Zinc, brain, behavior

Аndrey F. Yakimovskii

Reviews on Clinical Pharmacology and Drug Therapy ›› 2021, Vol. 19 ›› Issue (1) : 23 -35.

PDF
Reviews on Clinical Pharmacology and Drug Therapy ›› 2021, Vol. 19 ›› Issue (1) : 23 -35. DOI: 10.17816/RCF19123-35
Reviews
review-article

Zinc, brain, behavior

Author information +
History +
PDF

Abstract

The purpose of the review was to analyze current notions about role of essential trace element zinc in brain activity and therefore – in behavior. At the beginning of the review the basic data about zinc metabolism was described. The facts of zinc involvement into neurologic disorders and human cognition were represented. The results of the own investigation, devoted zinc peroral treatment and intrabrain microinjections influence on rats normal and pathological motor behavior were described. In particular, it is shown that zinc, depending on the dose and its mode of entry into the organism, can weaken and prevent the development of picrotoxin-induced neostriatal hyperkinesis (human Huntington horea analog), but it may aggravate hyperkinesis symptoms and even independently cause the motor stereotypy. On the basis of their own data and literary, it was suggested that neurons membranes structures are different sensitive to a certain zinc concentration and what does the specific way of behavior realization is ultimately depend.

Keywords

zinc / brain / avoidance condition behavior / hyperkinesis

Cite this article

Download citation ▾
Аndrey F. Yakimovskii. Zinc, brain, behavior. Reviews on Clinical Pharmacology and Drug Therapy, 2021, 19(1): 23-35 DOI:10.17816/RCF19123-35

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Andrusishina IN, Golub IA, Lampeka EG, et al. Metabolic mineral disorders in patients with Wilson–Konovalov disease. Trace elements in medicine. 2011;12(1–2):47–50. (In Russ.)

[2]

Андрусишина И.Н., Голуб И.А., Лампека Е.Г., и др. Нарушения обмена микроэлементов у пациентов с диагнозом Вильсона–Коновалова // Микроэлементы в медицине. 2011. Т. 12, № 1–2. С. 47–50.

[3]

Babaniyazova ZKh, Babaniyazov KhKh, Radionov IA, et al. Acizol as a remedy against zinc deficiency. Trace elements in medicine. 2010;11(1):25–30. (In Russ.)

[4]

Бабаниязова З.Х., Бабаниязов Х.Х., Радионов И.А., и др. Ацизол в решении проблем цинкодефицитных состояний // Микроэлементы в медицине. 2010. Т. 11, № 1. С. 25–30.

[5]

Kotenko KV, Belyaev IK, Buzulukov YuP, et al. Experimental study of zinc oxide-labelled nanoparticles biokinetics in rats after single oral administration. Medical Radiology and Radiation Safety 2011;56(2):5–10. (In Russ.)

[6]

Котенко К.В., Беляев И.К., Бузулуков Ю.П., и др. Экспериментальное исследование биокинетики наночастиц оксида цинка у крыс после однократного перорального введения с использованием технологии меченых атомов // Медицинская радиология и радиационная безопасность. 2011. Т. 56, № 2. C. 5–10.

[7]

Lebedeva SA, Babanijazova ZH, Babanijazov HH, Radionov IA. Novye podhody farmakologicheskoj korrekcii gipoksicheskih sostojanij. Vestnik OGU. 2011;(15):78–81. (In Russ.)

[8]

Лебедева С.А., Бабаниязова З.Х., Бабаниязов Х.Х., Радионов И.А. Новые подходы фармакологической коррекции гипоксических состояний // Вестник ОГУ. 2011. № 15. С. 78–81.

[9]

Matyuk YV, Bogdanov RR, Bogdanov AR. Identification of dietary intake of trace elements at the early stage Parkinsons disease. Trace Elements in Medicine. 2018;19(3):18–23. (In Russ.) DOI: 10.19112/2413-6174-2018-19-3-18-32

[10]

Матюк Ю.В., Богданов Р.Р., Богданов А.Р. Анализ потребления основных микроэлементов в структуре пищевого поведения пациентов с начальными проявлениями болезни Паркинсона // Микроэлементы в медицине. 2018. Т. 19, № 3. C. 18–23. DOI: 10.19112/2413-6174-2018-19-3-18-32

[11]

Oberleas D, Skalny AV, Skalnaya MG, et al. Pathophysiology of microelementoses. Post 2. Zinc. Pathogenesis. 2015;13(4):9–17. (In Russ.)

[12]

Оберлис Д., Скальный А.И., Скальная М.Г., и др. Патофизиология микроэлементов. Сообщение 2. Цинк // Патогенез. 2015. Т 13, № 4. C. 9–17.

[13]

Podzolkov VI, Pokrovskaya AE. Difficulties of diagnostics and treatment Wilson-Konovalov disease. Clinical Medicine. 2017;95(5): 465–470. (In Russ.) DOI: 10.18821/0023-2149-2017-95-5-465-470

[14]

Подзолков В.И., Покровская А.Е. Трудности диагностики и лечения болезни Вильсона–Коновалова // Клиническая медицина. 2017. Т. 95, № 5. С. 465–470. DOI: 10.18821/0023-2149-2017-95-5-465-470

[15]

Salnikova EV. Human needs for zinc and its sources (Review). Trace Elements in Medicine. 2016;17(4):11–15. (In Russ.) DOI: 10.19112/2413-6174-2016-17-4-11-15

[16]

Сальникова Е.В. Потребность человека в цинке и его источники (Обзор) // Микроэлементы в медицине. 2016. Т. 17, № 4. С. 11–15. DOI: 10.19112/2413-6174-2016-17-4-11-15

[17]

Skalny AV, Fesyun AD, Ivashkiv II, et al. Influence of zinc preparation «Acizol» on body elemental status and functional reserves under conditions of increased psycho-emotional and physical stress. Voprosy Biologicheskoj, Medicinskoj i Farmacevticheskoj Himii. 2011;9(6):47–55. (In Russ.)

[18]

Скальный А.В., Фесюн А.Д., Ивашкив И.И., и др. Влияние препарата цинка «Ацизол» на элементарный статус и уровень функциональных резервов в условиях повышенных психоэмоциональных и физических нагрузок // Вопросы биологической, медицинской и фармацевтической химии. 2011. Т. 9, № 6. С. 47–55.

[19]

Fesenko AG. Mikrojelementarnaja korrekcija funkcional’nogo sostojanija organizma professional’nyh regbistok v sorevnovatel’nyj period. Vestnik OGU. 2011;(15):144–149. (In Russ.)

[20]

Фесенко А.Г. Микроэлементарная коррекция функционального состояния организма профессиональных регбисток в соревновательный период // Вестник ОГУ. 2011. № 15. С. 144–149.

[21]

Khaliullina SV. Clinical significance of zinc deficiency in the child (literature review). The Bulletin of Contemporary Clinical Medicine. 2013;6(3):72–78. (In Russ.) DOI: 10.20969/VSKM.2013.6(3).72-78.

[22]

Халиуллина С.В. Клиническое значение дефицита цинка в организме ребенка (обзор литературы) // Вестник современной клинической медицины. 2013. T. 6, № 3. C. 72–78. DOI: 10.20969/VSKM.2013.6(3).72-78.

[23]

Shantyr’ II, Yakovleva MV, Vlasenko MA. Zinc deficiency condition among the inhabitants of Saint Petersburg. Preventive and Clinical Medicine. 2015;57(4):12–16. (In Russ.)

[24]

Шантырь И.И., Яковлева М.В., Власенко М.А. Цинк-дефицитные состояния жителей Санкт-Петербурга // Профилактическая и клиническая медицина. 2015. № 4. C. 12–16.

[25]

Shapovalova KB. Neostriatum I regulatsija proizvolnogo dvizhenija. Saint Petersburg: Nauka; 2015. 153 p. (In Russ.)

[26]

Шаповалова К.Б. Неостриатум и регуляция произвольного движения. СПб.: Наука, 2015. 153 с.

[27]

Yakimovskii AF. Vlijanie hlorida cinka, vvedjonnogo v neostriatum, na dvigatel’noe povedenie krys. Zhurnal vysshej nervnoj dejatel’nosti. 2011;61(2):212–218. (In Russ.)

[28]

Якимовский А.Ф. Влияние хлорида цинка, введенного в неостриатум, на двигательное поведение крыс // Журнал высшей нервной деятельности. 2011. T. 61, № 2. C. 212–218.

[29]

Yakimovskii AF. The ability of zinc to recover conditioned avoidance reflex, disturbed by intrastriatal injection of picrotoxin in rats. Trace Elements in Medicine. 2014;15(3):27–32. (In Russ.)

[30]

Якимовский А.Ф. Способность цинка восстанавливать условный рефлекс избегания, нарушенный у крыс внутристриарным введением пикротоксина // Микроэлементы в медицине. 2014. Т. 15, № 3. С. 27–32.

[31]

Yakimovskii AF. Neurobiology of zinc. Advance in Current Biology. 2019;139(3):267–279. (In Russ.) DOI: 10.1134/S0042132419030104

[32]

Якимовский А.Ф. Нейробиология цинка // Успехи современной биологии. 2019. Т. 139, № 3. С. 267–279. DOI: 10.1134/S0042132419030104

[33]

Yakimovskii AF. Influence of zinc treatment on normal and pathological motor behavior of rat. Trace Elements in Medicine. 2020;21(2): 34–40. (In Russ.) DOI: 10.19112/2413-6174-2020-21-2-34-40

[34]

Якимовский А.Ф. Влияние алиментарной нагрузки цинком на нормальное и патологическое двигательное поведение крыс // Микроэлементы в медицине. 2020. Т. 21, № 2. C. 34–40. DOI: 10.19112/2413-6174-2020-21-2-34-40

[35]

Yakimovskii AF, Varshavskaya VM. Ethiopatogenesis of Huntington’s disease: results and perspectives of experimental modeling. Medical Academic Journal. 2006;6(2):28–40. (In Russ.)

[36]

Якимовский А.Ф., Варшавская В.М. Этиопатогенез хореи Гентингтона: итоги и перспективы экспериментального моделирования // Медицинский академический журнал. 2006. Т. 6, № 2. С. 28–40.

[37]

Yakimovskii AF, Zanin KV. The influence of zinc donator acyzol into rat’s locomotor behavior. Medical Academic Journal. 2018;18(1):89–93. (In Russ.)

[38]

Якимовский А.Ф., Занин К.В. Влияние донатора цинка ацизола на двигательное поведение крыс // Медицинский академический журнал. 2018. Т. 18, № 1. С. 89–93.

[39]

Yakimovskii AF, Kryzhanovskaya SYu. The effect of intrastriatal zinc acetate injections on normal and pathological locomotor behavior in rats. Medical Academic Journal. 2015;15(2)50–54. (In Russ.)

[40]

Якимовский А.Ф., Крыжановская С.Ю. Влияние внутристриарных введений ацетата цинка на нормальное и патологическое двигательное поведение крыс // Медицинский академический журнал. 2015. Т. 15, № 2. С. 50–54.

[41]

Yakimovskii AF, Kryzhanovskaya SYu. Zinc chloride and zinc acetate injected into the neostriatum produce opposite effect on locomotor behavior of rats. Bulletin of Experimental and Biologic Medicine. 2015;160(8):252–254. (In Russ.)

[42]

Якимовский А.Ф., Крыжановская С.Ю. Хлорид и ацетат цинка, введенные в неостриатум, разнонаправленно влияют на двигательное поведение крыс // Бюллетень экспериментальной биологии и медицины. 2015. T. 160, № 8. C. 252–254.

[43]

Yakimovskii AF, Stepanov II. Vlijanie hlorida cinka na pikrotoksinovyj giperkinez zavisit ot ego koncentracii v rastvore, in’eciruemom v neostriatum krys. Bulletin of Experimental and Biologic Medicine. 2010;150(12):604–606. (In Russ.)

[44]

Якимовский А.Ф., Степанов И.И Влияние хлорида цинка на пикротоксиновый гиперкинез зависит от его концентрации в растворе, инъецируемом в неостриатум крыс // Бюллетень экспериментальной биологии и медицины. 2010. Т. 150. № 12. C. 604–606.

[45]

Yakimovskii AF, Shantyr’ II, Vlasenko MA, Yakovleva MV. Vlijanie acizola na soderzhanie cinka v plazme krovi i golovnom mozge krys. Bjulleten’ jeksperimental’noj biologii i mediciny. Bulletin of Experimental and Biologic Medicine. 2016;162(9):268–270. (In Russ.)

[46]

Якимовский А.Ф., Шантырь И.И., Власенко М.А., Яковлева М.В. Влияние ацизола на содержание цинка в плазме крови и головном мозге крыс // Бюллетень экспериментальной биологии и медицины. 2016. T. 162, № 9. C. 268–270.

[47]

Yakimovskii AF, Shantyr’ II, Vlasenko MA, et al. The influence of acizol to bioelements content in rat’s blood plasma, parenchimal organs and brain. Biomedical Chemistry. 2018;64(2):183–187. (In Russ.) DOI: 10.18097/PBMC20186402183

[48]

Якимовский А.Ф., Шантырь И.И., Власенко М.А., и др. Влияние ацизола на содержание биоэлементов в плазме крови, паренхиматозных органах и головном мозге крыс // Биомедицинская химия. 2018. Т. 64, № 2. C. 183–187. DOI: 10.18097/PBMC20186402183

[49]

Amani R, Saeidi S, Nazari Z, Nematpour S. Correlation between dietary zinc intakes and its serum levels with depression scales in young female students. Biol. Trace Elem. Res. 2010;137(2):150–158. DOI: 10.1007/s12011-009-8572-x

[50]

Amani R., Saeidi S., Nazari Z., Nematpour S. Correlation between dietary zinc intakes and its serum levels with depression scales in young female students // Biol Trace Elem Res. 2010. Vol. 137, No. 2. P. 150–158. DOI: 10.1007/s12011-009-8572-x

[51]

Bitanihirwe BK, Cunningham MG. Zinc: the brains dark horse. Synapse. 2009;63(11): 1029–1049. DOI: 10.1002/syn.20683

[52]

Bitanihirwe B.K., Cunningham M.G. Zinc: the brains dark horse // Synapse. 2009. Vol. 63, No. 11. P. 1029–1049. DOI: 10.1002/syn.20683.

[53]

Brewer GJ, Kanzer SH, Zimmerman EA, et al. Subclinical zinc deficiency in Alzheimer’s disease and Parkinson’s disease. Am J Alzheimers Dis Other Demen. 2010;25(7):572–575. DOI: 10.1177/1533317510382283

[54]

Brewer G.J., Kanzer S.H., Zimmerman E.A., et al. Subclinical zinc deficiency in Alzheimer’s disease and Parkinson’s disease // Am J Alzheimers Dis Other Demen. 2010. Vol. 25, No. 7. P. 572–575. DOI: 10.1177/1533317510382283

[55]

Cole TB, Wenzel HJ, Kafer KE, et al. Elimination of zinc from synaptic vesicles in the intact mouse brain by disruption of the ZnT3 gene. PNAS USA. 1999;96(4):1716–1721. DOI: 10.1073/pnas.96.4.1716

[56]

Cole TB., Wenzel H.J., Kafer K.E., et al. Elimination of zinc from synaptic vesicles in the intact mouse brain by disruption of the ZnT3 gene // PNAS USA. 1999. Vol. 96, No. 4. P. 1716–1721. DOI: 10.1073/pnas.96.4.1716

[57]

Dorofeeva NA, Tikhonov DB, Barygin OI, et al. Action of extracellular divalent cations on native alpha-amino-3-hydroxy-5-methylisoxazole-4-propionate (AMPA) receptors. J Neurochem. 2005;95(6):1704–1712. DOI: 10.1111/j.1471-4159.2005.03533.x

[58]

Dorofeeva N.A., Tikhonov D.B., Barygin O.I., et al. Action of extracellular divalent cations on native alpha-amino-3-hydroxy-5-methylisoxazole-4-propionate (AMPA) receptors // J Neurochem. 2005. Vol. 95, No. 6. P. 1704–1712. DOI: 10.1111/j.1471-4159.2005.03533.x

[59]

Fantin M, Marti M, Auberson YP, Morari M. NR2A and NR2B subunit containing NMDA receptors differentially regulate striatal output pathways. J Neurochem. 2007;103(6);2200–2211. DOI: 10.1111/j.1471-4159.2007.04966.x

[60]

Fantin M., Marti M., Auberson Y.P., Morari M. NR2A and NR2B subunit containing NMDA receptors differentially regulate striatal output pathways // J Neurochem. 2007. Vol. 103, No. 6. P. 2200–2211. DOI: 10.1111/j.1471-4159.2007.04966.x

[61]

Frederickson CJ, Koh JY, Bush AI. The neurobiology of zinc in health and disease. Nat Rev Neurosci. 2005;6(6):449–462. DOI: 10.1038/nrn1671

[62]

Frederickson C.J., Koh J.Y., Bush A.I. The neurobiology of zinc in health and disease // Nat Rev Neurosci. 2005. Vol. 6. No. 6. P. 449–462. DOI: 10.1038/nrn1671

[63]

Genoud S, Roberts BR, Gunn AP, et al. Subcellular compartmentalization of copper, iron, manganese, and zinс in the Parkinson’s disease brain. Metallomics. 2017;9(10):1447–1455. DOI: 10.1039/C7MT00244K

[64]

Genoud S., Roberts B.R., Gunn A.P., et al. Subcellular compartmentalization of copper, iron, manganese, and zinс in the Parkinson’s disease brain // Metallomics. 2017. Vol. 9. No. 10. P. 1447–1455. DOI: 10.1039/C7MT00244K

[65]

Graybiel AM. The basal ganglia. Curr biol. 2000;10(14): R509–R511. DOI: 10.1016/S0960-9822(00)00593-5

[66]

Graybiel A.M. The basal ganglia // Curr Biol. 2000. Vol. 10, No. 14. P. R509–R511. DOI: 10.1016/S0960-9822(00) 00593-5

[67]

Irmish G, Schlaefke D, Richter J. Zinc and fatty acids in depression. Neuroche Res. 2010;35(9):1376–1383. DOI: 10.1007/s11064-010-0194-3

[68]

Irmish G., Schlaefke D., Richter J. Zinc and fatty acids in depression // Neurochem Res. 2010. Vol. 35, No. 9. P. 1376–1383. DOI: 10.1007/s11064-010-0194-3

[69]

Kambe T, Tsuji T, Hashimoto A, Itsumura N. The physiological, biochemical and molecular roles of zinc transporters in zinc homeostasis and metabolism. Physiol. Rev. 2015;95(3):749–784. DOI: 10.1152/physrev.00035.2014

[70]

Kambe T., Tsuji T., Hashimoto A., Itsumura N. The physiological, biochemical and molecular roles of zinc transporters in zinc homeostasis and metabolism // Physiol Rev. 2015. Vol. 95, No. 3. P. 749–784. DOI: 10.1152/physrev.00035.2014

[71]

King JC, Brown KH, Gibson RS, et al. Biomarkers of nutrition for development (BOND) – zinc review. J Nutr. 2016;146(4):858S-885S. DOI: 10.3945/jn.115.220079

[72]

King J.C., Brown K.H., Gibson R.S., et al. Biomarkers of nutrition for development (BOND) – zinc review // J Nutr. 2016. Vol. 146, No. 4. P. 858S-885S. DOI: 10.3945/jn.115.220079

[73]

Lonnerdal B. Dietary factors influencing zinc absorption. J Nutr. 2000;130(5):1378S-1383S. DOI: 10.1093/jn/130.5.1378S

[74]

Lonnerdal B. Dietary factors influencing zinc absorption // J Nutr. 2000. Vol. 130. No. 5. P. 1378S-1383S. DOI: 10.1093/jn/130.5. 1378S

[75]

Mabrouk OS, Mela F, Calcagno M, et al. GluN2A and GluN2B NMDA receptor subunits differentially modulate striatal output pathways and contribute to levodopa-induced abnormal involuntary movements in dyskinetic rats. ACS Chem Neurosci. 2013;4(5): 808–816. DOI: 10.1021/cn4000016d

[76]

Mabrouk O.S., Mela F., Calcagno M., et al. GluN2A and GluN2B NMDA receptor subunits differentially modulate striatal output pathways and contribute to levodopa-induced abnormal involuntary movements in dyskinetic rats // ACS Chem Neurosci. 2013. Vol. 4, No. 5. P. 808–816. DOI: 10.1021/cn4000016d

[77]

Marcellini M, Di Ciommo V, Callea F, et al. Treatment of Wilson’s disease with zinc from the time of diagnosis in pediatric patients: a single-hospital, 10-year follow-up study. J Lab Clin Med. 2005;145(3):139–143. DOI: 10.1016/j.lab.2005.01.007

[78]

Marcellini M., Di Ciommo V., Callea F., et al. Treatment of Wilson’s disease with zinc from the time of diagnosis in pediatric patients: a single-hospital, 10-year follow-up study // J Lab Clin Med. 2005. Vol. 145, No. 3. P. 139–143. DOI: 10.1016/j.lab.2005. 01.007

[79]

Maret W. Zinc biochemistry: from a single zinc enzyme to a key element of life. Adv. Nutr. 2013;4(1):82–91. DOI: 10.3945/an.112.003038

[80]

Maret W. Zinc biochemistry: from a single zinc enzyme to a key element of life // Adv Nutr. 2013. Vol. 4, No. 1. P. 82–91. DOI: 10.3945/an.112.003038

[81]

Mlyniec K, Nowak G. Zinc deficiency induces behavioral alterations in the tail suspension test in mice. Effect of antidepressants. Pharmacol Rep. 2012;64(2):249–255. DOI: 10.1016/s1734-1140(12)70762-4

[82]

Mlyniec K., Nowak G. Zinc deficiency induces behavioral alterations in the tail suspension test in mice. Effect of antide-pressants // Pharmacol Rep. 2012. Vol. 64, No. 2. P. 249–255. DOI: 10.1016/s1734-1140(12)70762-4

[83]

Modabbernia A, Arora M, Reichenberg A. Environmental exposure to metals, neurodevelopment, and psychosis. Curr Opin Pediatr. 2016;28(2):243–249. DOI: 10.1097/MOP.0000000000000332

[84]

Modabbernia A., Arora M., Reichenberg A. Environmental exposure to metals, neurodevelopment, and psychosis // Curr Opin Pediatr. 2016. Vol. 28, No. 2. P. 243–249. DOI: 10.1097/MOP.0000000000000332

[85]

Nations SP, Boyer PJ, Love LA, et al. Denture cream: An unusual source of excess zinc, leading to hypocupremia and neurologic disease. Neurology. 2008;71(9):639–643. DOI: 10.1212/01.wnl.0000312375.79881.94

[86]

Nations S.P., Boyer P.J., Love L.A. et al. Denture cream: An unusual source of excess zinc, leading to hypocupremia and neurologic disease // Neurology. 2008. Vol. 71, No. 9. P. 639–643. DOI: 10.1212/01.wnl.0000312375.79881.94

[87]

Prasad A.S. Zinc in humans: health disorders and therapeutic effects. Trace Elements in Medicine. 2014;15(1):3–12

[88]

Прасад А.С. Цинк в организме человека: расстройства здоровья и лечебные эффекты // Микроэлементы в медицине. 2014. T. 15, № 1. С. 3–12.

[89]

Rivas-Garcia TE, Marcelo-Pons, Martinez-Arnau F, et al. Blood zinc levels and cognitive and functional evaluation in non-demented older patients. Experim Gerontol. 2018;108(15):28–34. DOI: 10.1016/j.exger.2018.03.003

[90]

Rivas-Garcia T.E., Marcelo-Pons M., Martinez-Arnau F., et al. Blood zinc levels and cognitive and functional evaluation in non-demented older patients // Experim Gerontol. 2018. Vol. 108, No. 15. P. 28–34. DOI: 10.1016/j.exger.2018.03.003

[91]

Rulon LL, Robertson JD, Lovell MA, et al. Serum zinc levels and Alzheimer’s disease. Biol Trace Elem Res. 2000;75(1–3):79–85. DOI: 10.1385/BTER:75:1-3:79

[92]

Rulon L.L., Robertson J.D., Lovell M. A., et al. Serum zinc levels and Alzheimer’s disease // Biol Trace Elem Res. 2000. Vol. 75, No. 1–3. P. 79–85. DOI: 10.1385/BTER:75:1-3:79

[93]

Sternlieb I. Wilsons disease. Clinics in liver disease. 2000;4(1):229–239. DOI: 10.1016/S1089-3261(05)70105-7

[94]

Sternlieb I. Wilsons disease // Clinics in liver disease. 2000. Vol. 4, No. 1. P. 229–239. DOI: 10.1016/S1089-3261(05)70105-7

[95]

Szewczyk B. Zinc homeostasis and neurodegenerative disorders. Front Aging Neurosci. 2013;5:33. DOI: 10.3389/fnagi.2013.00033

[96]

Szewczyk B. Zinc homeostasis and neurodegenerative disorders // Front Aging Neurosci. 2013. Vol. 5. P. 33. DOI: 10.3389/fnagi.2013.00033

[97]

Takeda A, Tamano H. Cognitive decline due to excess synaptic Zn signaling in the hippocampus. Front Aging Neurosci. 2014;6:26. DOI: 10.3389/fnagi.2014.00026

[98]

Takeda A., Tamano H. Cognitive decline due to excess synaptic Zn signaling in the hippocampus // Front Aging Neurosci. 2014. Vol. 6. P. 26. DOI: 10.3389/fnagi.2014.00026

[99]

Tepper J, Lee C. GABA-ergic control of substantia nigra dopaminergic neuron. Prog Brain Res. 2007;160:189–208. DOI: 10.1016/S0079-6123(06)60011-3

[100]

Tepper J., Lee C. GABA-ergic control of substantia nigra dopaminergic neuron // Prog Brain Res. 2007. Vol. 160. P. 189–208. DOI: 10.1016/S0079-6123(06)60011-3

[101]

Vastagh C, Gardoni F, Bagetta V, et al. N-Methyl-D-aspartate (NMDA) receptor composition modulates dendritic spine morphology in striatal medium spiny neurons. J Biol Chemistry. 2012;287(22):18103–18114. DOI: 10.1074/jbc.M112.347427

[102]

Vastagh C., Gardoni F., Bagetta V., et al. N-Methyl-D-aspartate (NMDA) receptor composition modulates dendritic spine morphology in striatal medium spiny neurons // J Biol Chemistry. 2012. Vol. 287, No. 22. P. 18103–18114. DOI: 10.1074/jbc.M112. 347427

[103]

Warthon-Medina M, Moran VH, Stammers A-L, et al. Zinc intake, status and indices of cognitive function in adults and children: a systematic review and meta-analysis. Eur J Clin Nutr.2015;69(4): 649–661. DOI: 10.1038/ejcn.2015.60

[104]

Warthon-Medina M., Moran V.H., Stammers A.-L., et al. Zinc intake, status and indices of cognitive function in adults and children: a systematic review and meta-analysis // Eur J Clin Nutr. 2015. Vol. 69, No. 4. P. 649–661. DOI: 10.1038/ejcn. 2015.60

[105]

Yelnik J. Functional anatomy of the basal ganglia. Mov Disord. 2002;17(Suppl 3):S15–S21. DOI: 10.1002/mds.10138

[106]

Yelnik J. Functional anatomy of the basal ganglia // Mov Disord. 2002. No. 17. Suppl. 3. P. S15–S21. DOI: 10.1002/mds.10138

RIGHTS & PERMISSIONS

Yakimovskii А.F.

AI Summary AI Mindmap
PDF

177

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/