Development of a method for the identification of rs6265 polymorphism in the human brain neurotrophic factor gene

Gennady G. Kutelev , Alexander B. Krivoruchko , Alexandra E. Trandina , Natalia E. Morozova , Dmitriy V. Cherkashin , Andrey M. Ivanov , Dmitrii V. Ovchinnikov , Ruslan I. Glushakov

Bulletin of the Russian Military Medical Academy ›› 2021, Vol. 23 ›› Issue (4) : 63 -70.

PDF
Bulletin of the Russian Military Medical Academy ›› 2021, Vol. 23 ›› Issue (4) : 63 -70. DOI: 10.17816/brmma80926
Clinical Trials
research-article

Development of a method for the identification of rs6265 polymorphism in the human brain neurotrophic factor gene

Author information +
History +
PDF

Abstract

The analysis and generalization of data from the literature sources characterizing the structural organization, regulation of expression, and functional activity of the neurotrophic factor of the human brain, which is one of the most common regulators of biological processes in the nervous system, is carried out. The results of numerous studies demonstrating the association of the brain-derived neurotrophic factor (BDNF) gene with the pathophysiology of the affective disorders are noted, and its contribution to the development of neuroplasticity is confirmed. The results of the design of a pair of primers and adaptation of the amplification reaction of the BDNF region with a length of 433 nucleotide pairs containing the polymorphic locus RS6265 are presented. Restriction endonuclease was selected. The sequence of primers, their localization, and correlation with the restriction site provided the separation of alternative alleles necessary for the successful identification of this marker. The use of the proposed technique made it possible to uniquely identify the genotype in 38 examined whole blood samples and identify the rare allelic variants. Also, the frequency of polymorphic variants of RS6265 of the BDNF gene was established in all the samples. There was an increase in the proportion of genotypes G/A and A/A of the RS6265 polymorphism of the BDNF gene in the group of examined systematically exposed to extreme factors. Identification of people with a rare A/A genotype of the RS6265 polymorphic locus of the BDNF gene is of a great importance for the monitoring system of long-term potentiation processes leading to the development of neuropsychic pathology. The possibility of implementing this method of genotyping in a typical laboratory using a polymerase chain reaction is proved. The proposed version of the polymerase chain reaction with the subsequent analysis of the polymorphism of the lengths of restriction fragments could be used as a fast, inexpensive, and reliable system for identifying single-nucleotide genetic polymorphisms.

Keywords

molecular genetic markers / polymerase chain reaction / brain neurotrophic factor / point genotyping / single nucleotide polymorphism / neurogenesis / stress / neuroplasticity / RS6265 polymorphism identification technique

Cite this article

Download citation ▾
Gennady G. Kutelev, Alexander B. Krivoruchko, Alexandra E. Trandina, Natalia E. Morozova, Dmitriy V. Cherkashin, Andrey M. Ivanov, Dmitrii V. Ovchinnikov, Ruslan I. Glushakov. Development of a method for the identification of rs6265 polymorphism in the human brain neurotrophic factor gene. Bulletin of the Russian Military Medical Academy, 2021, 23(4): 63-70 DOI:10.17816/brmma80926

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Lledo P, Alonso M, Grubb M. Adult neurogenesis and functional plasticity in neuronal circuits. Nat Rev Neurosci. 2006;7(3):179–193. DOI: 10.1038/nrn1867

[2]

Lledo P., Alonso M., Grubb M. Adult neurogenesis and functional plasticity in neuronal circuits // Nat Rev Neurosci. 2006. Vol. 7, No. 3. P. 179–193. DOI: 10.1038/nrn1867

[3]

Shors T, Miesegaes G, Beylin A, et al. Neurogenesis in the adult is involved in the formation of trace memories. Nature. 2001;410(6826):372–376. DOI: 10.1038/35066584

[4]

Shors T., Miesegaes G., Beylin A., et al. Neurogenesis in the adult is involved in the formation of trace memories // Nature. 2001. Vol. 410, No. 6826. P. 372–376. DOI: 10.1038/35066584

[5]

Deng W, Saxe M, Gallina I, Gage F. Adult-born hippocampal dentate granule cells undergoing maturation modulate learning and memory in the brain. J Neurosci. 2009;29(43):13 532–13 542. DOI: 10.1523/JNEUROSCI.3362-09.2009

[6]

Deng W., Saxe M., Gallina I., Gage F. Adult-born hippocampal dentate granule cells undergoing maturation modulate learning and memory in the brain // J Neurosci. 2009. Vol. 29, No. 43. P. 13532–13542. DOI: 10.1523/JNEUROSCI.3362-09.2009

[7]

Snyder J, Hong N, McDonald R, Wojtowicz J. A role for adult neurogenesis in spatial long-term memory. Neuroscience. 2005;130(4):843–852. DOI: 10.1016/j.neuroscience.2004.10.009

[8]

Snyder J., Hong N., McDonald R., Wojtowicz J. A role for adult neurogenesis in spatial long-term memory // Neuroscience. 2005. Vol. 130, No. 4. P. 843–852. DOI: 10.1016/j.neuroscience.2004.10.009

[9]

Yamada K, Nabeshima T. Brain-derived neurotrophic factor/TrkB signaling in memory processes. J Pharmacol Sci. 2003;91(4):267–270. DOI: 10.1254/jphs.91.267

[10]

Yamada K., Nabeshima T. Brain-derived neurotrophic factor/TrkB signaling in memory processes // J Pharmacol Sci. 2003. Vol. 91, No. 4. P. 267–270. DOI: 10.1254/jphs.91.267

[11]

Mizui T, Ishikawa Y, Kumanogoh H, et al. BDNF pro-peptide actions facilitate hippocampal LTD and are altered by the common BDNF polymorphism Val66Met. Proc Natl Acad Sci USA. 2015;112(23):3067–3074. DOI: 10.1073/pnas.1422336112

[12]

Mizui T., Ishikawa Y., Kumanogoh H., et al. BDNF pro-peptide actions facilitate hippocampal LTD and are altered by the common BDNF polymorphism Val66Met // Proc Natl Acad Sci USA. 2015. Vol. 112, No. 23. P. 3067–3074. DOI: 10.1073/pnas.1422336112

[13]

Harrisberger F, Smieskova R, Schmidt A, et al. BDNF Val66Met polymorphism and hippocampal volume in neuropsychiatric disorders: A systematic review and meta-analysis. Neurosci Biobehav Rev. 2015;55:107–118. DOI: 10.1016/j.neubiorev.2015.04.017

[14]

Harrisberger F., Smieskova R., Schmidt A., et al. BDNF Val66Met polymorphism and hippocampal volume in neuropsychiatric disorders: A systematic review and meta-analysis // Neurosci Biobehav Rev. 2015. Vol. 55. P. 107–118. DOI: 10.1016/j.neubiorev.2015.04.017

[15]

Thompson R, Weickert C, Wyatt E, Webster M. Decreased BDNF, trkB-TK+ and GAD67 mRNA expression in the hippocampus of individuals with schizophrenia and mood disorders. J Psychiatry Neurosci. 2011;36(3):195–203. DOI: 10.1503/jpn.100048

[16]

Thompson R., Weickert C., Wyatt E., Webster M. Decreased BDNF, trkB-TK+ and GAD67 mRNA expression in the hippocampus of individuals with schizophrenia and mood disorders // J Psychiatry Neurosci. 2011. Vol. 36, No. 3. P. 195–203. DOI: 10.1503/jpn.100048

[17]

Gonul A, Akdeniz F, Taneli F, et al. Effect of treatment on serum brain-derived neurotrophic factor levels in depressed patients. Eur Arch Psychiatry Clin Neurosci. 2005;255(6):381–386. DOI: 10.1007/s00406-005-0578-6

[18]

Gonul A., Akdeniz F., Taneli F., et al. Effect of treatment on serum brain-derived neurotrophic factor levels in depressed patients // Eur Arch Psychiatry Clin. Neurosci. 2005. Vol. 255, No. 6. P. 381–386. DOI: 10.1007/s00406-005-0578-6

[19]

Boulle F, van den Hove D, Jakob S, et al. Epigenetic regulation of the BDNF gene: implications for psychiatric disorders. Mol Psychiatry. 2012;17(6):584–596. DOI: 10.1038/mp.2011.107

[20]

Boulle F., van den Hove D., Jakob S., et al. Epigenetic regulation of the BDNF gene: implications for psychiatric disorders // Mol Psychiatry. 2012. Vol. 17, No. 6. P. 584–596. DOI: 10.1038/mp.2011.107

[21]

Wang M, Xie Y, Qin D. Proteolytic cleavage of proBDNF to mBDNF in neuropsychiatric and neurodegenerative diseases. Brain Res Bull. 2021;166:172–184. DOI: 10.1016/j.brainresbull.2020.11.005

[22]

Wang M., Xie Y., Qin D. Proteolytic cleavage of proBDNF to mBDNF in neuropsychiatric and neurodegenerative diseases // Brain Res Bull. 2021. Vol. 166. P. 172–184. DOI: 10.1016/j.brainresbull.2020.11.005

[23]

Li JY, Liu J, Manaph NPA, et al. ProBDNF inhibits proliferation, migration and differentiation of mouse neural stem cells. Brain Res. 2017;1668:46–55. DOI: 10.1016/j.brainres.2017.05.013

[24]

Li J.Y., Liu J., Manaph N.P.A., et al. ProBDNF inhibits proliferation, migration and differentiation of mouse neural stem cells // Brain Res. 2017. Vol. 1668. P. 46–55. DOI: 10.1016/j.brainres.2017.05.013

[25]

.Karpova N. Role of BDNF epigenetics in activity-dependent neuronal plasticity. Neuropharmacology. 2014;76:709–718. DOI: 10.1016/j.neuropharm.2013.04.002

[26]

Karpova N. Role of BDNF epigenetics in activity-dependent neuronal plasticity // Neuropharmacology. 2014. Vol. 76. P. 709–718. DOI: 10.1016/j.neuropharm.2013.04.002

[27]

Ernfors P, Kucera J, Lee KF, et al. Studies on the physiological role of brain-derived neurotrophic factor and neurotrophin-3 in knockout mice. Int J Dev Biol. 1995;39(5):799–807.

[28]

Ernfors P., Kucera J., Lee K.F., et al. Studies on the physiological role of brain-derived neurotrophic factor and neurotrophin-3 in knockout mice // Int J Dev Biol. 1995. Vol. 39, No. 5. P. 799–807.

[29]

Ernfors P, Kucera J, Lee K, et al. Studies on the physiological role of brain-derived neurotrophic factor and neurotrophin-3 in knockout mice. Int J Dev Biol. 1995;39(5):799–807.

[30]

Ernfors P., Kucera J., Lee K., et al. Studies on the physiological role of brain-derived neurotrophic factor and neurotrophin-3 in knockout mice // Int J Dev Biol. 1995. Vol. 39, No. 5. P. 799–807.

[31]

Sanwald S, Montag C, Kiefer M. Depressive emotionality moderates the influence of the BDNF Val66Met polymorphism on executive functions and on unconscious semantic priming. J Mol Neurosci. 2020;70(5):699–712. DOI: 10.1007/s12031-020-01479-x

[32]

Sanwald S., Montag C., Kiefer M. Depressive emotionality moderates the influence of the BDNF Val66Met polymorphism on executive functions and on unconscious semantic priming // J Mol Neurosci. 2020. Vol. 70, No. 5. P. 699–712. DOI: 10.1007/s12031-020-01479-x

[33]

Zhao Y, Zhu R, Xiao T, Liu X. Genetic variants in migraine: a field synopsis and systematic re-analysis of meta-analyses. J Headache Pain. 2020;21(1):13. DOI: 10.1186/s10194-020-01087-5

[34]

Zhao Y., Zhu R., Xiao T., Liu X. Genetic variants in migraine: a field synopsis and systematic re-analysis of meta-analyses // J Headache Pain. 2020. Vol. 21, No. 1. P. 13. DOI: 10.1186/s10194-020-01087-5

[35]

Middeldorp CM, Slof-Op’t Landt MC, Medland SE, et al. Anxiety and depression in children and adults: influence of serotonergic and neurotrophic genes? Genes Brain Behav. 2010;9(7):808–816. DOI: 10.1111/j.1601-183X.2010.00619

[36]

Middeldorp C.M., Slof-Op’t Landt M.C., Medland S.E., et al. Anxiety and depression in children and adults: influence of serotonergic and neurotrophic genes? // Genes Brain Behav. 2010. Vol. 9, No. 7. P. 808–816. DOI: 10.1111/j.1601-183X.2010.00619

[37]

Petryshen T, Sabeti P, Aldinger K, et al. Population genetic study of the brain-derived neurotrophic factor (BDNF) gene. Mol Psychiatry. 2010;15(8):810–815. DOI: 10.1038/mp.2009.24

[38]

Petryshen T., Sabeti P., Aldinger K., et al. Population genetic study of the brain-derived neurotrophic factor (BDNF) gene // Mol Psychiatry. 2010. Vol. 15, No. 8. P. 810–815. DOI: 10.1038/mp.2009.24

[39]

Linnér R, Biroli P, Kong E, et al. Genome-wide association analyses of risk tolerance and risky behaviors in over 1 million individuals identify hundreds of loci and shared genetic influences. Nature Genetics. 2019;51(2):245–257. DOI: 10.1038/s41588-018-0309-3

[40]

Linnér R., Biroli P., Kong E., et al. Genome-wide association analyses of risk tolerance and risky behaviors in over 1 million individuals identify hundreds of loci and shared genetic influences // Nature Genetics. 2019. Vol. 51, No. 2. P. 245–257. DOI: 10.1038/s41588-018-0309-3

[41]

Egan M, Kojima M, Callicott J, et al. The BDNF val66met polymorphism affects activity-dependent secretion of BDNF and human memory and hippocampal function. Cell. 2003;112(2): 257–269. DOI: 10.1016/s0092-8674(03)00035-7

[42]

Egan M., Kojima M., Callicott J., et al. The BDNF val66met polymorphism affects activity-dependent secretion of BDNF and human memory and hippocampal function // Cell. 2003. Vol. 112, No. 2. P. 257–269. DOI: 10.1016/s0092-8674(03)00035-7

[43]

Kennedy K, Reese E, Horn M, et al. BDNF val66met polymorphism affects aging of multiple types of memory. Brain Res. 2015;1612:104–117. DOI: 10.1016/j.brainres.2014.09.044

[44]

Kennedy K., Reese E., Horn M., et al. BDNF val66met polymorphism affects aging of multiple types of memory // Brain Res. 2015. Vol. 1612. P. 104–117. DOI: 10.1016/j.brainres.2014.09.044

[45]

Notaras M, van den Buuse M. Neurobiology of BDNF in fear memory, sensitivity to stress, and stress-related disorders. Mol Psychiatry. 2020;25(10):2251–2274. DOI: 10.1038/s41380-019-0639-2

[46]

Notaras M., van den Buuse M. Neurobiology of BDNF in fear memory, sensitivity to stress, and stress-related disorders // Mol Psychiatry. 2020. Vol. 25, No. 10. P. 2251–2274. DOI: 10.1038/s41380-019-0639-2

[47]

Carver C, Johnson S, Joormann J, et al. Childhood adversity interacts separately with 5-HTTLPR and BDNF to predict lifetime depression diagnosis. J Affect Disord. 2011;132(1–2):89–93. DOI: 10.1016/j.jad.2011.02.001

[48]

Carver C., Johnson S., Joormann J., et al. Childhood adversity interacts separately with 5-HTTLPR and BDNF to predict lifetime depression diagnosis // J Affect Disord. 2011. Vol. 132, No. 1–2. P. 89–93. DOI: 10.1016/j.jad.2011.02.001

[49]

Chen J, Li X, McGue M. Interacting effect of BDNF Val66Met polymorphism and stressful life events on adolescent depression. Genes Brain Behav. 2012;11(8):958–965. DOI: 10.1111/j.1601-183X.2012.00843.x

[50]

Chen J., Li X., McGue M. Interacting effect of BDNF Val66Met polymorphism and stressful life events on adolescent depression // Genes Brain Behav. 2012. Vol. 11, No. 8. P. 958–965. DOI: 10.1111/j.1601-183X.2012.00843.x

[51]

Gyekis J, Yu W, Dong S, et al. No association of genetic variants in BDNF with major depression: A meta- and gene-based analysis. Am J Med Genet. Part B: Neuropsychiatric Genet. 2013;162(1):61–70. DOI: 10.1002/ajmg.b.32122

[52]

Gyekis J., Yu W., Dong S., et al. No association of genetic variants in BDNF with major depression: A meta- and gene-based analysis // Am J Med Genet B Neuropsychiatric Genet. 2013. Vol. 162, No. 1. P. 61–70. DOI: 10.1002/ajmg.b.32122

[53]

Sheikh H, Hayden E, Kryski K, et al. Genotyping the BDNF rs6265 (val66met) polymorphism by one-step amplified refractory mutation system PCR. Psychiatric Genetics. 2010;20(3):109–112. DOI: 10.1097/YPG.0b013e32833a2038

[54]

Sheikh H., Hayden E., Kryski K., et al. Genotyping the BDNF rs6265 (val66met) polymorphism by one-step amplified refractory mutation system PCR // Psychiatric Genetics. 2010. Vol. 20, No. 3. P. 109–112. DOI: 10.1097/YPG.0b013e32833a2038

[55]

Iqbal M, Yaqoob T, Ali S, Khan A. A functional polymorphism (rs6265, G > A) of brain-derived neurotrophic factor gene and breast cancer: An association study. Breast Cancer: Basic Clin. Res. 2019;13. https://journals.sagepub.com/doi/full/10.1177/1178223419844977 (access date: 11.02.2021). DOI: 1178223419844977

[56]

Iqbal M., Yaqoob T., Ali S., Khan A. A functional polymorphism (rs6265, G > A) of brain-derived neurotrophic factor gene and breast cancer: An association study // Breast Cancer: Basic Clin Res. 2019. Vol. 13. P. 1178223419844977. DOI: 1178223419844977

RIGHTS & PERMISSIONS

Kutelev G.G., Krivoruchko A.B., Trandina A.E., Morozova N.E., Cherkashin D.V., Ivanov A.M., Ovchinnikov D.V., Glushakov R.I.

AI Summary AI Mindmap
PDF

94

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/