Physiological features of development and options for technology for obtaining pluripotent stem cells
Alexander V. Moskalev , Boris Yu. Gumilevskiy , Vasiliy Ya. Apchel , Vasiliy N. Tsygan
Bulletin of the Russian Military Medical Academy ›› 2022, Vol. 24 ›› Issue (3) : 581 -592.
Physiological features of development and options for technology for obtaining pluripotent stem cells
Topical issues related to the technology of isolation and mechanisms of development of pluripotent stem cells and their application in medicine are considered. The isolation, as well as the subsequent use of stem cells, still remains an unsolved problem both from a scientific point of view and especially in practical health care. There are three ways to produce pluripotent stem cells. First, they can be obtained in vitro from cell culture of the inner layer of early eggs. These are embryonic stem cells. Second, they can be obtained from somatic cells, as a result of the introduction of a group of genes that induce pluripotency. These are induced pluripotent stem cells. Finally, they can be obtained by transplanting the nucleus of somatic cells into an enucleated secondary egg. The microenvironment of the egg contributes to the reprogramming of the nucleus to a state close to the zygote. Mouse embryonic stem cells have many embryonic markers on their surface: carbohydrate receptors — CD15, alkaline phosphatase, factor 4 like Kruppel, estrogen-bound receptor, transcription factor CP2 like 1, T-box transcription factor and gastrulation homeobox brain 2. Embryonic mouse stem cells differentiate from the internal mass of cells at the stage of preimplantation, epiblast. This is established by comparing gene expression profiles and directly isolating embryonic stem cells from epiblasts of 4.5-day-old fertilized eggs. Embryonic stem cells derived from mouse embryos of later stages of development lose markers of pluripotency. Approximately 3 days after the elimination of the leukemia inhibition factor, the expression of the Oct4 gene leads to the loss of specificity markers by cells of the early embryo. Currently, the reprogramming of pluripotency is an active area of research in which significant technological progress has been made. So, the original gene cocktail consisting of four genes is used: Oct4, Sox2, Klf4 and cMyc. The obtained types of embryonic stem cells of mouse and human, from fertilized blastocysts, induced pluripotent stem cells undoubtedly exist. However, this does not apply to pluripotent stem cells derived from postnatal animals, humans, or from extraembryonic sources such as amniotic fluid or cord blood. Despite the fact that many laboratories are working to obtain stem cells from these objects, unfortunately, there is little reproducibility in this work, and the properties of the resulting cells and even their existence are still the subject of controversy.
genes / cellular differentiation / modifications / mutations / nucleic acids / stem cell / plasmids / promoter / transcription factors / phenotype / chromosome / translocation
| [1] |
Moskalev AV, Sboichakov VB, Rudoi AS. Obshchaya immunologiya s osnovami klinicheskoi immunologii. Moscow: GEOTAR-Media, 2015. 351 p. (In Russ.). |
| [2] |
Москалев А.В., Сбойчаков В.Б., Рудой А.С. Общая иммунология с основами клинической иммунологии. Москва: Гэотар-Медиа, 2015. 351 с. |
| [3] |
Moskalev AV, Gumilevskii BYu, Sboichakov VB. Meditsinskaya immunologiya s voprosami immunnoi nedostatochnosti i osnovami klinicheskoi immunologii. Saint Petersburg: VMA, 2019. 327 p. (In Russ.). |
| [4] |
Москалев А.В., Гумилевский Б.Ю., Сбойчаков В.Б. Медицинская иммунология с вопросами иммунной недостаточности и основами клинической иммунологии. Санкт-Петербург: ВМА, 2019. 327 с. |
| [5] |
Yarilin AA. Immunologiya. Moscow: GEOTAR-Media, 2010. 957 p. (In Russ.). |
| [6] |
Ярилин А.А. Иммунология. Москва: Гэотар-Медиа, 2010. 957 с. |
| [7] |
lson K, De Nardin E. Contemporary clinical immunology and serology. New Jersey: Upper Saddle River, 2013. 439 p. |
| [8] |
lson K., De Nardin E. Contemporary clinical immunology and serology. New Jersey: Upper Saddle River, 2013. 439 p. |
| [9] |
Duggal G, Warrier S, Ghimire S, et al. Alternative Routes to Induce Naïve Pluripotency in Human Embryonic Stem Cells. Stem Cells. 2015;33(9):2686–2698. DOI: 10.1002/stem.2071 |
| [10] |
Duggal G., Warrier S., Ghimire S., et al. Alternative Routes to Induce Naïve Pluripotency in Human Embryonic Stem Cells // Stem Cells. 2015. Vol. 33, No. 9. P. 2686–2698. DOI: 10.1002/stem.2071 |
| [11] |
González F, Huangfu D. Mechanisms underlying the formation of induced pluripotent stem cells. Wiley Interdiscip Rev Dev Biol. 2016;5(1):39–65. DOI: 10.1002/wdev.206 |
| [12] |
González F., Huangfu D. Mechanisms underlying the formation of induced pluripotent stem cells // Wiley Interdiscip Rev Dev Biol. 2016. Vol. 5, No. 1. P. 39–65. DOI: 10.1002/wdev.206 |
| [13] |
Nichols J, Smith A. The origin and identity of embryonic stem cells. Development. 2011;138(1):3–8. DOI: 10.1242/dev.050831 |
| [14] |
Nichols J., Smith A. The origin and identity of embryonic stem cells // Development. 2011. Vol. 138, No. 1. P. 3–8. DOI: 10.1242/dev.050831 |
| [15] |
De Los Angeles A, Ferrari F, Xi R, et al. Hallmarks of pluripotency. Nature. 2015;525(7570):469–478. DOI: 10.1038/nature15515 |
| [16] |
De Los Angeles A., Ferrari F., Xi R., et al. Hallmarks of pluripotency // Nature. 2015. Vol. 525, No. 7570. P. 469–478. DOI: 10.1038/nature15515 |
| [17] |
Dunn SJ, Martello G, Yordanov B, et al. Defining an essential transcription factor program for naïve pluripotency. Science. 2014;344(6188):1156–1160. DOI: 10.1126/science.1248882 |
| [18] |
Dunn S.J., Martello G., Yordanov B., et al. Defining an essential transcription factor program for naïve pluripotency // Science. 2014. Vol. 344, No. 6188. P. 1156–1160. DOI: 10.1126/science.1248882 |
| [19] |
Augui S, Nora EP, Heard E. Regulation of X-chromosome inactivation by the X-inactivation centre. Nat Rev Genet. 2011;12(6):429–442. DOI:10.1038/nrg2987 |
| [20] |
Augui S., Nora E.P., Heard E. Regulation of X-chromosome inactivation by the X-inactivation centre // Nat Rev Genet. 2011. Vol. 12, No. 6. P. 429–442. DOI:10.1038/nrg2987 |
| [21] |
Rossant J, Tam PPL. New Insights into Early Human Development: Lessons for Stem Cell Derivation and Differentiation. Cell Stem Cell. 2017;20(1):18–28. DOI: 10.1016/j.stem.2016.12.004 |
| [22] |
Rossant J., Tam P.P.L. New Insights into Early Human Development: Lessons for Stem Cell Derivation and Differentiation // Cell Stem Cell. 2017. Vol. 20, No. 1. P. 18–28. DOI: 10.1016/j.stem.2016.12.004 |
| [23] |
Abad M, Mosteiro L, Pantoja C, et al. Reprogramming in vivo produces teratomas and iPS cells with totipotency features. Nature. 2013;502:340–345. DOI: 10.1038/nature12586 |
| [24] |
Abad M., Mosteiro L., Pantoja C., et al. Reprogramming in vivo produces teratomas and iPS cells with totipotency features // Nature. 2013. Vol. 502. P. 340–345. DOI: 10.1038/nature12586 |
| [25] |
Bulic-Jakus F, Katusic Bojanac A, Juric-Lekic G, et al. Teratoma: from spontaneous tumors to the pluripotency/malignancy assay. Wiley Interdiscip Rev Dev Biol. 2016;5(2):186–209. DOI: 10.1002/wdev.219 |
| [26] |
Bulic-Jakus F., Katusic Bojanac A., Juric-Lekic G., et al. Teratoma: from spontaneous tumors to the pluripotency/malignancy assay // Wiley Interdiscip Rev Dev Biol. 2016. Vol. 5, No. 2. P. 186–209. DOI: 10.1002/wdev.219 |
| [27] |
Silva M, Daheron L, Hurley H, et al. Generating iPSCs: translating cell reprogramming science into scalable and robust biomanufacturing strategies. Cell Stem Cell. 2015;16(1):13–17. DOI: 10.1016/j.stem.2014.12.013 |
| [28] |
Silva M., Daheron L., Hurley H., et al. Generating iPSCs: translating cell reprogramming science into scalable and robust biomanufacturing strategies // Cell Stem Cell. 2015. Vol. 16, No. 1. P. 13–17. DOI: 10.1016/j.stem.2014.12.013 |
| [29] |
Sohni A, Verfaillie CM. Multipotent adult progenitor cells. Best Pract Res Clin Haematol. 2011;24(1):3–11. DOI: 10.1016/j.beha.2011.01.006 |
| [30] |
Sohni A., Verfaillie C.M. Multipotent adult progenitor cells // Best Pract Res Clin Haematol. 2011. Vol. 24, No. 1. P. 3–11. DOI: 10.1016/j.beha.2011.01.006 |
| [31] |
Stadtfeld M, Hochedlinger K. Induced pluripotency: history, mechanisms, and applications. Genes Dev. 2010;24(20):2239–2263. DOI: 10.1101/gad.1963910 |
| [32] |
Stadtfeld M., Hochedlinger K. Induced pluripotency: history, mechanisms, and applications // Genes Dev. 2010. Vol. 24, No. 20. P. 2239–2263. DOI: 10.1101/gad.1963910 |
| [33] |
Tamm C, Pijuan Galitó S, Annerén C. A comparative study of protocols for mouse embryonic stem cell culturing. PLoS One. 2013;8(12):e81156. DOI: 10.1371/journal.pone.0081156 |
| [34] |
Tamm C., Pijuan Galitó S., Annerén C. A comparative study of protocols for mouse embryonic stem cell culturing // PLoS One. 2013. Vol. 8, No. 12. ID e81156. DOI: 10.1371/journal.pone.0081156 |
| [35] |
Ma H, Morey R, O’Neil RC, et al. Abnormalities in human pluripotent cells due to reprogramming mechanisms. Nature. 2014;511(7508):177–183. DOI: 10.1038/nature13551 |
| [36] |
Ma H., Morey R., O’Neil R.C., et al. Abnormalities in human pluripotent cells due to reprogramming mechanisms // Nature. 2014. Vol. 511, No. 7508. P. 177–183. DOI: 10.1038/nature13551 |
| [37] |
Tachibana M, Amato P, Sparman M, et al. Human embryonic stem cells derived by somatic cell nuclear transfer. Cell. 2013;153(6): 1228–1238. DOI: 10.1016/j.cell.2013.05.006 |
| [38] |
Tachibana M., Amato P., Sparman M., et al. Human embryonic stem cells derived by somatic cell nuclear transfer // Cell. 2013. Vol. 153, No. 6. P. 1228–1238. DOI: 10.1016/j.cell.2013.05.006 |
| [39] |
McDonald JI, Celik H, Rois LE, et al. Reprogrammable CRISPR/Cas9-based system for inducing site-specific DNA methylation. Biol Open. 2016;5(6):866–874. DOI: 10.1242/bio.019067 |
| [40] |
McDonald J.I., Celik H., Rois L.E., et al. Reprogrammable CRISPR/Cas9-based system for inducing site-specific DNA methylation // Biol Open. 2016. Vol. 5, No. 6. P. 866–874. DOI: 10.1242/bio.019067 |
| [41] |
Abbas AK, Lichtman AN, Pillai S. Cellular and Molecular Immunology. 9-th edition. Philadelphia, Pennsylvania: W.B. Saunders Company, 2018. 565 p. |
| [42] |
Abbas A.K., Lichtman A.N., Pillai S. Cellular and Molecular Immunology. 9-th edition. Philadelphia, Pennsylvania: W.B. Saunders Company, 2018. 565 p. |
| [43] |
Sternberg SH, Redding S, Jinek M, et al. DNA interrogation by the CRISPR RNA-guided endonuclease Cas9. Nature. 2014;507(7490): 62–67. DOI: 10.1038/nature13011 |
| [44] |
Sternberg S.H., Redding S., Jinek M., et al. DNA interrogation by the CRISPR RNA-guided endonuclease Cas9 // Nature. 2014. Vol. 507, No. 7490. P. 62–67. DOI: 10.1038/nature13011 |
| [45] |
Thakore PI, D'Ippolito AM, Song L, et al. Highly specific epigenome editing by CRISPR-Cas9 repressors for silencing of distal regulatory elements. Nat Methods. 2015;12(12):1143–1149. DOI: 10.1038/nmeth.3630 |
| [46] |
Thakore P.I., D'Ippolito A.M., Song L., et al. Highly specific epigenome editing by CRISPR-Cas9 repressors for silencing of distal regulatory elements // Nat Methods. 2015. Vol. 12, No. 12. P. 1143–1149. DOI: 10.1038/nmeth.3630 |
| [47] |
Gjorevski N, Ranga A, Lutolf MP. Bioengineering approaches to guide stem cell-based organogenesis. Development. 2014;141(9):1794–1804. DOI: 10.1242/dev.101048 |
| [48] |
Gjorevski N., Ranga A., Lutolf M.P. Bioengineering approaches to guide stem cell-based organogenesis // Development. 2014. Vol. 141, No. 9. P. 1794–1804. DOI: 10.1242/dev.101048 |
| [49] |
Kang H-W, Lee SJ, Ko IK, et al. A 3D bioprinting system to produce human-scale tissue constructs with structural integrity. Nat Biotechnol. 2016;34(3):312–319. DOI: 10.1038/nbt.3413 |
| [50] |
Kang H.-W., Lee S.J., Ko I.K., et al. A 3D bioprinting system to produce human-scale tissue constructs with structural integrity // Nat Biotechnol. 2016. Vol. 34, No. 3. P. 312–319. DOI: 10.1038/nbt.3413 |
| [51] |
Yamaguchi T, Sato H, Kato-Itoh M, et al. Interspecies organogenesis generates autologous functional islets. Nature. 2017;542(7640):191–196. DOI: 10.1038/nature21070 |
| [52] |
Yamaguchi T., Sato H., Kato-Itoh M., et al. Interspecies organogenesis generates autologous functional islets // Nature. 2017. Vol. 542, No. 7640. P. 191–196. DOI: 10.1038/nature21070 |
| [53] |
Richardson BE, Lehmann R. Mechanisms guiding primordial germ cell migration: strategies from different organisms. Nat Rev Mol Cell Biol. 2010;11(1):37–49. DOI: 10.1038/nrm2815 |
| [54] |
Richardson B.E., Lehmann R. Mechanisms guiding primordial germ cell migration: strategies from different organisms // Nat Rev Mol Cell Biol. 2010. Vol. 11, No. 1. P. 37–49. DOI: 10.1038/nrm2815 |
| [55] |
Hilton IB, D'Ippolito AM, Vockley CM, et al. Epigenome editing by a CRISPR-Cas9-based acetyltransferase activates genes from promoters and enhancers. Nat Biotechnol. 2015;33(5):510–517. DOI: 10.1038/nbt.3199 |
| [56] |
Hilton I.B., D'Ippolito A.M., Vockley C.M., et al. Epigenome editing by a CRISPR-Cas9-based acetyltransferase activates genes from promoters and enhancers // Nat Biotechnol. 2015. Vol. 33, No. 5. P. 510–517. DOI: 10.1038/nbt.3199 |
| [57] |
Geraghty RJ, Capes-Davis A, Davis JM, et al. Cancer Research UK. Guidelines for the use of cell lines in biomedical research. Br J Cancer. 2014;111(6):1021–1046. DOI: 10.1038/bjc.2014.166 |
| [58] |
Geraghty R.J., Capes-Davis A., Davis J.M., et al. Cancer Research UK. Guidelines for the use of cell lines in biomedical research // Br J Cancer. 2014. Vol. 111, No. 6. P. 1021–1046. DOI: 10.1038/bjc.2014.166 |
| [59] |
Liu N, Zang R, Yang ST, Li Y. Stem cell engineering in bioreactors for large-scale bioprocessing. Eng Life Sci. 2014;14:4–15. DOI: 10.1002/elsc.201300013 |
| [60] |
Liu N., Zang R., Yang S.T., Li Y. Stem cell engineering in bioreactors for large-scale bioprocessing // Eng Life Sci. 2014. Vol. 14. P. 4–15. DOI: 10.1002/elsc.201300013 |
| [61] |
Sasaki K, Nakamura T, Okamoto I, et al. The Germ Cell Fate of Cynomolgus Monkeys Is Specified in the Nascent Amnion. Dev Cell. 2016;39(2):169–185. DOI: 10.1016/j.devcel.2016.09.007 |
| [62] |
Sasaki K., Nakamura T., Okamoto I., et al. The Germ Cell Fate of Cynomolgus Monkeys Is Specified in the Nascent Amnion // Dev Cell. 2016. Vol. 39, No. 2. P. 169–185. DOI: 10.1016/j.devcel.2016.09.007 |
| [63] |
Slack JMW. The science of stem cells. John Wiley and Sons Inc., 2018. 248 p. DOI: 10.1002/9781119235293 |
| [64] |
Slack J.M.W. The science of stem cells. John Wiley and Sons Inc., 2018. 248 p. DOI: 10.1002/9781119235293 |
| [65] |
Sasai Y. Next-generation regenerative medicine: organogenesis from stem cells in 3D culture. Cell Stem Cell. 2013;12(5):520–530. DOI: 10.1016/j.stem.2013.04.009 |
| [66] |
Sasai Y. Next-generation regenerative medicine: organogenesis from stem cells in 3D culture // Cell Stem Cell. 2013. Vol. 12, No. 5. P. 520–530. DOI: 10.1016/j.stem.2013.04.009 |
| [67] |
Wu Y, Chen L, Scott PG, Tredget E.E. Mesenchymal stem cells enhance wound healing through differentiation and angiogenesis. Stem Cells. 2007;25(10):2648–2659. DOI: 10.1634/stemcells.2007-0226 |
| [68] |
Wu Y., Chen L., Scott P.G., Tredget E.E. Mesenchymal stem cells enhance wound healing through differentiation and angiogenesis // Stem Cells. 2007. Vol. 25, No. 10. P. 2648–2659. DOI: 10.1634/stemcells.2007-0226 |
| [69] |
Gilbert LA, Larson MH, Morsut L, et al. CRISPR-mediated modular RNA-guided regulation of transcription in eukaryotes. Cell. 2013;154(2):442–451. DOI: 10.1016/j.cell.2013.06.044 |
| [70] |
Gilbert L.A., Larson M.H., Morsut L., et al. CRISPR-mediated modular RNA-guided regulation of transcription in eukaryotes // Cell. 2013. Vol. 154, No. 2. P. 442–451. DOI: 10.1016/j.cell.2013.06.044 |
| [71] |
Zetsche B, Gootenberg JS, Abudayyeh OO, et al. Cpf1 is a single RNA-guided endonuclease of a class 2 CRISPR-Cas system. Cell. 2015;163(3):759–771. DOI: 10.1016/j.cell.2015.09.038 |
| [72] |
Zetsche B., Gootenberg J.S., Abudayyeh O.O., et al. Cpf1 is a single RNA-guided endonuclease of a class 2 CRISPR-Cas system // Cell. 2015. Vol. 163, No. 3. P. 759–771. DOI: 10.1016/j.cell.2015.09.038 |
| [73] |
Zia S, Mozafari M, Natasha G, et al. Hearts beating through decellularized scaffolds: whole-organ engineering for cardiac regeneration and transplantation. Crit Rev Biotechnol. 2016;36(4): 705–715. DOI: 10.3109/07388551.2015.1007495 |
| [74] |
Zia S., Mozafari M., Natasha G., et al. Hearts beating through decellularized scaffolds: whole-organ engineering for cardiac regeneration and transplantation // Crit Rev Biotechnol. 2016. Vol. 36, No. 4. P. 705–715. DOI: 10.3109/07388551.2015.1007495 |
Moskalev A.V., Gumilevskiy B.Y., Apchel V.Y., Tsygan V.N.
/
| 〈 |
|
〉 |