0001-3765201820170598 |
| [48] |
Lourdes C.S., Brito L.L., Bezerra T.T., et al. Silver and gold nanoparticles from tannic acid: synthesis, characterization and evaluation of antileishmanial and cytotoxic activities//An Acad Bras Cienc. 2017. Vol. 90. No. 3. P. 2679–2689. DOI: 10.1590/0001-3765201820170598 |
| [49] |
Keerthiga N, Anitha R, Rajeshkumar S, Lakshmi T. Antioxidant Activity of Cumin Oil Mediated Silver Nanoparticles. Pharmacogn J. 2019;(11):787–789. DOI: 10.5530/pj.2019.11.125 |
| [50] |
Keerthiga N., Anitha R., Rajeshkumar S., Lakshmi T. Antioxidant Activity of Cumin Oil Mediated Silver Nanoparticles//Pharmacogn J. 2019. No. 11. P. 787–789. DOI: 10.5530/pj.2019.11.125 |
| [51] |
Saratale RG, Benelli G, Kumar G, et al. Biofabrication of silver nanoparticles using the leaf extract of an ancient herbal medicine, dandelion (Taraxacum officinale), evaluation of their antioxidant, anticancer potential, and antimicrobial activity against phytopathogens. Environ Sci Pollut Res. 2018;25:10392–10406. DOI: 10.1007/s11356-017-9581-5 |
| [52] |
Saratale R.G., Benelli G., Kumar G., et al. Biofabrication of silver nanoparticles using the leaf extract of an ancient herbal medicine, dandelion (Taraxacum officinale), evaluation of their antioxidant, anticancer potential, and antimicrobial activity against phytopathogens//Environ Sci Pollut Res. 2018. Vol. 25. P. 10392–10406. DOI: 10.1007/s11356-017-9581-5 |
| [53] |
Kuppusamy P, Ichwan SJ, Al-Zikri PN, et al. In Vitro Anticancer Activity of Au, Ag Nanoparticles Synthesized Using Commelina nudiflora L. Aqueous Extract Against HCT-116 Colon Cancer Cells. Biol Trace Elem Res. 2016;173:297–305. DOI: 10.1007/s12011-016-0666-7 |
| [54] |
Kuppusamy P., Ichwan S.J., Al-Zikri P.N., et al. In Vitro Anticancer Activity of Au, Ag Nanoparticles Synthesized Using Commelina nudiflora L. Aqueous Extract Against HCT-116 Colon Cancer Cells//Biol Trace Elem Res. 2016. Vol. 173. P. 297–305. DOI: 10.1007/s12011-016-0666-7 |
| [55] |
El-Naggar NE, Hussein MH, El-Sawah AA. Bio-fabrication of silver nanoparticles by phycocyanin, characterization, in vitro anticancer activity against breast cancer cell line and in vivo cytotoxicity. Sci Rep. 2017;7:10844. DOI: 10.1038/s41598-017-11121-3 |
| [56] |
El-Naggar N.E., Hussein M.H., El-Sawah A.A. Bio-fabrication of silver nanoparticles by phycocyanin, characterization, in vitro anticancer activity against breast cancer cell line and in vivo cytotoxicity//Sci Rep. 2017. Vol. 7. ID10844. DOI: 10.1038/s41598-017-11121-3 |
| [57] |
Rathi Sre PR, Reka M, Poovazhagi R, et al. Antibacterial and cytotoxic effect of biologically synthesized silver nanoparticles using aqueous root extract of Erythrina indica lam. Spectrochim Acta Part A. Mol Biomol Spectrosc. 2015;135:1137–1144. DOI: 10.1016/j.saa.2014.08.019 |
| [58] |
Rathi Sre P.R., Reka M., Poovazhagi R., et al. Antibacterial and cytotoxic effect of biologically synthesized silver nanoparticles using aqueous root extract of Erythrina indica lam. Spectrochim Acta Part A//Mol Biomol Spectrosc. 2015. Vol. 135. P. 1137–1144. DOI: 10.1016/j.saa.2014.08.019 |
| [59] |
Govindaraju K, Krishnamoorthy K, Alsagaby SA, et al. Green synthesis of silver nanoparticles for selective toxicity towards cancer cells. IET Nanobiotechnol. 2015;9(6):325–330. DOI: 10.1049/iet-nbt.2015.0001 |
| [60] |
Govindaraju K., Krishnamoorthy K., Alsagaby S.A., et al. Green synthesis of silver nanoparticles for selective toxicity towards cancer cells//IET Nanobiotechnol. 2015. Vol. 9. No. 6. P. 325–330. DOI: 10.1049/iet-nbt.2015.0001 |
| [61] |
Alsalhi MS, Devanesan S, Alfuraydi AA, et al. Green synthesis of silver nanoparticles using Pimpinella anisum seeds: antimicrobial activity and cytotoxicity on human neonatal skin stromal cells and colon cancer cells. Int J Nanomedicine. 2016;11:4439–4449. DOI: 10.2147/IJN.S113193 |
| [62] |
Alsalhi M.S., Devanesan S., Alfuraydi A.A., et al. Green synthesis of silver nanoparticles using Pimpinella anisum seeds: antimicrobial activity and cytotoxicity on human neonatal skin stromal cells and colon cancer cells//Int J Nanomedicine. 2016. Vol. 11. P. 4439–4449. DOI: 10.2147/IJN.S113193 |
| [63] |
Vijayan R, Joseph S, Mathew B. Indigofera tinctoria leaf extract mediated green synthesis of silver and gold nanoparticles and assessment of their anticancer, antimicrobial, antioxidant and catalytic properties. Artif Cells Nanomed Biotechnol. 2018;46:861–871. DOI: 10.1080/21691401.2017.1345930 |
| [64] |
Vijayan R., Joseph S., Mathew B. Indigofera tinctoria leaf extract mediated green synthesis of silver and gold nanoparticles and assessment of their anticancer, antimicrobial, antioxidant and catalytic properties//Artif Cells Nanomed Biotechnol. 2018. Vol. 46. P. 861–871. DOI: 10.1080/21691401.2017.1345930 |
| [65] |
Oh KH, Soshnikova V, Markus J, et al. Biosynthesized gold and silver nanoparticles by aqueous fruit extract of Chaenomeles sinensis and screening of their biomedical activities. Artif Cells Nanomed Biotechnol. 2018;46:599–606. DOI: 10.1080/21691401.2017.1332636 |
| [66] |
Oh K.H., Soshnikova V., Markus J., et al. Biosynthesized gold and silver nanoparticles by aqueous fruit extract of Chaenomeles sinensis and screening of their biomedical activities//Artif Cells Nanomed Biotechnol. 2018. Vol. 46. P. 599–606. DOI: 10.1080/21691401.2017.1332636 |
| [67] |
Yakop F, Abd Ghafar SA, Yong YK, et al. Silver nanoparticles Clinacanthus Nutans leaves extract induced apoptosis towards oral squamous cell carcinoma cell lines. Artif Cells Nanomed Biotechnol. 2018;46(2):131–139. DOI: 10.1080/21691401.2018.1452750 |
| [68] |
Yakop F., Abd Ghafar S.A., Yong Y.K., et al. Silver nanoparticles Clinacanthus Nutans leaves extract induced apoptosis towards oral squamous cell carcinoma cell lines//Artif Cells Nanomed Biotechnol. 2018. Vol. 46. No. 2. P. 131–139. DOI: 10.1080/21691401.2018.1452750 |
| [69] |
Saleh T, Ahmed E, Yu L, et al. Silver nanoparticles improve structural stability and biocompatibility of decellularized porcine liver. Artif Cells Nanomed Biotechnol. 2018:46(2):273–284. DOI: 10.1080/21691401.2018.1457037 |
| [70] |
Saleh T., Ahmed E., Yu L., et al. Silver nanoparticles improve structural stability and biocompatibility of decellularized porcine liver//Artif Cells Nanomed Biotechnol. 2018. Vol. 46. No. 2. P. 273–284. DOI: 10.1080/21691401.2018.1457037 |
| [71] |
Niska K, Knap N, Kędzia A, et al. Capping Agent-Dependent Toxicity and Antimicrobial Activity of Silver Nanoparticles: An In Vitro Study. Concerns about Potential Application in Dental Practice. Int J Med Sci. 2016;13(10):772–782. DOI: 10.7150/ijms.16011 |
| [72] |
Niska K., Knap N., Kędzia A., et al. Capping Agent-Dependent Toxicity and Antimicrobial Activity of Silver Nanoparticles: An In Vitro Study. Concerns about Potential Application in Dental Practice//Int J Med Sci. 2016. Vol. 13. No. 10. P. 772–782. DOI: 10.7150/ijms.16011 |
| [73] |
Shawky HA, Soha MB, Gihan AELB, et al. Evaluation of Clinical and Antimicrobial Efficacy of Silver Nanoparticles and Tetracycline Films in the Treatment of Periodontal Pockets. IOSR J Dental Med Sci. 2012;2(1):6–12. DOI: 10.5923/j.ijmb.20120201.02 |
| [74] |
Shawky H.A., Soha M.B., Gihan A.E.L.B., et al. Evaluation of Clinical and Antimicrobial Efficacy of Silver Nanoparticles and Tetracycline Films in the Treatment of Periodontal Pockets//IOSR J Dental Med Sci. 2012. Vol. 2. No. 1. P. 6–12. DOI: 10.5923/j.ijmb.20120201.02 |
| [75] |
Corrêa JM, Mori M, Sanches HL, et al. Silver nanoparticles in dental biomaterials. Int J Biomater. 2015;2015:1–9. DOI: 10.1155/2015/485275 |
| [76] |
Corrêa J.M., Mori M., Sanches H.L., et al. Silver nanoparticles in dental biomaterials//Int J Biomater. 2015. Vol. 2015. P. 1–9. DOI: 10.1155/2015/485275 |
| [77] |
Pérez-Díaz MA, Boegli L, James G, et al. Silver nanoparticles with antimicrobial activities against Streptococcus mutans and their cytotoxic effect. Mater Sci Eng C Mater Biol Appl. 2015;55:360–366. DOI: 10.1016/j.msec.2015.05.036 |
| [78] |
Pérez-Díaz M.A., Boegli L., James G., et al. Silver nanoparticles with antimicrobial activities against Streptococcus mutans and their cytotoxic effect//Mater Sci Eng C Mater Biol Appl. 2015. Vol. 55. P. 360–366. DOI: 10.1016/j.msec.2015.05.036 |
| [79] |
World Health Report 2008. Working together for health. Geneva, World Health Organization, 2008. |
| [80] |
Lem KW, Choudhury A, Lakhani AA, et al. Use of nanosilver in consumer products. Recent Pat Nanotechnol. 2012;6(1):60–72. DOI: 10.2174/187221012798109318 |
| [81] |
Lem K.W., Choudhury A., Lakhani A.A., et al. Use of nanosilver in consumer products//Recent Pat Nanotechnol. 2012. Vol. 6. No. 1. P. 60–72. DOI: 10.2174/187221012798109318 |
| [82] |
Hendrickson OD. Toxicity of nanosilver in intragastric studies: biodistribution and metabolic effects. Toxicology Letters. 2016;241:184–192. DOI: 10.1016/j.toxlet.2015.11.018 |
| [83] |
Hendrickson O.D. Toxicity of nanosilver in intragastric studies: biodistribution and metabolic effects//Toxicology Letters. 2016. Vol. 241. P. 184–192. DOI: 10.1016/j.toxlet.2015.11.018 |
| [84] |
Wang Z, Xia T, Liu S. Mechanisms of nanosilver-induced toxicological effects: more attention should be paid to its sublethal effects. Nanoscale. 2015;7(17):7470–7481. DOI: 10.1039/C5NR01133G |
| [85] |
Wang Z., Xia T., Liu S. Mechanisms of nanosilver-induced toxicological effects: more attention should be paid to its sublethal effects//Nanoscale. 2015. Vol. 7. No. 17. P. 7470–7481. DOI: 10.1039/C5NR01133G |
| [86] |
Demin VA, Demin VF, Anciferova AA, et al. Modeling interorgan distribution and bioaccumulation of engineered nanoparticles (using the example of silver nanoparticles). Nanotechnologies in Russia. 2015;10(3–4):103–109. (In Russ.) DOI: 10.1134/S1995078015020081 |
| [87] |
Демин В.А., Гмошинский И.В., Демин В.Ф., и др. Моделирование межорганного распределения и бионакопления искусственных наночастиц (на примере наночастиц серебра)//Российские нанотехнологии. 2015. Т. 10, № 3–4. С. 103–109. DOI: 10.1134/S1995078015020081 |
| [88] |
Zaitseva NV, Zemlyanova MA, Zvezdin VN, et al. Toxicological evaluation of nano-sized colloidal silver in experiments on mice. Behavioral reactions, morphology of internals. Health risk analysis. 2015;(2):68–81. (In Russ.) DOI: 10.21668/health.risk/2015.2.09 |
| [89] |
Зайцева Н.В., Землянова М.А., Звездин В.Н., и др. Токсикологическая оценка наноразмерного коллоидного серебра в экспериментах на мышах. Поведенческие реакции, морфология внутренних органов//Анализ риска здоровью. 2015. № 2. С. 68–81. DOI: 10.21668/health.risk/2015.2.09 |
| [90] |
Vlasov RV, Kade AKh, Baryshev MG, et al. Influence of chronic peroral administration of silver nanoparti-cles on the active processes of free radical oxidation in an experiment on rats. Modern Problems of Science and Education. Surgery. 2017;(2):24. (In Russ.) |
| [91] |
Власов Р.В., Каде А.Х., Барышев М.Г., и др. Влияние хронического перорального поступления наночастиц серебра на активность процессов свободно-радикального окисления в эксперименте у крыс//Современные проблемы науки и образования. 2017. № 2. С. 24. |
| [92] |
Gmoshinsky IV, Shipelin VA, Vorozhko IV, et al. Toxicological evaluation of colloidal nano-sized silver stabilized polyvinylpyrrolidone. III. Enzymological, biochemical markers, state of antioxidant defense system. Problems of nutrition. 2016;85(2):14–23. (In Russ.) |
| [93] |
Гмошинский И.В., Шипелин В.А., Ворожко И.В., и др. Токсикологическая оценка наноразмерного коллоидного серебра, стабилизированного поливинилпирролидоном. III. Энзимологические, биохимические маркеры, состояние системы антиоксидантной защиты//Вопросы питания. 2016. Т. 85, № 2. С. 14–23. |
| [94] |
Zaytseva NV, Zemlyanova MA, Zvezdin VN, et al. Toxicological evaluation of nanosized colloidal silver, stabilized with polyvinylpyrrolidone, in 92-day experiment on rats. II. Internal organs morphology. Problems of nutrition. 2016;85(1):47–55. (In Russ.) |
| [95] |
Зайцева Н.В., Землянова М.А., Звездин В.Н., и др. Токсикологическая оценка наноразмерного коллоидного серебра, стабилизированного поливинилпирролидоном, в 92-дневном эксперименте на крысах. II. Морфология внутренних органов//Вопросы питания. 2016. Т. 85, № 1. С. 47–55. |
| [96] |
Shumakova AA, Shipelin VA, Sidorova YuS, et al. Toxicological evaluation of nanosized colloidal silver, stabilized with polyvinylpyrrolidone. I. Characterization of nanomaterial, integral, hematological parameters, level of thiol compounds and liver cell apoptosis. Problems of nutrition. 2015;84(6):46–57. (In Russ.) |
| [97] |
Шумакова А.А., Шипелин В.А., Сидорова Ю.С., и др. Токсикологическая оценка наноразмерного коллоидного серебра, стабилизированного поливинилпирролидоном I. Характеристика наноматериала, интегральные, гематологические показатели, уровень тиоловых соединений и апоптоз клеток печени//Вопросы питания. 2015. Т. 84, № 6. C. 46–57. |
| [98] |
Sun C. Silver nanoparticles induced neurotoxicity through oxidative stress in rat cerebral astrocytes is distinct from the effects of silver ions. Neurotoxicology. 2015;52:210–221. DOI: 10.1016/j.neuro.2015.09.007 |
| [99] |
Sun C. Silver nanoparticles induced neurotoxicity through oxidative stress in rat cerebral astrocytes is distinct from the effects of silver ions//Neurotoxicology. 2015. Vol. 52. P. 210–221. DOI: 10.1016/j.neuro.2015.09.007 |
| [100] |
Gaillet S, Rouanet MJ. Silver nanoparticles: their potential toxic effects after oral exposure and underlying mechanisms – a review. Food and Chemical Toxicology. 2015;77:58–63. DOI: 10.1016/j.fct.2014.12.019 |
| [101] |
Gaillet S., Rouanet M.J. Silver nanoparticles: their potential toxic effects after oral exposure and underlying mechanisms – a review//Food and Chemical Toxicology. 2015. Vol. 77. P. 58–63. DOI: 10.1016/j.fct.2014.12.019 |
| [102] |
Korani M, Ghazizadeh E, Korani S, et al. Effects of silver nanoparticles on human health. Eur J Nanomed. 2015;7(1):51–62. DOI: 10.1515/ejnm-2014-0032 |
| [103] |
Korani M., Ghazizadeh E., Korani S., et al. Effects of silver nanoparticles on human health//Eur J Nanomed. 2015. Vol. 7. No. 1. P. 51–62. DOI: 10.1515/ejnm-2014-0032 |
| [104] |
Chang BM, Pan L, Lin HH, Chang HC. Nanodiamond-supported silver nanoparticles as potent and safe antibacterial agents. Sci Rep. 2019;9(1):13164. DOI: 10.1038/s41598-019-49675-z |
| [105] |
Chang B.M., Pan L., Lin H.H., Chang H.C. Nanodiamond-supported silver nanoparticles as potent and safe antibacterial agents//Sci Rep. 2019. Vol. 9. No. 1. ID13164. DOI: 10.1038/s41598-019-49675-z |
| [106] |
Marassi V, Di Cristo L, Smith SGJ, et al. Silver nanoparticles as a medical device in healthcare settings: a five-step approach for candidate screening of coating agents. R Soc Open Sci. 2018;5(1):171113. DOI: 10.1098/rsos.171113 |
| [107] |
Marassi V., Di Cristo L., Smith S.G.J., et al. Silver nanoparticles as a medical device in healthcare settings: a five-step approach for candidate screening of coating agents//R Soc Open Sci. 2018. Vol. 5. No. 1. ID171113. DOI: 10.1098/rsos.171113 |
| [108] |
Ansari MA, Khan HM, Khan AA, et al. Anti-biofilm efficacy of silver nanoparticles against MRSA and MRSE isolated from wounds in a tertiary care hospital Indian. J Med Microbiol. 2015;33(1):101–109. DOI: 10.4103/0255-0857.148402 |
| [109] |
Ansari M.A., Khan H.M., Khan, A.A., et al. Anti-biofilm efficacy of silver nanoparticles against MRSA and MRSE isolated from wounds in a tertiary care hospital Indian//J Med Microbiol. 2015; Vol. 33. No. 1. P. 101–109. DOI: 10.4103/0255-0857.148402 |
Morozova Y.A., Dergachev D.S., Subotyalov M.A.
/
| 〈 |
|
〉 |