Monocytosis in patients with coronavirus pneumonia after treatment with glucocorticoids
Maxim I. Shperling , Alexey V. Kovalev , Vitaliy S. Sukachev , Andrey A. Vlasov , Alexey S. Polyakov , Yaroslav A. Noskov , Alexandr D. Morozov , Victor S. Merzlyakov , Dmitry P. Zvyagintsev , Konstantin V. Kozlov , Konstantin V. Zhdanov
Bulletin of the Russian Military Medical Academy ›› 2021, Vol. 23 ›› Issue (4) : 105 -112.
Monocytosis in patients with coronavirus pneumonia after treatment with glucocorticoids
Features of variation of peripheral blood leukocyte formula parameters in 86 patients with coronavirus pneumonia with leukocytosis with a background of glucocorticoid treatment were investigated. All patients were divided into 2 groups. Group 1 was 22 individuals who showed clinical signs of the bacterial infection (purulent sputum cough in combination with neutrophilic leukocytosis at hospital the admission). The 2nd group was made up of 64 patients with the glucocorticoids developed against the background of treatment with glucocorticoids (dexamethasone 20 mg/day or prednisolone 150 mg/day, intravenously for 3 days) leukocytosis >10 ×109/l without signs of a bacterial infection. It was found that in patients of the 1st group compared to the 2nd group, levels of the white blood cells and neutrophils significantly (p < 0.001) exceeded the reference values in the absence of a significant change in the number of monocytes. In patients of the 2nd group after a three-day intravenous application of the glucocorticoids on the 4th day of hospitalization, a statistically significant (p <0.001) increase in the number of neutrophils and monocytes was established. When comparing the quantitative parameters of the leukocyte formula between the 2nd group on the 4th day of the hospitalization and the 1st group at admission, there were no differences in the level of leukocytes and neutrophils. Number of monocytes in group 2 (1.11 (0.90; 1.34) × 109/l), on the contrary, statistically significantly (p < 0.001) exceeded their level in the 1st group (0.59 (0.50; 0.77) × 109/l). Thus, an indicator of the number of monocytes in the peripheral blood could be a promising differential diagnostic criterion for the genesis of the leukocytosis in patients with the COVID-19. This parameter may be one of the factors influencing the decision to prescribe the antibacterial therapy.
specific viral pneumonia / virus-mediated tissue damage / viral replication / bacterial complications / glucocorticosteroids / induced leukocytosis / monocytosis / coronavirus disease
| [1] |
Surveillances V The Epidemiological Characteristics of an Outbreak of 2019 Novel Coronavirus Diseases (COVID-19). Zhonghua Liu Xing Bing Xue Za Zhi. 2020;41(2):145–151. DOI: 10.3760/cma.j.issn.0254-6450.2020.02.003 |
| [2] |
Surveillances V. The Epidemiological Characteristics of an Outbreak of 2019 Novel Coronavirus Diseases (COVID-19) // Zhonghua Liu Xing Bing Xue Za Zhi. 2020. Vol. 41, No. 2. P. 145–151. DOI: 10.3760/cma.j.issn.0254-6450.2020.02.003 |
| [3] |
Zaytsev AA, Chernov SA, Kryukov EV, et al. Practical experience of managing patients with new coronavirus infection COVID-19 in hospital (preliminary results and guidelines). Lechaschi Vrach. 2020;(6):74–79. (In Russ.). DOI: 10.26295/OS.2020.41.94.014 |
| [4] |
Зайцев А.А. Чернов С.А., Крюков Е.В., и др. Практический опыт ведения пациентов с новой коронавирусной инфекцией COVID-19 в стационаре (предварительные итоги и рекомендации) // Лечащий врач. 2020. № 6. С. 74–79. DOI: 10.26295/OS.2020.41.94.014 |
| [5] |
Teuwen LA, Geldhof V, Pasut A, et al. COVID-19: the vasculature unleashed. Nat Rev Immunol. 2020;20(7):389–391. DOI: 10.1038/s41577-020-0343-0 |
| [6] |
Teuwen L.A., Geldhof V., Pasut A., et al. COVID-19: the vasculature unleashed // Nat Rev Immunol. 2020. Vol. 20, No. 7. P. 389–391. DOI: 10.1038/s41577-020-0343-0 |
| [7] |
Azkur AK, Akdis M, Azkur D, et al. Immune response to SARS-CoV-2 and mechanisms of immunopathological changes in COVID-19. Allergy. 2020;75(7):1564–1581. DOI: 10.1111/all.14364 |
| [8] |
Azkur A.K., Akdis M., Azkur D., et al. Immune response to SARS-CoV-2 and mechanisms of immunopathological changes in COVID-19 // Allergy. 2020. Vol. 75, No. 7. P. 1564–1581. DOI: 10.1111/all.14364 |
| [9] |
Minnullin TI, Stepanov AV, Chepur SV, et al. Immunological aspects of SARS-CoV-2 coronavirus damage. Bulletin of the Russian Military Medical Academy. 2021;23(2):187–198. (In Russ.). DOI: 10.17816/brmma72051 |
| [10] |
Миннуллин Т.И., Степанов А.В., Чепур С.В., и др. Иммунологические аспекты поражения коронавирусом SARS-CoV-2 // Вестник Российской военно-медицинской академии. 2021. Т. 23, № 2. C. 187–198. DOI: 10.17816/brmma72051 |
| [11] |
Wang J, Jiang M, Chen X, et al. Cytokine storm and leukocyte changes in mild versus severe SARS-CoV-2 infection: Review of 3939 COVID-19 patients in China and emerging pathogenesis and therapy concepts. J Leukoc Biol. 2020;108(1):17–41. DOI: 10.1002/JLB.3COVR0520-272R |
| [12] |
Wang J., Jiang M., Chen X., et al. Cytokine storm and leukocyte changes in mild versus severe SARS-CoV-2 infection: Review of 3939 COVID-19 patients in China and emerging pathogenesis and therapy concepts // J Leukoc Biol. 2020. Vol. 108, No. 1. P. 17–41. DOI: 10.1002/JLB.3COVR0520-272R |
| [13] |
Lansbury L, Lim B, Baskaran V, Lim WS. Co-infections in people with COVID-19: a systematic review and meta-analysis. J Infect. 2020;81(2):266–275. DOI: 10.1016/j.jinf.2020.05.046 |
| [14] |
Lansbury L., Lim B., Baskaran V., Lim W.S. Co-infections in people with COVID-19: a systematic review and meta-analysis // J Infect. 2020. Vol. 81, No. 2. P. 266–275. DOI: 10.1016/j.jinf.2020.05.046 |
| [15] |
Youngs J, Wyncoll D, Hopkins P, et al. Improving antibiotic stewardship in COVID-19: Bacterial co-infection is less common than with influenza. J Infect. 2020;81(3):e55–e57. DOI:10.1016/j.jinf.2020.06.056 |
| [16] |
Youngs J., Wyncoll D., Hopkins P., et al. Improving antibiotic stewardship in COVID-19: Bacterial co-infection is less common than with influenza // J Infect. 2020. Vol. 81. No. 3. P. e55–e57. DOI:10.1016/j.jinf.2020.06.056 |
| [17] |
Crotty MP, Akins R, Nguyen A, et al. Investigation of subsequent and co-infections associated with SARS-CoV-2 (COVID-19) in hospitalized patients. мedRxiv. 2020;2:1–19. DOI:10.1101/2020.05.29.20117176 |
| [18] |
Crotty M.P., Akins R., Nguyen A., et al. Investigation of subsequent and co-infections associated with SARS-CoV-2 (COVID-19) in hospitalized patients // medRxiv. 2020. Vol. 2. P. 1–19. DOI:10.1101/2020.05.29.20117176 |
| [19] |
Vazzana N, Dipaola F, Ognibene S. Procalcitonin and secondary bacterial infections in COVID-19: association with disease severity and outcomes. Acta Clin Belgica Int J Clin Lab Med. 2020:1–5. DOI: 10.1080/17843286.2020.1824749 |
| [20] |
Vazzana N., Dipaola F., Ognibene S. Procalcitonin and secondary bacterial infections in COVID-19: association with disease severity and outcomes // Acta Clin Belgica Int J Clin Lab Med. 2020. P. 1–5. DOI: 10.1080/17843286.2020.1824749 |
| [21] |
Zaitsev AA, Chernov SA, Stets VV, et al. Algorithms for the management of patients with a new coronavirus COVID-19 infection in a hospital. Guidelines. Consilium Medicum. 2020;22(11):91–97. (In Russ.). DOI: 10.26442/20751753.2020.11.200520 |
| [22] |
Зайцев А.А., Чернов С.А., Стец В.В., и др. Алгоритмы ведения пациентов с новой коронавирусной инфекцией COVID-19 в стационаре. Методические рекомендации // Consilium Medicum. 2020. Т. 22, № 11. С. 91–97. DOI: 10.26442/20751753.2020.11.200520 |
| [23] |
Lee H. Procalcitonin as a biomarker of infectious diseases. Korean J Intern Med. 2013;28(3):285–291. DOI:10.3904/kjim.2013.28.3.285 |
| [24] |
Lee H. Procalcitonin as a biomarker of infectious diseases // Korean J Intern Med. 2013. Vol. 28, No. 3. P. 285–291. DOI:10.3904/kjim.2013.28.3.285 |
| [25] |
Shoenfeld Y, Gurewich Y, Gallant LA, et al. Prednisone-induced leukocytosis. Am J Med. 1981;71(5):773–778. DOI: 10.1016/0002-9343(81)90363-6 |
| [26] |
Shoenfeld Y., Gurewich Y., Gallant L.A., et al. Prednisone-induced leukocytosis // Am J Med. 1981. Vol. 71, No. 5. P. 773–778. DOI: 10.1016/0002-9343(81)90363-6 |
| [27] |
Martinez FO, Combes TW, Orsenigo F, et al. Monocyte activation in systemic Covid-19 infection: Assay and rationale. EBioMedicine. 2020;59:(102964):1–7. DOI: 10.1016/j.ebiom.2020.102964 |
| [28] |
Martinez F.O., Combes T.W., Orsenigo F., et al. Monocyte activation in systemic Covid-19 infection: Assay and rationale // EBioMedicine. 2020. Vol. 59, No. 102964. P. 1–7. DOI: 10.1016/j.ebiom.2020.102964 |
| [29] |
Zaitsev AA, Golukhova EZ, Mamalyga ML, et al. Efficacy of methylprednisolone pulse therapy in patients with COVID-19. Clinical Microbiology and Antimicrobial Chemotherapy. 2020;22(2):88–91. (In Russ.). DOI: 10.36488/cmac.2020.2.88-91 |
| [30] |
Зайцев А.А., Голухова Е.З., Мамалыга М.Л., и др. Эффективность пульс-терапии метилпреднизолоном у пациентов с COVID-19 // Клиническая микробиология и антимикробная химиотерапия. 2020. Т. 22, № 2. С. 88–91. DOI: 10.36488/cmac.2020.2.88-91 |
| [31] |
Dubinski D, Won SY, Gessler F, et al. Dexamethasone-induced leukocytosis is associated with poor survival in newly diagnosed glioblastoma. J Neurooncol. 2018;137(3):503–510. DOI: 10.1007/s11060-018-2761-4 |
| [32] |
Dubinski D., Won S.Y., Gessler F., et al. Dexamethasone-induced leukocytosis is associated with poor survival in newly diagnosed glioblastoma // J Neurooncol. 2018. Vol. 137, No. 3. P. 503–510. DOI: 10.1007/s11060-018-2761-4 |
| [33] |
Liles WC, Dale DC, Klebanoff SJ Glucocorticoids inhibit apoptosis of human neutrophils. Blood. 1995;86(8):3181–3188. |
| [34] |
Liles W.C., Dale D.C., Klebanoff S.J. Glucocorticoids inhibit apoptosis of human neutrophils // Blood. 1995. Vol. 86, No. 8. P. 3181–3188. |
| [35] |
Burton JL, Kehrli ME, Kapil S, et al. Regulation of l-selectin and CD18 on bovine neutrophils by glucocorticoids: effects of cortisol and dexamethasone. J Leukoc Biol. 1995;57(2):317–325. DOI: 10.1002/jlb.57.2.317 |
| [36] |
Burton J.L., Kehrli M.E., Kapil S., et al. Regulation of l-selectin and CD18 on bovine neutrophils by glucocorticoids: effects of cortisol and dexamethasone // J Leukoc Biol. 1995. Vol. 57, No. 2. P. 317–325. DOI: 10.1002/jlb.57.2.317 |
| [37] |
Ehrchen JM, Roth J, Barczyk-Kahlert K. More Than Suppression: Glucocorticoid Action on Monocytes and Macrophages. Front Immunol. 2019;10:2028. DOI: 10.3389/fimmu.2019.02028 |
| [38] |
Ehrchen J.M., RothJ., Barczyk-Kahlert K. More Than Suppression: Glucocorticoid Action on Monocytes and Macrophages // Front Immunol. 2019. Vol. 10. P. 2028. DOI: 10.3389/fimmu.2019.02028 |
| [39] |
Gómez-Rial J, Rivero-Calle I, Salas A. Role of Monocytes/Macrophages in COVID-19 Pathogenesis: Implications for Therapy. Infect Drug Resist. 2020;13:2485–2493. DOI: 10.2147/IDR.S258639 |
| [40] |
Gómez-Rial J., Rivero-Calle I., Salas A. Role of Monocytes/Macrophages in COVID-19 Pathogenesis: Implications for Therapy // Infect Drug Resist. 2020. No. 13. P. 2485–2493. DOI: 10.2147/IDR.S258639 |
| [41] |
Qin C, Zhou L, Hu Z, et al. Dysregulation of Immune Response in Patients With Coronavirus 2019 (COVID-19) in Wuhan, China. Clin Infect Dis. 2020;71(15):762–768. DOI: 10.1093/cid/ciaa248 |
| [42] |
Qin C., Zhou L., Hu Z., et al. Dysregulation of Immune Response in Patients With Coronavirus 2019 (COVID-19) in Wuhan, China // Clin Infect Dis. 2020. Vol. 71. No. 15. P. 762–768. DOI: 10.1093/cid/ciaa248 |
| [43] |
Solinas C, Perra L, Aiello M, et al. A critical evaluation of glucocorticoids in the management of severe COVID-19. Cytokine Growth Factor Rev. 2020;54:8–23. DOI: 10.1016/j.cytogfr.2020.06.012 |
| [44] |
Solinas C., Perra L., Aiello M., et al. A critical evaluation of glucocorticoids in the management of severe COVID-19 // Cytokine Growth Factor Rev. 2020. No. 54. P. 8–23. DOI: 10.1016/j.cytogfr.2020.06.012 |
| [45] |
Liu B, Dhanda A, Hirani S, et al. CD14++CD16+ Monocytes Are Enriched by Glucocorticoid Treatment and Are Functionally Attenuated in Driving Effector T Cell Responses. J Immunol. 2015;194(11):5150–5160. DOI: 10.4049/jimmunol.1402409 |
| [46] |
Liu B., Dhanda A., Hirani S., et al. CD14++CD16+ Monocytes Are Enriched by Glucocorticoid Treatment and Are Functionally Attenuated in Driving Effector T Cell Responses // J Immunol. 2015. Vol. 194, No. 11. P. 5150–5160. DOI: 10.4049/jimmunol.1402409 |
| [47] |
Solomay TV, Semenenko TA, Filatov NN, et al. Reactivation of Epstein – Barr virus (Herpesviridae: Lymphocryptovirus, HHV-4) infection during COVID-19: epidemiological features. Problems of Virology. 2021;66(2):152–161 (In Russ.). DOI:10.36233/0507-4088-40 |
| [48] |
Соломай Т.В., Семененко Т.А., Филатов Н.Н., и др. Реактивация инфекции, вызванной вирусом Эпштейна–Барр (Herpesviridae: Lymphocryptovirus, HHV-4) на фоне COVID-19: эпидемиологические особенности // Вопросы вирусологии. 2021. Т. 66, № 2. С. 152–161. DOI:10.36233/0507-4088-40 |
| [49] |
Blinov DV, Akarachkova ES, Orlova AS, et al. New framework for the development of clinical guidelines in Russia. Farmakoekonomika. Modern Pharmacoeconomics and Pharmacoepidemiology. 2019;12(2):125–144. (In Russ.). DOI: 10.17749/2070-4909.2019.12.2.125-144 |
| [50] |
Блинов Д.В., Акарачкова Е.С., Орлова А.С., и др. Новая концепция разработки клинических рекомендаций в России // Фармакоэкономика. Современная фармакоэкономика и фармакоэпидемиология. 2019. Т. 12, № 2. С. 125–144. DOI: 10.17749/2070-4909.2019.12.2.125-144 |
Shperling M.I., Kovalev A.V., Sukachev V.S., Vlasov A.A., Polyakov A.S., Noskov Y.A., Morozov A.D., Merzlyakov V.S., Zvyagintsev D.P., Kozlov K.V., Zhdanov K.V.
/
| 〈 |
|
〉 |