Reactive changes of gastric mucosa and reduction of desacyl grelin in rat brain due to psychoemotional stress
Vladislava A. Raptanova , Andrei V. Droblenkov , Andrei A. Lebedev , Pavel S. Bobkov , Platon P. Khokhlov , Ilia Y. Thyssen , Anatoliy D. Lisovskiy , Eugeny R. Bychkov , Petr D. Shabanov
Reviews on Clinical Pharmacology and Drug Therapy ›› 2021, Vol. 19 ›› Issue (2) : 203 -210.
Reactive changes of gastric mucosa and reduction of desacyl grelin in rat brain due to psychoemotional stress
BACKGROUND: The work is devoted to the analysis of the elements the reactivity of grelin system in the model of psychogenic stress. In recent years, it has been shown that the ghrelin brain system is not limited only to the regulation of energy balance and eating behavior. Along with other peptide regulatory systems, it plays an important role in the mechanisms of stress, reward and addiction. Therefore, the elements of this system should be considered primarily as molecular targets of pharmacological action in order to correct the states of addiction and post-stress disorders.
MATERIALS AND METHODS: To produce psychoemotional stress, we used an acute single traumatic situation in male Wistar rats. The animals were placed in the tiger python, one animal died as a result of its nutritional needs, the rest of the rats experienced the death of a partner. One week after exposure to python, the animals were decapitated, and the brain structures were isolated. Aliquots of the brain structures suspensions were examined for the content of desacyl ghrelin (DAG) using a highly sensitive enzyme-linked immunosorbent assay (ELISA). In another group, rats were decapitated on the 4th day after exposure to python, stomachs were removed, which were fixed in 10% formalin solution. In horizontal paraffin sections of the gastric mucosa, after staining with hematoxylin and eosin, the heights of superficial and dimple mucous cells, the height of the dimple stroma, the area of superficial, dimple mucocytes and stroma of the dimples, and the number of dead mucocytes were calculated. To clarify the differentiation of epithelial cells, they were stained with alcian blue
RESULTS: DAG was detected in all studied brain structures: amygdala, hippocampus, and hypothalamus. The highest concentration of DAG was noted in the hypothalamus (p < 0.05), which may serve as an indirect confirmation of the data on the presence of ghrelin-containing neurons in the nuclei of the hypothalamus. After exposure to stress, a sharp decrease in the level of DAG was observed in all studied brain structures (8–12 times, p < 0.01): amygdala, hippocampus, and hypothalamus. It has been established that the experience of the stress of the death of a partner is expressed by erosive inflammation of the gastric mucosa, the death of many mucous cells, and an increase in mucus production in viable epithelial cells.
CONCLUSION: Psychoemotional stress completely suppresses the content of desacyl ghrelin of the brain in rats, which may be based on both a disturbance of the central mechanisms of limbic regulation and a violation of peripheral mechanisms, in particular, reactive changes in the gastric mucosa.
stress / desacyl grelin / gastric mucosa / reactive changes
| [1] |
Tsikunov SG, Pshenichnaya AG, Klyueva NN, et al. Vital stress causes long-lasting behavioral disorders and lipid metabolism deviations in female rats. Reviews on clinical pharmacology and drug therapy. 2016;14(4):32–41. (In Russ.) DOI: 10.17816/RCF14432-41 |
| [2] |
Цикунов С.Г., Пшеничная А.Г., Клюева Н.Н., и др. Витальный стресс вызывает длительные расстройства поведения и обмена липидов у самок крыс // Обзоры клинической фармакологии и лекарственной терапии. 2016. Т. 14, № 4. С. 32–41. DOI: 10.17816/RCF14432-41 |
| [3] |
Shabanov PD, Lebedev AA, Morozov VI. The role of ghrelin in control of emotional, explorative and motor behavior in experimental posttraumatic stress disorder. Medicо-Biological and Socio-Psychological Problems of Safety in Emergency Situations. 2018;(1):65–74. (In Russ.) DOI: 10.25016/2541-7487-2018-0-1-65-74 |
| [4] |
Шабанов П.Д., Лебедев А.А., Морозов В.И. Роль грелина в контроле эмоционального, исследовательского и двигательного поведения при экспериментальном посттравматическом стрессовом расстройстве // Медико-биологические и социально-психологические проблемы безопасности в чрезвычайных ситуациях. 2018. № 1. С. 65–74. DOI: 10.25016/2541-7487-2018-0-1-65-74 |
| [5] |
Shabanov PD, Vinogradov PM, Lebedev AA, Morozov VI. Ghrelin system of the brain participates in control of emotional, explorative behavior and motor activity in rats rearing in conditions of social isolation stress. Psikhicheskoe zdorov’e. 2017;15(5):3–11. (In Russ.) DOI: 10.17816/RCF15438-45 |
| [6] |
Шабанов П.Д., Виноградов П.М., Лебедев А.А., Морозов В.И. Грелиновая система мозга участвует в контроле эмоционально-исследовательского поведения и двигательной активности крыс, выращенных в условиях стресса социальной изоляции // Психическое здоровье. 2017. Т. 15, № 5. С. 3–11. DOI: 10.17816/RCF15438-45 |
| [7] |
Khokhlov PP, Tsikunov SG, Tissen IYu, et al. Effects of ghrelin agonist and antagonist on endogenous desacyl-ghrelin content in the brain limbical structures under psychoemotional stress in rats. Reviews on clinical pharmacology and drug therapy. 2017;15(3): 22–27. (In Russ.) DOI: 10.17816/RCF15322-27 |
| [8] |
Хохлов П.П., Цикунов С.Г., Тиссен И.Ю., и др. Эффекты агониста и антагониста грелина на уровень эндогенного дезацил-грелина в структурах лимбической системы мозга при психоэмоциональном стрессе у крыс // Обзоры клинической фармакологии и лекарственной терапии. 2017. Т. 15, № 3. С. 22–27. DOI: 10.17816/RCF15322-27 |
| [9] |
Kojima M, Hosoda H, Date Y, et al. Ghrelin is a growth-hormone-releasing acylated peptide from stomach. Nature. 1999;402(6762):656–660. DOI: 10.1038/45230 |
| [10] |
Kojima M., Hosoda H., Date Y., et al. Ghrelin is a growth-hormone-releasing acylated peptide from stomach // Nature. 1999. Vol. 402. No. 6762. P. 656–660. DOI: 10.1038/45230 |
| [11] |
Chanoine JP, Wong ACK. Ghrelin Gene Expression is Markedly Higher in Fetal Pancreas Compared with Fetal Stomach: Effect of Maternal Fasting. Endocrinology. 2004;14(5):3813–3820. DOI: 10.1210/en.2004-0053 |
| [12] |
Chanoine J.P., Wong A.C.K. Ghrelin Gene Expression is Markedly Higher in Fetal Pancreas Compared with Fetal Stomach: Effect of Maternal Fasting // Endocrinology. 2004. Vol. 14, No. 5. P. 3813–3820. DOI: 10.1210/en.2004-0053 |
| [13] |
Korbonits M, Blaine D, Elia M, Powell-Tuck J. Re feeding David Blaine — studies after a 44-day fast. N Engl J Med. 2005;353(21):2306–2307. DOI: 10.1056/NEJM200511243532124 |
| [14] |
Korbonits M., Blaine D., Elia M., Powell-Tuck J. Re feeding David Blaine — studies after a 44-day fast // N Engl J Med. 2005. Vol. 353, No. 21. P. 2306–2307. DOI: 10.1056/NEJM200511243532124 |
| [15] |
Ueberberg B, Unger N, Saeger W, et al. Expression of ghrelin and its receptor in human tissues. Horm Metab Res. 2009;41(11): 814–821. DOI: 10.1055/s-0029–1233462 |
| [16] |
Ueberberg B., Unger N., Saeger W., et al. Expression of ghrelin and its receptor in human tissues // Horm Metab Res. 2009. Vol. 41, No. 11 P. 814–821. DOI: 10.1055/s-0029-1233462 |
| [17] |
Granata R, Isgaard J, Alloatti G, Ghigo E. Cardiovascular actions of the ghrelin gene-derived peptides and growth hormone-releasing hormone. Exp Biol Med (Maywood). 2011;236(5):505–514. DOI: 10.1258/ebm.2011.010365 |
| [18] |
Granata R., Isgaard J., Alloatti G., Ghigo E. Cardiovascular actions of the ghrelin gene-derived peptides and growth hormone-releasing hormone // Exp Biol Med (Maywood). 2011. Vol. 236, No. 5. P. 505–514. DOI: 10.1258/ebm.2011.010365 |
| [19] |
Date Y, Nakazato M, Hashiguchi S, et al. Ghrelin is present in pancreatic alpha-cells of humans and rats and stimulates insulin secretion. Diabetes. 2002;51(1):124–129. DOI: 10.2337/diabetes.51.1.124 |
| [20] |
Date Y., Nakazato M., Hashiguchi S., et al. Ghrelin is present in pancreatic alpha-cells of humans and rats and stimulates insulin secretion // Diabetes. 2002. Vol. 51, No. 1. P. 124–129. DOI: 10.2337/diabetes.51.1.124 |
| [21] |
Zigman JM, Jones JE, Lee CE, et al. Expression of ghrelin receptor mRNA in the rat and the mouse brain. J Comp Neurol. 2006;494(3):528–548. DOI: 10.1002/cne.20823 |
| [22] |
Zigman J.M., Jones J.E., Lee C.E., et al. Expression of ghrelin receptor mRNA in the rat and the mouse brain // J Comp Neurol. 2006. Vol. 494, No. 3. P. 528–548. DOI: 10.1002/cne.20823 |
| [23] |
Holsen LM, Lawson EA, Christensen K, et al. Abnormal relationships between the neural response to high- and low-calorie foods and endogenous acylated ghrelin in women with active and weight-recovered anorexia nervosa. Psychiatry Res. 2014;223(2):94–103. DOI: 10.1016/j.pscychresns.2014.04.015. |
| [24] |
Holsen L.M., Lawson E.A., Christensen K., et al. Abnormal relationships between the neural response to high- and low-calorie foods and endogenous acylated ghrelin in women with active and weight-recovered anorexia nervosa // Psychiatry Res. 2014. Vol. 223, No. 2. P. 94–103. DOI: 10.1016/j.pscychresns.2014.04.015 |
| [25] |
Kroemer NB, Krebs L, Kobiella A, et al. Fasting levels of ghrelin covary with the brain response to food pictures. Addict Biol. 2012;18(8):855–862. DOI: 10.1111/j.1369-1600.2012.00489.x |
| [26] |
Kroemer N.B., Krebs L., Kobiella A., et al. Fasting levels of ghrelin covary with the brain response to food pictures // Addict Biol. 2012. Vol. 18, No. 8. P. 855–862. DOI: 10.1111/j.1369-1600.2012.00489.x |
| [27] |
Patterson ZR, Ducharme R, Anisman H, Abizaid A. Altered metabolic and neurochemical responses to chronic unpredictable stressors in ghrelin receptor-deficient mice. Eur J Neurosci. 2010;32(4):632–639. DOI: 10.1111/j.1460-9568.2010.07310.x |
| [28] |
Patterson Z.R., Ducharme R., Anisman H., Abizaid A. Altered metabolic and neurochemical responses to chronic unpredictable stressors in ghrelin receptor-deficient mice // Eur J Neurosci. 2010. Vol. 32, No. 4. P. 632–639. DOI: 10.1111/j.1460-9568.2010.07310.x |
| [29] |
Shabanov PD, Lebedev AA, Azarenko SV. Effect of ghrelin and corticoliberin antaginists administered into brain ventriculi on reinforcing properties of amphetamine. Narcology. 2020;19(6):22–31. (In Russ.) DOI: 10.25557/1682-8313.2020.06.22-31 |
| [30] |
Шабанов П.Д., Лебедев А.А., Азаренко С.В. Влияние антагонистов грелина и кортиколиберина при введении в желудочки мозга на подкрепляющие свойства фенамина // Наркология. 2020. Т. 19, № 6. С. 22–31. DOI: 10.25557/1682-8313.2020.06.22-31 |
| [31] |
Smith RG, Van der Ploeg LH, Howard AD, et al. Peptidomimetic regulation of growth hormone secretion. Endocr Rev. 1997;18(5):621–645. DOI: doi.org/10.1210/edrv.18.5.0316 |
| [32] |
Smith R.G., Van der Ploeg L.H., Howard A.D., et al. Peptidomimetic regulation of growth hormone secretion // Endocr Rev. 1997. Vol. 18, No. 5. P. 621–645. DOI: doi.org/10.1210/edrv.18.5.0316 |
| [33] |
Cabral A, Suescun O, Zigman JM, et al. Ghrelin indirectly activates hypophysiotropic CRF Neurons in rodents. PLoS One. 2012;7(2): e31462. DOI: 10.1371/journal.pone.0031462 |
| [34] |
Cabral A., Suescun O., Zigman J.M., et al. Ghrelin indirectly activates hypophysiotropic CRF Neurons in rodents // PLoS One. 2012. Vol. 7. No. 2. P. e31462. DOI: 10.1371/journal.pone.0031462 |
| [35] |
Batyrova AN, Berdalina GS. Role of stress and adaption in the development of gastro-intestinal tract erosive-ulceral lesions (review article). KazNMU VESTNIK. 2014;(1):7–8. |
| [36] |
Батырова А.Н., Бердалина Г.С. Роль стресса и адаптации в развитии эрозивно-язвенных повреждений желудочно-кишечного тракта // Вестник КазНМУ. 2014. № 1. С. 7–8. |
| [37] |
Horxath TL, Abizaid A, Dietrich MO, et al. Ghrelin-immunopositive hypothalamic neurons tie the circadian clock and visual system to rhe lateral hypothalamic arousal center. Mol Metab. 2012;1 (1–2):79–85. DOI: 10.1016/j.molmet.2012.08.003 |
| [38] |
Horxath T.L., Abizaid A., Dietrich M.O., et al. Ghrelin-immunopositive hypothalamic neurons tie the circadian clock and visual system to rhe lateral hypothalamic arousal center // Mol Metab. 2012. Vol. 1, No. 1–2. P. 79–85. DOI: 10.1016/j.molmet.2012.08.003 |
| [39] |
Shabanov PD, Lebedev AA, Bychkov ER., et al. Neurochemical mechanisms and pharmacology of ghrelins. Reviews on clinical pharmacology and drug therapy. 2020;18(1):5–22. DOI: 10.17816/RCF1815-22. |
| [40] |
Шабанов П.Д., Лебедев А.А., Бычков Е.Р., и др. Нейрохимические механизмы и фармакология грелинов // Обзоры по клинической фармакологии и лекарственной терапии. 2020. Т. 18, № 1. С. 5–22. DOI: 10.17816/RCF1815-22. |
Raptanova V.A., Droblenkov A.V., Lebedev A.A., Bobkov P.S., Khokhlov P.P., Thyssen I.Y., Lisovskiy A.D., Bychkov E.R., Shabanov P.D.
/
| 〈 |
|
〉 |