The locomotor hyperactivity in the rats,produced by 5-th type methabotropicglutamate receprors antagonist MTEP and ZnCl2 injection into rostral striatum

Andrey Fedorovich Yakimovskiy

Reviews on Clinical Pharmacology and Drug Therapy ›› 2013, Vol. 11 ›› Issue (3) : 50 -54.

PDF
Reviews on Clinical Pharmacology and Drug Therapy ›› 2013, Vol. 11 ›› Issue (3) : 50 -54. DOI: 10.17816/RCF11350-54
Articles
other

The locomotor hyperactivity in the rats,produced by 5-th type methabotropicglutamate receprors antagonist MTEP and ZnCl2 injection into rostral striatum

Author information +
History +
PDF

Abstract

The effects of 5th type of methabotropic glutamate receptors antagonist MTEP separately or with ZnCl2 multiple injection into the rostral neostriatum in chronic experiments were investigated in rats learned with condition avoidance reflexes in “schuttle box”. The two-week daily microinjection of 3 µg MTEP, similar with 1 µl saline (control group) did not influence on condition avoidance reflexes parameters and free locomotor activity in “open field”. The injection of 3 µg MTEP with ZnCl2 (1 µg /1 µl) in rostral neostriatum impaired the avoidance conditioning and locomotor hyperactivity with motor stereotypia in part of experimental animals. As separate injection as MTEP or ZnCl2 did not produce the locomotor hyperactivity, the reasone of the changed behaviour of rats was the combined action of them administered into brain substrat. The possible changs in neurotransmitter relationship provided by zinc ions striatum saturation are discussed. The hypothesis about nigro-striatal dopaminergic system activation as a general cause is proposed.

Keywords

neostriatum / condition avoidance responses / locomotor activity / ZnCl2 / MTEP

Cite this article

Download citation ▾
Andrey Fedorovich Yakimovskiy. The locomotor hyperactivity in the rats,produced by 5-th type methabotropicglutamate receprors antagonist MTEP and ZnCl2 injection into rostral striatum. Reviews on Clinical Pharmacology and Drug Therapy, 2013, 11(3): 50-54 DOI:10.17816/RCF11350-54

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Бабаниязова З. Х., Бабаниязов Х. Х., Радионов И. А., Скальный А. В., Бобр И. С. Ацизол в решении проблем цинкодефицитных состояний // Микроэлементы в медицине. — 2010. — Т. 11, № 1. — С. 25 –30.

[2]

Якимовский А. Ф. Влияние хлорида цинка, введённого в неостриатум, на двигательное поведение крыс // Журн. высш. нервн. деят. — 2011. — Т. 61, № 2. — С. 212–218.

[3]

Якимовcкий A.Ф, Варшавская В. М. Глутаматергическая система неостриатума вовлечена в генез пикротоксинового хорео-миоклонического гиперкинеза // Бюл. эксперим. биол. и мед. — 2004. — T. 138, № 12. — C. 604–607.

[4]

Якимовский А. Ф., Варшавская В. М. Этиопатогенез хореи Гентингтона: итоги и перспективы экспериментального моделирования // Мед. акад. журн. — 2006. — T 6, № 2. — С. 28–40.

[5]

Якимовский А. Ф., Степанов И. И. Влияние хлорида цинка на пикротоксиновый гиперкинез зависит от его концентрации в растворе, инъецируемом в неостриатум крыс // Бюл. эксперим. биол. и мед. — 2010. — T. 150, № 12. — C. 604–606.

[6]

Besser L., Chorin E., Sekler I. at al. Synaptically released zinc triggers metabotropic signaling via a zinc-sensing receptor in the hippocampus // J. Neurosci. — 2009. — Vol. 29, N 9. — P. 2890–2901.

[7]

Conn P. J., Battaglia G., Marino M. J., Nicoletti F. Metabotropic glutamate receptors in the basal ganglia motor circuit // Nat. Rew. Neurosci. — 2005. — Vol. 6, N 10. — P. 787–798.

[8]

Costall B., Naylor R. J. The role of telencephalic dopaminergic system in the mediation of apomorphine-stereotyped behavior // Eur. J. Pharmacol. — 1973. — Vol. 24, N 1. — P. 8–24.

[9]

Cousins R. J., McMahon R. J. Integrative aspects of zinc transporters // J. Nutr. — 2000. — Vol. 130, N 5. — P. 1384S-1387S.

[10]

Dorofeeva N. A., Tikhonov D. B., Barygin O. I. at al. Action of extracellular divalent cations on native alpha-amino-3 -hydroxy-5-methylisoxazole-4-propionate (AMPA) receptors // J. Neurochem. — 2005. — Vol. 95, N 6. — P. 1704 –1712.

[11]

Frederickson Ch. J., Suh S. W., Silva D., Frederickson C. J., Thompson R. D. Importance of zinc in the central nervous system: the zinc-containing neuron // J. Nutr. — 2000. — Vol. 130, N 5. — P. 1471S-1483S.

[12]

Hosie A. M., Dunne E. L., Harvey R. J., Smart T. G. Zinc-mediated inhibition of GABAA receptors: discrete binding sites underlie subtype specificity // Nat. Neurocsi. — 2003. — Vol. 6., N 4. — P. 362–369.

[13]

Kay A. R., Neyton J., Paoletti P. A startling role for synaptic zinc // Neuron. — 2006. — V.52, N 4. — P. 572–574.

[14]

Marcellini M., Di Ciommo V., Callea F. at al. Treatment of Wilson's disease with zinc from the time of diagnosis in pediatric patients: a single-hospital, 10-year follow-up study // J. Lab. Clin. Med. — 2005. — Vol. 145, N 3. — P. 139–143.

[15]

Mott D. D., Dingledine R. Unraveling the role of zinc in memory // PNAS. — 2011. — Vol. 108, N 8. — P. 3103–3104.

[16]

Smart T. G., Hosie A. M., Miller P. S. Zn2+ ions: modulators of excitatory and inhibitory synaptic activity // Neuroscientist. — 2004. — Vol. 10, N 5. — P. 432–442.

RIGHTS & PERMISSIONS

Yakimovskiy A.F.

AI Summary AI Mindmap
PDF

51

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/