Changes in intracellular potentials and ionic currents of the mollusk and activity of Cl--channels under exposure to some inhibitory amino acids and new litium-containing compounds of them

Petr Dmitrievich Shabanov , Anatoliy Ivanovich Vislobokov , Georgiy Nolianovich Shilov , P M Bulay , A P Lugovskii

Reviews on Clinical Pharmacology and Drug Therapy ›› 2015, Vol. 13 ›› Issue (3) : 39 -47.

PDF
Reviews on Clinical Pharmacology and Drug Therapy ›› 2015, Vol. 13 ›› Issue (3) : 39 -47. DOI: 10.17816/RCF13339-47
Articles
research-article

Changes in intracellular potentials and ionic currents of the mollusk and activity of Cl--channels under exposure to some inhibitory amino acids and new litium-containing compounds of them

Author information +
History +
PDF

Abstract

The Changes of membrane rest potential (RP), action potential (AP), impulse activity (IA) as well as sodium, calcium and potassium ionic currents in neurons of isolated central nervous system of the Planorbarius corneus mollusk (pedal ganglia) under the extracellular action of inhibitory amino acids GABA, glycine and β-alanine and their litium-containing derivatives (LCD) in 0.1, 1 and 5 mM concentrations have been studied using a microelectrode technique. They induced the same dose-dependent and irreversible depolarization of neurons on 2-10 mV accompanied by increase of AP frequency, prolongation of their duration and decrease of summmerized ionic currents (dV/dt). According to degree of depolarization, the drugs were placed in the following range in decreasing activity: compound 3 > compound 2 > compound 1. In identified pedal ganglion neurons (PPed1), compound 3 in contrast to other compounds induced hyperpolarization by 2-10 mV and blocked impulse activity. The amplitude of sodium and calcium channels was decreased by 7-15 %, in the same degree after application of all compounds exposed in concentration of 5 mM. Efflux potassium ionic currents were increased in dose-dependent manner and irreversibly about by 3-7 % assessed on amplitude indexes without changes in kinetic parameters after application of LCD. Therefore, the decrease of ionic current amplitudes was due to both depolarization of neurons and direct action of LCD on ionic channels. Thus, LCD possess membranotropic activity and can modulate functional state of neurons. In the study of chloride channels in cells culture of rat glioma C6 in vitro by patch-clamp method, GABA, glycine, β-alanine and their LCD 10 µM/l activated chloride channels, shifting equiliblium membrane potential of glioma cells from -90… -70 mV to -55... -60 mV. All compounds (transmitters and LCD) were placed in the following range: glycine > GABA > β-alanine and compound 1 > compound 3 > compound 2 according to descending activity. Therefore, the most active compounds activating Cl--channels were glycine and compound 1 (LCD). Glycine was shown to be coagonist GABA receptors and its litium salt possessed significant membranotropic activity.

Keywords

Planorbarius corneus / litium / inhibitory anino acids / Planorbarius corneus / rest potential / action potential / impulse activity / ionic currents / glioma C6 / equiliblium membrane potential / chloride ponential / Cl--channel

Cite this article

Download citation ▾
Petr Dmitrievich Shabanov, Anatoliy Ivanovich Vislobokov, Georgiy Nolianovich Shilov, P M Bulay, A P Lugovskii. Changes in intracellular potentials and ionic currents of the mollusk and activity of Cl--channels under exposure to some inhibitory amino acids and new litium-containing compounds of them. Reviews on Clinical Pharmacology and Drug Therapy, 2015, 13(3): 39-47 DOI:10.17816/RCF13339-47

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Букинич А. А., Шабанов П. Д. Функциональное значение димерных (гетеромерных) рецепторов в ЦНС позвоночных. Обз. по клин. фармакол. и лек. терапии. 2015; 13 (1): 25-31.

[2]

Вислобоков А. И., Игнатов Ю. Д., Галенко-Ярошевский П. А., Шабанов П. Д. Мембранотропное действие фармакологических средств. СПб.-Краснодар: Просвещение-Юг, 2010. - 528 с.

[3]

Вислобоков А. И., Борисова В. А., Прошева В. И., Шабанов П. Д. Фармакология ионных каналов. Серия: Цитофармакология (Т. 1), СПб.: Информ-Навигатор, 2012. - 528 с.

[4]

Камкин А. Г., Киселева И. С. Физиология и молекулярная биология мембран клеток: учеб. пособие. М.: ИЦ Академия, 2008. - 592 с.

[5]

Катцунг Б. Г. Базисная и клиническая фармакология. М.: Бином, 2000; 406-28.

[6]

Сергеев П. В., Шимановский Н. Л. Рецепторы физиологически активных веществ. М.: Медицина,1987; 213-29.

[7]

Шилов Г. Н., Бубель О. Н., Пушкарчук А. Л. Перспективы обоснования назначения глицина в комплексной противосудорожной терапии на основе некоторых новых представлений о структуре ГАМК-бензодиаепиновых рецепторов. Человек и лекарство. Тез. докл. ХI Рос. нац. конгр. М., 2004; 61.

[8]

Яхно Н. Н., Штульман Д. Р. Болезни нервной системы. М., 2003; 208-44.

[9]

Brody T. M. et al. Human pharmacology, molecular to clinical. 3rd ed. New York: Mosby Year Book Inc., 1998; 1001.

[10]

Camerino D. C., Tricarico D., Desaphy J. F. Ion channel pharmacology. Neurotherapeutics. 2007; 4 (2): 184-98.

[11]

Goodman & Gilman’s. The pharmacological basis of therapeutics. 9th ed. New York: McGraw Hill. 2004; 461-86.

[12]

Narahashi T. Neuroreceptors and ion channels as the basis for drug action: past, present, and future. J. Pharmacol. Exp. Ther. 2000; 294 (1): 1-26.

[13]

Shilov G. N. Cyclic GABA conformer and Glycine as natural endogen agonists of GABA-benzodiazepine-receptor complex. 31st Int. Epilepsy Congr. Istanbul, Turkey, 2015.

[14]

Smith C. U. M. Elements of molecular neurobiology. 2nd ed. London: J. Wiley, 1996. - 552 p.

RIGHTS & PERMISSIONS

Shabanov P.D., Vislobokov A.I., Shilov G.N., Bulay P.M., Lugovskii A.P.

AI Summary AI Mindmap
PDF

129

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/