Probable molecular genetic predictors for development of the locomotor system pathology in the extreme physical exertion

Anna Sergeevna Kozlova , Alexandre Olegovich Pyatibrat , Galina Viktorovna Buznik , Sergei Borisovich Melnov , Peter Dmitrievich Shabanov

Reviews on Clinical Pharmacology and Drug Therapy ›› 2015, Vol. 13 ›› Issue (3) : 53 -62.

PDF
Reviews on Clinical Pharmacology and Drug Therapy ›› 2015, Vol. 13 ›› Issue (3) : 53 -62. DOI: 10.17816/RCF13353-62
Articles
research-article

Probable molecular genetic predictors for development of the locomotor system pathology in the extreme physical exertion

Author information +
History +
PDF

Abstract

The article presents the basic results of the theoretical analysis of currently available data on modern and future using of molecular genetic markers to determine predisposition to musculoskeletal system diseases in athletes and subsequent regenerative capacity of the organism. The basic genetic markers associated with athletes resistance to injuries are described. It has been shown that one of the most important factors is genetic predisposition to osteoporosis.

Keywords

molecular genetics / genetic predictors / diseases of the musculoskeletal system / extreme conditions / osteoporosis / sports injury

Cite this article

Download citation ▾
Anna Sergeevna Kozlova, Alexandre Olegovich Pyatibrat, Galina Viktorovna Buznik, Sergei Borisovich Melnov, Peter Dmitrievich Shabanov. Probable molecular genetic predictors for development of the locomotor system pathology in the extreme physical exertion. Reviews on Clinical Pharmacology and Drug Therapy, 2015, 13(3): 53-62 DOI:10.17816/RCF13353-62

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Ахметов И. И. Генетическая диагностика в спортивной медицине. Терапевт. 2010; 12: 11-5.

[2]

Ахметов И., Ильин В., Дроздовская С. Молекулярно-генетические маркеры в спортивном отборе. Наука в олимпийском спорте. 2013; 4: 26-31.

[3]

Al-Yahyaee S. A. S., Al-Kindi M. N., Habbal O., Kumar D. S. Clinical and molecular analysis of Grebe acromesomelic dysplasia in an Omani family. Amer. J. Med. Genet. 2003; 121A: 9-14.

[4]

Aldahmesh M. A., Khan A. O., Mohamed J. Y. et al. Identification of ADAMTS18 as a gene mutated in Knobloch syndrome. J. Med. Genet. 2011; 48: 597-601.

[5]

Bocheva G., Boyadjieva N. Epigenetic regulation of fetal bone development and placental transfer of nutrients: progress for osteoporosis. Interdiscip. Toxicol. 2011; 4 (4): 167-72.

[6]

Borck G., Beighton P., Wilhelm C. et al. Arterial rupture in classic Ehlers-Danlos syndrome withCOL5A1 mutation. Amer. J. Med. Genet. 2010; 152A: 2090-3.

[7]

Byers P. H., Duvic M., Atkinson M. et al. Ehlers-Danlos syndrome type VIIA and VIIB result from splice-junction mutations or genomic deletions that involve exon 6 in the COL1A1 and COL1A2 genes of type I collagen. Amer. J. Med. Genet. 1997; 72: 94-105.

[8]

Chen W., Meyer N. C., McKenna M. J. et al. Single-nucleotide polymorphisms in the COL1A1 regulatory regions are associated with otosclerosis. Clin. Genet. 2007; 71: 406-14.

[9]

Colin E., Uitterlinden A., Meurs J. et al. Interaction between vitamin D receptor genotype and estrogen receptor alpha genotype influences vertebral fracture risk. J. Clin. Endocr. Metab. 2003; 88: 3777-84.

[10]

Collins M., Posthumus M., Schwellnus M. P. The COL1A1 gene and acute soft tissue ruptures. Br. J. Sports Med. 2010; 44 (14): 1063-4.

[11]

Dai J., Shi D., Zhu P. et al. Association of a single nucleotide polymorphism in growth differentiate factor 5 with congenital dysplasia of the hip: a case-control study. Arthritis Res. Ther. 2008; 10 (5): 126.

[12]

Dathe K., Kjaer K. W., Brehm A. et al. Duplications involving a conserved regulatory element downstream of BMP2 are associated with brachydactyly type A2. Amer. J. Hum. Genet. 2009; 84: 483-92.

[13]

Ensrud K., Taylor B., Paudel M. Serum 25-hydroxyvitamin D levels and rate of hip bone loss in older men. J. Clin. Endocrinol. Metab. 2009; 94: 2773-80.

[14]

Everman D. B., Bartels C. F., Yang Y. et al. The mutational spectrum of brachydactyly type C. Amer. J. Med. Genet. 2002; 112: 291-6.

[15]

Faiyaz-Ul-Haque M., Ahmad W., Wahab A. et al. Frameshift mutation in the cartilage-derived morphogenetic protein 1 (CDMP1) gene and severe acromesomelic chondrodysplasia resembling Grebe-type chondrodysplasia. American Journal of Medical Genetics. 2002; 111: 31-7.

[16]

Fong D. T., Hong Y., Chan L., Yung P. S., Chan K. A systematic review on ankle injury and ankle sprain in sports. Sports Med. 2007; 37: 73-94.

[17]

Giunta C., Steinmann B. Compound heterozygosity for a disease-causing G1489D and disease-modifying G530S substitution in COL5A1 of a patient with the classical type of Ehlers-Danlos syndrome: an explanation of intrafamilial variability?. Amer. J. Med. Genet. 2000; 90: 72-79.

[18]

Gong Y., Slee R. B., Fukai N. et al. LDL receptor-related protein 5 (LRP5) affects bone accrual and eye development. Cell. 2001; 107: 513-523.

[19]

Guo Y., Tan L. J., Lei S. F. et al. Genome-wide association study identifies ALDH7A1 as a novel susceptibility gene for osteoporosis. PLoS Genet. 2010; 6 (1): e1000806.

[20]

Hootman J. M., Dick R., Agel J. Epidemiology of Collegiate Injuries for 15 Sports: Summary and Recommendations for Injury Prevention Initiatives. J. Athl. Train. 2007; 42: 311-9.

[21]

Ioannidis J. P., Ralston S. H., Bennett S. T. et al. Differential genetic effects of ESR1 gene polymorphisms on osteoporosis outcomes. JAMA. 2004; 292 (17): 2105-14.

[22]

Jakubowska-Pietkiewicz E., Młynarski W., Klich I. et al. Vitamin D receptor gene variability as a factor influencing bone mineral density in pediatric patients. Mol. Biol. Rep. 2012; 39 (5): 6243-50.

[23]

Jin H., Evangelou E., Ioannidis J. P., Ralston S. H. Polymorphisms in the 5' flank of COL1A1 gene and osteoporosis: meta-analysis of published studies. Osteoporos Int. 2011; 22 (3): 911-21.

[24]

Jin H., van't Hof R. J., Albagha O. M., Ralston S. H. Promoter and intron 1 polymorphisms of COL1A1 interact to regulate transcription and susceptibility to osteoporosis. Hum. Mol. Genet. 2009; 18 (15): 2729-38.

[25]

Kou I., Takahashi A., Urano T. et al. Common variants in a novel gene, FONG on chromosome 2q33.1 confer risk of osteoporosis in Japanese. PLoS One. 2011; 6 (5): e19641.

[26]

Krantz I. D., Colliton R. P., Genin A. et al. Spectrum and frequency of Jagged1 (JAG1) mutations in Alagille syndrome patients and their families. Amer. J. Hum. Genet. 1998; 62: 1361-9.

[27]

Kugimiya F., Kawaguchi H., Kamekura S. et al. Involvement of endogenous bone morphogenetic protein (BMP) 2 and BMP6 in bone formation. J. Biol. Chem. 2005; 280: 35704-12.

[28]

Kung A. W., Xiao S. M., Cherny S. et al. Association of JAG1 with bone mineral density and osteoporotic fractures: a genome-wide association study and follow-up replication studies. Amer. J. Hum. Genet. 2010; 86 (2): 229-39.

[29]

Lango Allen H., Estrada K., Lettre G. et al. Hundreds of variants clustered in genomic loci and biological pathways affect human heigh. Nature. 2010; 467 (7317): 832-8.

[30]

Longo U. G., Fazio V., Poeta M. L. et al. Bilateral consecutive rupture of the quadriceps tendon in a man with BstUI polymorphism of the COL5A1 gene. Knee Surg. Sports Traumatol. Arthrosc. 2010; 18 (4): 514-8.

[31]

Miyamoto Y., Mabuchi A., Shi D. et al. A functional polymorphism in the 5-prime UTR of GDF5 is associated with susceptibility to osteoarthritis. Nature Genet. 2007; 39: 529-53.

[32]

Mizuguchi T., Furuta I., Watanabe Y. et al. LRP5, low-density-lipoprotein-receptor-related protein 5, is a determinant for bone mineral density. J. Hum. Genet. 2004; 49: 80-6.

[33]

Nuytinck L., Freund M., Lagae L. et al. Classical Ehlers-Danlos syndrome caused by a mutation in type I collagen. Amer. J. Hum. Genet. 2000; 66: 1398-1402.

[34]

Posthumus M., September A. V., Keegan M. et al. Genetic risk factors for anterior cruciate ligament ruptures: COL1A1 gene variant. Br. J. Sports Med. 2009; 43 (5): 352-6.

[35]

Raleigh S. M., van der Merwe L., Ribbans W. J. et al. Variants within the MMP3 gene are associated with Achilles tendinopathy: possible interaction with the COL5A1 gene. Br. J. Sports Med. 2009; 43 (7): 514-20.

[36]

Rivadeneira F., Styrkársdottir U., Estrada K. et al. Twenty bone-mineral-density loci identified by large-scale meta-analysis of genome-wide association studies. Nat. Genet. 2009; 41 (11): 1199-1206.

[37]

Robin N. H., Gunay-Aygun M., Polinkovsky A. et al. Clinical and locus heterogeneity in brachydactyly type C. Amer. J. Med. Genet. 1997; 68: 369-77.

[38]

Sanna S., Jackson A. U., Nagaraja R. et al. Common variants in the GDF5-UQCC region are associated with variation in human height. Nat. Genet. 2008; 40 (2): 198-203.

[39]

Seemann P., Schwappacher R., Kjaer K. W. et al. Activating and deactivating mutations in the receptor interaction site of GDF5 cause symphalangism or brachydactyly type A2. J. Clin. Invest. 2005; 115 (9): 2373-81.

[40]

September A. V., Cook J., Handley C. J. Et al. Variants within the COL5A1 gene are associated with Achilles tendinopathy in two populations. Br. J. Sports Med. 2009; 43 (5): 357-65.

[41]

Shapiro J. R., Stover M. L., Burn V. E. et al. An osteopenic nonfracture syndrome with features of mild osteogenesis imperfecta associated with the substitution of a cysteine for glycine at triple helix position 43 in the pro-alpha-1 (I) chain of type I collagen. J. Clin. Invest. 1992; 89: 567-73.

[42]

Styrkarsdottir U., Cazier J.-B., Kong A. et al. Linkage of Osteoporosis to Chromosome 20p12 and Association to BMP2. PLoS Biol. 2003; 1. e69.

[43]

Styrkarsdottir U., Halldorsson B. V., Gretarsdottir S. et al. Multiple genetic loci for bone mineral density and fractures. N. Engl. J. Med. 2008; 358 (22): 2355-65.

[44]

Su P., Ding H., Huang D. et al. A 4.6 kb genomic duplication on 20p12.2-12.3 is associated with brachydactyly type A2 in a Chinese family. J. Med. Genet. 2011; 48: 312-6.

[45]

Sullivan A. M., O’Keeffe G. W. The role of growth/differentiation factor 5 (GDF5) in the induction and survival of midbrain dopaminergic neurones: relevance to Parkinson’s disease treatment. J. Anat. 2005; 207 (3): 219-26.

[46]

Tawonsawatruk T., Changthong T., Pingsuthiwong S. et al. A genetic association study between growth differentiation factor 5 (GDF 5) polymorphism and knee osteoarthritis in Thai population. J. Orthop. Surg. Res. 2011; 6: 47.

[47]

The aldehyde dehydrogenase enzyme 7A1 is functionally involved in prostate cancer bone metastasis/van den Hoogen C., van der Horst G., Cheung H. et al. Clin. Exp. Metastasis. 2011; 28 (7): 615-25.

[48]

Thomas J. T., Lin K., Nandedkar M. et al. A human chondrodysplasia due to a mutation in a TGF-beta superfamily member. Nature Genet. 1996; 12: 315-7.

[49]

Uitterlinden A., Ralston S., Brandi M. et al. The association between common vitamin D receptor gene variations and osteoporosis: a participant-level meta-analysis. Ann. Intern. Med. 2006; 145: 255-64.

[50]

Uitterlinden A., Weel A., Burger H. et al. Interaction between the vitamin D receptor gene and collagen type I-alpha-1 gene in susceptibility for fracture. J. Bone Miner. 2001; 16: 379-85.

[51]

Van Wesenbeeck L., Cleiren E., Gram J. et al. Six novel missense mutations in the LDL receptor-related protein 5 (LRP5) gene in different conditions with an increased bone density. Amer. J. Hum. Genet. 2003; 72: 763-71.

[52]

Wilkins J. M., Southam L., Mustafa Z. et al. Association of a functional microsatellite within intron 1 of the BMP5 gene with susceptibility to osteoarthritis. BMC Med. Gen. 2009; 10: 141.

[53]

Wu S., Liu Y., Zhang L. et. al. Genome-wide approaches for identifying genetic risk factors for osteoporosis. Genome Med. 2013; 5 (5): 44.

[54]

Xiong D., Xu F., Liu P., et al. Vitamin D receptor gene polymorphisms are linked to and associated with adult height. J. Med. Genet. 2005; 42: 228-34.

[55]

Xiong D. H., Liu X. G., Guo Y. F. et al. Genome-wide association and follow-up replication studies identified ADAMTS18 and TGFBR3 as bone mass candidate genes in different ethnic groups. Amer. J. Hum. Genet. 2009; 84: 388-98.

[56]

Xiong D. H., Shen H., Zhao L. J. et al. Robust and Comprehensive Analysis of 20 Osteoporosis Candidate Genes by Very High-Density Single-Nucleotide Polymorphism Screen Among 405 White Nuclear Families Identified Significant Association and Gene-Gene Interaction. J. Bone Miner. Res. 2006; 21 (11): 1678-95.

[57]

Yamaguchi J., Hasegawa Y., Kawasaki M. et al. ALDH2 polymorphisms and bone mineral density in an elderly Japanese population. Osteoporos Int. 2006; 17 (6): 908-13.

[58]

Yuan H., Tang Y., Lei L. et al. Synergistic interaction between MMP-3, VDR gene polymorphisms and occupational risk factors on lumbar disc degeneration. Zhonghua Lao Dong Wei Sheng Zhi Ye Bing Za Zhi. 2010; 28 (5): 334-8.

RIGHTS & PERMISSIONS

Kozlova A.S., Pyatibrat A.O., Buznik G.V., Melnov S.B., Shabanov P.D.

AI Summary AI Mindmap
PDF

87

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/