Immunological aspects of SARS-CoV-2 coronavirus damage
Timur I. Minnullin , Alexander V. Stepanov , Sergey V. Chepur , Evgeny V. Ivchenko , Ivan V. Fateev , Evgeniy V. Kryukov , Vasily N. Tsygan
Bulletin of the Russian Military Medical Academy ›› 2021, Vol. 23 ›› Issue (2) : 187 -198.
Immunological aspects of SARS-CoV-2 coronavirus damage
In 2020 the whole world was faced with an epidemiological outbreak caused by a new coronavirus SARS-CoV-2. The information available to date suggests that the newly isolated SARS-CoV-2 coronavirus should be assigned to superantigens, the main manifestations of which, as it is known, are suppression of nonspecific resistance factors and suppression of innate immunity mechanisms associated with the formation of a systemic inflammatory response in the form of cytokine storm and pathological activation of phagocytes in the lung tissue with its alteration and subsequent fibrosis. In this case, it is quite difficult and sometimes even impossible to observe the formation of fully-fledged specific immune answer on the effect of such antigens. This, along with the high infectious nature of the disease and the associated mortality, requires special attention to the underlying immunopatomechanism(s). Perhaps that is why little information has been obtained regarding the immunogenic properties of the newly isolated SARS-CoV-2 coronavirus so far, as well as, most importantly, about the structures of the virus itself responsible for the formation of specific immunity to it. The latter will serve as the basis for patient management and vaccine development. Nevertheless, a certain point of view on this issue is already beginning to form, as tools for detecting specific antibodies are being actively developed, as well as modern diagnostic tests for coronavirus, which include real-time polymerase chain reaction, real-time reverse transcription polymerase chain reaction and isothermal amplification mediated by reverse transcription. The presented analysis makes it possible to expand the understanding of the issue concerning the immunopathogenesis of COVID-19, the mechanisms of the onset and development of the disease in a living organism, the formation of an immune response to the new coronavirus, and also to determine the therapeutic tactics of managing patients with severe coronavirus infection. Elucidating the mechanisms of the emergence and development of a new coronavirus infection can help scientists, general practitioners, clinicians, and laboratory physicians respond correctly to the COVID-19 pandemic.
new coronavirus infection / immunological resistance / coronavirus / immunopatomechanisms / superantigen / real-time polymerase chain reaction / therapeutic tactics / immunogenic properties of coronaviruses
| [1] |
Makarov V, Riabova O, Ekins S, et al. The past, present and future of RNA respirarory viruses: influenza and coronaviruses. Pathog Dis. 2020;78(7):ftaa046. DOI: 10.1093/femspd/ftaa046 |
| [2] |
Makarov V., Riabova O., Ekins S., et al. The past, present and future of RNA respirarory viruses: influenza and coronaviruses // Pathog. Dis. 2020. Vol. 78. No. 7. P. ftaa046. DOI: 10.1093/femspd/ftaa046 |
| [3] |
Peck KM, Burch CL, Heise MT, et al. Coronavirus host range expansion and Middle East respiratory syndrome coronavirus emergence: biochemical mechanisms and evolutionary perspectives. Annu Rev Virol. 2015;2(1):95–117. DOI: 10.1146/annurev-virology-100114-055029 |
| [4] |
Peck K.M., Burch C.L., Heise M.T., et al. Coronavirus host range expansion and Middle East respiratory syndrome coronavirus emergence: biochemical mechanisms and evolutionary perspectives // Annu. Rev. Virol. 2015. Vol. 2. No. 1. P. 5–117. DOI: 10.1146/annurev-virology-100114-055029 |
| [5] |
Vijay R, Perlman S. Science Direct Middle East respiratory syndrome and severe acute respiratory syndrome. Curr Opin Virol. 2016;16:70–76. DOI: 10.1016/j.coviro.2016.01.011 |
| [6] |
Vijay R., Perlman S. Science Direct Middle East respiratory syndrome and severe acute respiratory syndrome // Curr. Opin. Virol. 2016. Vol. 16. P. 70–76. DOI: 10.1016/j.coviro.2016.01.011 |
| [7] |
Alsahafi AJ, Cheng AC. The epidemiology of Middle East respiratory syndrome coronavirus in the Kingdom of Saudi Arabia, 2012–2015. Int J Infect Dis. 2016;45:1–4. DOI: 10.1016/j.ijid.2016.02.004 |
| [8] |
Alsahafi A.J., Cheng A.C. The epidemiology of Middle East respiratory syndrome coronavirus in the Kingdom of Saudi Arabia, 2012–2015 // Int. J. Infect. Dis. 2016. Vol. 45. P. 1–4. DOI: 10.1016/j.ijid.2016.02.004 |
| [9] |
Drexler JF, Corman VM, Drosten C. Ecology evolution and classification of bat coronaviruses in the aftermath of SARS. Antiviral Res. 2014;101:45–56. DOI: 10.1016/j.antiviral.2013.10.013 |
| [10] |
Drexler J.F., Corman V.M., Drosten C. Ecology evolution and classification of bat coronaviruses in the aftermath of SARS // Antiviral. Res. 2014. Vol. 101. P. 45–56. DOI: 10.1016/j.antiviral.2013.10.013 |
| [11] |
Milne-Price S, Miazgowicz KL, Munster VJ. The emergence of the Middle East respiratory syndrome coronavirus. Pathog Dis. 2014;71(2):121–136. DOI: 10.1111/2049-632X.12166 |
| [12] |
Milne-Price S., Miazgowicz K.L., Munster V.J. The emergence of the Middle East respiratory syndrome coronavirus // Pathog. Dis. 2014. Vol. 71. No. 2. P. 121–136. DOI: 10.1111/2049-632X.12166 |
| [13] |
Weber DJ, Rutala WA, Fischer WA, et al. Emerging infectious diseases: focus on infection control issues for novel coronaviruses (severe acute respiratory syndrome-CoV and Middle East respiratory syndrome-CoV), hemorrhagic fever viruses (Lassa and Ebola), and highly pathogenic avian influenza viruses, A(H5N1) and A(H7N9). Am J Infect Control. 2016;44(5):e91–e100. DOI: 10.1016/j.ajic.2015.11.018 |
| [14] |
Weber D.J., Rutala W.A., Fischer W.A., et al. Emerging infectious diseases: focus on infection control issues for novel coronaviruses (severe acute respiratory syndrome-CoV and Middle East respiratory syndrome-CoV), hemorrhagic fever viruses (Lassa and Ebola), and highly pathogenic avian influenza viruses, A(H5N1) and A(H7N9) // Am. J. Infect. Control. 2016. Vol. 44. No. 5. P. e91–e100. DOI: 10.1016/j.ajic.2015.11.018 |
| [15] |
Yadam S, Bihler E, Balaan M, et al. Acute respiratory distress syndrome. Crit Care Nurs Q. 2016;39(2):190–195. DOI: 10.1001/jama.2012.5669 |
| [16] |
Yadam S., Bihler E., Balaan M., et al. Acute respiratory distress syndrome // Crit. Care. Nurs. Q. 2016. Vol. 39. No. 2. P. 190–195. DOI: 10.1001/jama.2012.5669 |
| [17] |
Barh D, Andrade BS, Tiwari S. Natural selection versus creation: a review on the origin of SARS-COV-2. Infez Med. 2020;28(3):302–311. |
| [18] |
Barh D., Andrade B.S., Tiwari S. Natural selection versus creation: a review on the origin of SARS-COV-2 // Infez. Med. 2020. Vol. 28. No. 3. P. 302–311. |
| [19] |
Gorbalenya AE, Baker SC, Baric RS, et al. Severe acute respiratory syndrome-related coronavirus: the species and its viruses — a statement of the Coronavirus Study Group. Nature Microbiology. 2020;5:536–544. DOI: 10.1038/s41564-020-0695-z |
| [20] |
Gorbalenya A.E., Baker S.C., Baric R.S., et al. Severe acute respiratory syndrome-related coronavirus: the species and its viruses — a statement of the Coronavirus Study Group // Nature Microbiology. 2020. Vol. 5. P. 536–544. DOI: 10.1038/s41564-020-0695-z |
| [21] |
Phelan AL, Katz R, Gostin LO. The novel coronavirus originating in Wuhan, China: challenges for global health governance. JAMA. 2020;323(8):709–710. DOI: 10.1001/jama.2020.1097 |
| [22] |
Phelan A.L., Katz R., Gostin L.O. The novel coronavirus originating in Wuhan, China: challenges for global health governance // JAMA. 2020. Vol. 323. No. 8. P. 709–710. DOI: 10.1001/jama.2020.1097 |
| [23] |
Kryukov EV, Zaitsev AA, Chernov SA, et al. Algorithms for the management of patients with a new coronavirus infection COVID-19 in the hospital. Moscow: GVKG im. NN Burdenko; 2020. (In Russ.). |
| [24] |
Крюков Е.В., Зайцев А.А., Чернов С.А., и др. Алгоритмы ведения пациентов с новой коронавирусной инфекцией СOVID-19 в стационаре. М.: ГВКГ им. Н.Н. Бурденко, 2020. |
| [25] |
Abaturov AE, Agafonova EA, Krivusha EL, et al. Pathogenesis of COVID-19. Zdorov’e Rebenka. 2020;15(2):133–144. DOI: 10.22141/2224-0551.15.2.2020.200598 |
| [26] |
Abaturov A.E., Agafonova E.A., Krivusha E.L., et al. Pathogenesis of COVID-19 // Zdorov’e Rebenka. 2020. Vol. 15. No. 2. P. 133–144. DOI: 10.22141/2224-0551.15.2.2020.200598 |
| [27] |
Zhou F, Yu T, Du R, et al. Clinical course and risk factors for mortality of adult inpatients with COVID19 in Wuhan, China: a retrospective cohort study. Lancet. 2020;395(10229):1054–1062. DOI: 10.1016/S0140-6736(20)30566-3 |
| [28] |
Zhou F., Yu T., Du R., et al. Clinical course and risk factors for mortality of adult inpatients with COVID19 in Wuhan, China: a retrospective cohort study // Lancet. 2020. Vol. 395. No. 10229. P. 1054–1062. DOI: 10.1016/S0140-6736(20)30566-3 |
| [29] |
Medzhitov R, Schneider DS, Soares MP. Disease tolerance as a defense strategy. Science. 2012;335(6071):936–941. DOI: 10.1126/science.1214935 |
| [30] |
Medzhitov R., Schneider D.S., Soares M.P. Disease tolerance as a defense strategy // Science. 2012. Vol. 335. No. 6071. P. 936–941. DOI: 10.1126/science.1214935 |
| [31] |
Ahlawat S, Asha, Sharma KK. Immunological co-ordination between gut and lungs in SARS-CoV-2 infection. Virus Res. 2020;286:198103. DOI: 10.1016/j.virusres.2020.198103 |
| [32] |
Ahlawat S., Asha, Sharma K.K. Immunological co-ordination between gut and lungs in SARS-CoV-2 infection // Virus Res. 2020. Vol. 286. P. 198103. DOI: 10.1016/j.virusres.2020.198103 |
| [33] |
Cipriano M, Ruberti E, Giacalone A. Gastrointestinal infection could be new focus for coronavirus diagnosis. Cureus. 2020;12(3):e7422. DOI: 10.7759/cureus.7422 |
| [34] |
Cipriano M., Ruberti E., Giacalone A. Gastrointestinal infection could be new focus for coronavirus diagnosis // Cureus. 2020. Vol. 12. No. 3. P. e7422. DOI: 10.7759/cureus.7422 |
| [35] |
Garg RK. Spectrum of neurological manifestations in Covid-19: a review. Neurol India. 2020;68(3):560–572. DOI: 10.4103/0028-3886.289000 |
| [36] |
Garg R.K. Spectrum of neurological manifestations in Covid-19: a review // Neurol. India. 2020. Vol. 68. No. 3. P. 560–572. DOI: 10.4103/0028-3886.289000 |
| [37] |
Machhi J, Herskovitz J, Senan AM, et al. The natural history, pathobiology, and clinical manifestations of SARS-CoV-2 infections. J Neuroimmune Pharmacol. 2020;15(3):359–386. DOI: 10.1007/s11481-020-09944-5 |
| [38] |
Machhi J., Herskovitz J., Senan A.M., et al. The natural history, pathobiology, and clinical Manifestations of SARS-CoV-2 infections // J. Neuroimmune Pharmacol. 2020. Vol. 15. No. 3. P. 359–386. DOI: 10.1007/s11481-020-09944-5 |
| [39] |
Song Z, Xu Y, Bao L, et al. From SARS to MERS, thrusting coronaviruses into the spotlight. Viruses. 2019. Vol. 11. No. 1. P. 59. DOI: 10.3390/v11010059 |
| [40] |
Song Z., Xu Y., Bao L., et al. From SARS to MERS, thrusting coronaviruses into the spotlight // Viruses. 2019. Vol. 11. No. 1. P. 59. DOI: 10.3390/v11010059 |
| [41] |
Chepur SV, Pluzhnikov NN, Chubar OV, et al. Respiratory RNA viruses: how to prepare for a meeting with new pandemic strains. Uspekhi sovremennoy biologii. 2020;140(4):359–377. (In Russ.). DOI: 10.31857/S0042132420040043 |
| [42] |
Чепур С.В. Плужников Н.Н., Чубарь О.В., и др. Респираторные РНК-вирусы: как подготовиться к встрече с новыми пандемическими штаммами // Успехи современной биологии. 2020. Т. 140, № 4. С. 359–377. DOI: 10.31857/S0042132420040043 |
| [43] |
Gralinski LE, Baric RS. Molecular pathology of emerging coronavirus infections. J Pathol. 2015;235(2):185–195. DOI: 10.1002/path.4454 |
| [44] |
Gralinski L.E., Baric R.S. Molecular pathology of emerging coronavirus infections // J. Pathol. 2015. Vol. 235. No. 2. P. 185–195. DOI: 10.1002/path.4454 |
| [45] |
Mackay IM, Arden KE. MERS coronavirus: diagnostics, epidemiology and transmission. Virol J. 2015;12:222. DOI: 10.1186/s12985-015-0439-5 |
| [46] |
Mackay I.M., Arden K.E. MERS coronavirus: diagnostics, epidemiology and transmission // Virol. J. 2015. Vol. 12. P. 222. DOI: 10.1186/s12985-015-0439-5 |
| [47] |
Wan Y, Shang J, Graham R, et al. Receptor recognition by the novel coronavirus from wuhan: an analysis based on decade-long structural studies of SARS coronavirus. J Virolology. 2020;94(7):e00127. DOI: 10.1128/JVI.00127-20 |
| [48] |
Wan Y., Shang J., Graham R., et al. Receptor recognition by the novel coronavirus from wuhan: an analysis based on decade-long structural studies of SARS coronavirus // J. Virolology. 2020. Vol. 94. No. 7. P. e00127. DOI: 10.1128/JVI.00127-20 |
| [49] |
Letko M, Munster V. Functional assessment of cell entry and receptor usage for lineage B-coronaviruses, including 2019-nCoV. Nat Microbiol. 2020;5(4):562–569. DOI: 10.1038/s41564-020-0688-y |
| [50] |
Letko M., Munster V. Functional assessment of cell entry and receptor usage for lineage B-coronaviruses, including 2019-nCoV // Nat. Microbiol. 2020. Vol. 5. No. 4. P. 562–569. DOI: 10.1038/s41564-020-0688-y |
| [51] |
Li G, Fan Y, Lai Y, et al. Coronavirus infections and immune responses. J Med Virol. 2020;92(4):424–432. DOI: 10.1002/jmv.25685 |
| [52] |
Li G., Fan Y., Lai Y., et al. Coronavirus infections and immune responses // J. Med. Virol. 2020. Vol. 92. No. 4. P. 424–432. DOI: 10.1002/jmv.25685 |
| [53] |
Wang K, Chen W, Zhou Y-S, et al. SARS-CoV-2 invades host cells via a novel route: CD147-spike protein. bioRxiv. 2020. DOI: 10.1101/2020.03.14.988345 |
| [54] |
Wang K., Chen W., Zhou Y.-S., et al. SARS-CoV-2 invades host cells via a novel route: CD147-spike protein // bioRxiv. 2020. DOI: 10.1101/2020.03.14.988345 |
| [55] |
Zhou P, Yang X-L, Wang X-G, et al. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature. 2020;579(7798):270–273. DOI: 10.1038/s41586-020-2012-7 |
| [56] |
Zhou P., Yang X.-L., Wang X.-G., et al. A pneumonia outbreak associated with a new coronavirus of probable bat origin // Nature. 2020. Vol. 579. No. 7798. P. 270–273. DOI: 10.1038/s41586-020-2012-7 |
| [57] |
Smirnov VS, Zarubaev VV, Petlenko SV. Biology of pathogens and control of influenza and SARS. St. Petersburg: Hippocrates; 2020. (In Russ.). |
| [58] |
Смирнов В.С., Зарубаев В.В., Петленко С.В. Биология возбудителей и контроль гриппа и ОРВИ. СПб.: Гиппократ, 2020. |
| [59] |
Berger J.R. COVID-19 and the nervous system. J. Neurovirol. 2020;26(2):143–148. DOI: 10.1007/s13365-020-00840-5 |
| [60] |
Berger J.R. COVID-19 and the nervous system // J. Neurovirol. 2020. Vol. 26. No. 2. P. 143–148. DOI: 10.1007/s13365-020-00840-5 |
| [61] |
Shi CS, Qi HY, Boularan C, et al. SARS-coronavirus open reading frame-9b suppresses innate immunity by targeting mitochondria and the MAVS/TRAF3/TRAF6 signalosome. J Immunol. 2014;193(6):3080–3089. DOI: 10.4049/jimmunol.1303196 |
| [62] |
Shi C.S., Qi H.Y., Boularan C., et al. SARS-coronavirus open reading frame-9b suppresses innate immunity by targeting mitochondria and the MAVS/TRAF3/TRAF6 signalosome // J. Immunol. 2014. Vol. 193. No. 6. P. 3080–3089. DOI: 10.4049/jimmunol.1303196 |
| [63] |
Pluzhnikov NN, Gaidar BV, Chepur SV, et al. Redox regulation: fundamental and applied problems. Actual and applied problems and prospects for the development of military medicine: scientific tr. NIITS (MBZ) GNII VM MO RF. St. Petersburg. 2003;4:139–173. (In Russ.). |
| [64] |
Плужников Н.Н., Гайдар Б.В., Чепур С.В., и др. Редокс-регуляция: фундаментальные и прикладные проблемы // Актуальные и прикладные проблемы и перспективы развития военной медицины: научн. тр. НИИЦ (МБЗ) ГНИИИ ВМ МО РФ. СПб., 2003. Т. 4. С. 139–173. |
| [65] |
Martín-Vicente M, Medrano LM, Resino S, et al. TRIM25 in the regulation of the antiviral innate immunity. Front Immunol. 2017;8:1187. DOI: 10.3389/fimmu.2017.01187 |
| [66] |
Martín-Vicente M., Medrano L.M., Resino S., et al. TRIM25 in the regulation of the antiviral innate immunity Front // Immunol. 2017. Vol. 8. P. 1187. DOI: 10.3389/fimmu.2017.01187 |
| [67] |
Channappanavar R, Perlman S. Pathogenic human coronavirus infections: causes and con-sequences of cytokine storm and immunopathology. Semin. Immunopathol. 2017;39:529–539. DOI: 10.1007/s00281-017-0629-x |
| [68] |
Channappanavar R., Perlman S. Pathogenic human coronavirus infections: causes and con-sequences of cytokine storm and immunopathology // Semin. Immunopathol. 2017. Vol. 39. P. 529–539. DOI: 10.1007/s00281-017-0629-x |
| [69] |
Chien J-Y, Hsueh P-R. Temporal changes in cytokine/chemokine profiles and pulmonary involvement in severe acute respiratory syndrome. Respirology. 2006;11(6):715–722. DOI: 10.1111/j.1440-1843.2006.00942.x |
| [70] |
Chien J.-Y., Hsueh P.-R. Temporal changes in cytokine/chemokine profiles and pulmonary involvement in severe acute respiratory syndrome // Respirology. 2006. Vol. 11. No. 6. P. 715–722. DOI: 10.1111/j.1440-1843.2006.00942.x |
| [71] |
Cong Y, Hart BJ, Zhou H, et al. MERS-CoV pathogenesis and antiviral efficacy of licensed drugs in human monocyte-derived antigen-presenting cells. PLoS One. 2018;13(3):e0194868. DOI: 10.1371/journal.pone.0194868 |
| [72] |
Cong Y., Hart B.J., Zhou H., et al. MERS-CoV pathogenesis and antiviral efficacy of licensed drugs in human monocyte-derived antigen-presenting cells // PLoS One. 2018. Vol. 13. No. 3. P. e0194868. DOI: 10.1371/journal.pone.0194868 |
| [73] |
Gralinski LE, Bankhead III A, Jeng S, et al. Mechanisms of severe acute respiratory syndrome coronavirus-induced acute lung injury. mBio. 2013;4(4):e00271-13. DOI: 10.1128/mBio.00271-13 |
| [74] |
Gralinski L.E., Bankhead III A., Jeng S., et al. Mechanisms of severe acute respiratory syndrome coronavirus-induced acute lung injury // mBio. 2013. Vol. 4. No. 4. P. e00271-13. DOI: 10.1128/mBio.00271-13 |
| [75] |
Kim ES, Choe PG, Park WB, et al. Clinical progression and cytokine profiles of middle east respiratory syndrome coronavirus infection. J Korean Med Sci. 2016;31(11):1717–1725. DOI: 10.3346/jkms.2016.31.11.1717 |
| [76] |
Kim E.S., Choe P.G., Park W.B., et al. Clinical progression and cytokine profiles of middle east respiratory syndrome coronavirus infection // J. Korean Med. Sci. 2016. Vol. 31. No. 11. P. 1717–1725. DOI: 10.3346/jkms.2016.31.11.1717 |
| [77] |
Chan RWY, Chan MCV, Agnohothram S, et al. Tropism of and innate immune responses to the novel human betacoronavirus lineage C virus in human ex vivo respiratory organ cultures. J Virol. 2013;87(12):6604–6614. DOI: 10.1128/JVI.00009-13 |
| [78] |
Chan R.W.Y., Chan M.C.V., Agnohothram S., et al. Tropism of and innate immune responses to the novel human betacoronavirus lineage C virus in human ex vivo respiratory organ cultures // J. Virol. 2013. Vol. 87. No. 12. P. 6604–6614. DOI: 10.1128/JVI.00009-13 |
| [79] |
Channappanavar R, Fehr AR. Dysregulated type I interferon and inflammatory monocyte-macrophage responses cause lethal pneumonia in SARS-CoV-infected mice. Cell Host & Microbe. 2016;19(2):181–193. DOI: 10.1016/j.chom.2016.01.007 |
| [80] |
Channappanavar R., Fehr A.R. Dysregulated type I interferon and inflammatory monocyte-macrophage responses cause lethal pneumonia in SARS-CoV-infected mice // Cell. Host. & Microbe. 2016. Vol. 19. No. 2. P. 181–193. DOI: 10.1016/j.chom.2016.01.007 |
| [81] |
Zaitsev AA, Golukhova EZ, Mamalyga ML, et al. Efficacy of methylprednisolone pulse therapy in patients with COVID-19. Clinical microbiology and antimicrobial chemotherapy. 2020;22(2):88–91. (In Russ.). DOI: 10.36488/cmac.2020.2.88-91 |
| [82] |
Зайцев А.А., Голухова Е.З., Мамалыга М.Л., и др. Эффективность пульс-терапии метилпреднизолоном у пациентов с СOVID-19 // Клиническая микробиология и антимикробная химиотерапия. 2020. Т. 22, № 2. С. 88–91. DOI: 10.36488/cmac.2020.2.88-91 |
| [83] |
Nieto-Torres JL, Verdiá-Báguena C, Jimenez-Guardeño JM, et al. Severe acute respiratory syndrome coronavirus e protein transports calcium ions and activates the NLRP3 inflammasome. Virology. 2015;485:330–339. DOI: 10.1016/j.virol.2015.08.010 |
| [84] |
Nieto-Torres J.L., Verdiá-Báguena C., Jimenez-Guardeño J.M., et al. Severe acute respiratory syndrome coronavirus e protein transports calcium ions and activates the NLRP3 inflammasome // Virology. 2015. Vol. 485. P. 330–339. DOI: 10.1016/j.virol.2015.08.010 |
| [85] |
Zhao C, Zhao W. NLRP3 Inflammasome — a key player in antiviral responses Front Immunol. 2020;11:211. DOI: 10.3389/fimmu.2020.00211 |
| [86] |
Zhao C., Zhao W. NLRP3 Inflammasome — a key player in antiviral responses // Front. Immunol. 2020. Vol. 11. P. 211. DOI: 10.3389/fimmu.2020.00211 |
| [87] |
Pluzhnikov NN, Chepura SV, Khurtsilava OG, editors. Sepsis: fire and riot on a ship sinking in a storm. Part 1. Triggers of inflammation. reception of inflammatory triggers and singal transduction. St. Petersburg: Publishing House of the I. I. Mechnikov NWSMU; 2018. (In Russ.). |
| [88] |
Сепсис: пожар и бунт на тонущем в шторм корабле. Ч. 1. Триггеры воспаления. Рецепция триггеров воспаления и сингальная трансдукция / под ред. Н.Н. Плужникова, С.В. Чепура, О.Г. Хурцилавы. СПб.: Изд-во СЗГМУ им. И.И. Мечникова, 2018. |
| [89] |
Li S, Yuan L, Dai G, et al. Regulation of the ER stress response by the ion channel activity of the infectious bronchitis coronavirus envelope protein modulates virion release, apoptosis, viral fitness, and pathogenesis. Front Microbiol. 2020;10:3022. DOI: 10.3389/fmicb.2019.03022 |
| [90] |
Li S., Yuan L., Dai G., et al. Regulation of the ER stress response by the ion channel activity of the infectious bronchitis coronavirus envelope protein modulates virion release, apoptosis, viral fitness, and pathogenesis // Front. Microbiol. 2020. Vol. 10. P. 3022. DOI: 10.3389/fmicb.2019.03022 |
| [91] |
Broz P, Dixit VM. Inflammasomes: mechanism of assembly, regulation and signal-ling. Nat Rev Immunol. 2016;16:407–420. DOI: 10.1038/nri.2016.58 |
| [92] |
Broz P., Dixit V.M. Inflammasomes: mechanism of assembly, regulation and signal-ling // Nat. Rev. Immunol. 2016. Vol. 16. P. 407–420. DOI: 10.1038/nri.2016.58 |
| [93] |
Rathinam VAK, Chan FK-M. Inflammasome, inflammation and tissue homeostasis. Trends Mol Med. 2018;24(3):304–318. DOI: 10.1016/j.molmed.2018.01.004 |
| [94] |
Rathinam V.A.K., Chan F.K.-M. Inflammasome, inflammation and tissue homeostasis // Trends. Mol. Med. 2018. Vol. 24. No. 3. P. 304–318. DOI: 10.1016/j.molmed.2018.01.004 |
| [95] |
Wang Y, Shi P, Chen Q, et al. Mitochondrial ROS promote macrophage pyroptosis by inducing GSDMD oxidation. J Mol Cell Biol. 2019;11(12):1069–1082. DOI: 10.1093/jmcb/mjz020 |
| [96] |
Wang Y., Shi P., Chen Q., et al. Mitochondrial ROS promote macrophage pyroptosis by inducing GSDMD oxidation // J. Mol. Cell Biol. 2019. Vol. 11. No. 12. P. 1069–1082. DOI: 10.1093/jmcb/mjz020 |
| [97] |
Loutfy MR, Blatt LM, Siminovitch KA, et al. Interferon alfacon-1 plus corticosteroids in severe acute respiratory syndrome: a preliminary study. JAMA. 2003;290(24):3222–3228. DOI: 10.1001/jama.290.24.3222 |
| [98] |
Loutfy M.R., Blatt L.M., Siminovitch K.A., et al. Interferon alfacon-1 plus corticosteroids in severe acute respiratory syndrome: a preliminary study // JAMA. 2003. Vol. 290. No. 24. P. 3222–3228. DOI: 10.1001/jama.290.24.3222 |
| [99] |
Rialdi A, Campisi L, Zhao N, et al. Topoisomerase 1 inhibition suppresses inflammatory genes and protects from death by inflammation. Science. 2016;352(6289):aad7993. DOI: 10.1126/science.aad7993 |
| [100] |
Rialdi A., Campisi L., Zhao N., et al. Topoisomerase 1 inhibition suppresses inflammatory genes and protects from death by inflammation // Science. 2016. Vol. 352. No. 6289. P. aad7993. DOI: 10.1126/science.aad7993 |
| [101] |
Wang R, Xiao H, Guo R, et al. The role of C5a in acute lung injury induced by highly pathogenic viral infections. Emerg Microbes Infect. 2015;4(5):e28. DOI: 10.1038/emi.2015.28 |
| [102] |
Wang R., Xiao H., Guo R., et al. The role of C5a in acute lung injury induced by highly pathogenic viral infections // Emerg. Microbes Infect. 2015. Vol. 4. No. 5. P. e28. DOI: 10.1038/emi.2015.28 |
| [103] |
Bao L, Deng W, Gao H. Reinfection could not occur in SARS-CoV-2 infected rhesus macaques. Nat Med. 2020;26:1033–1036. DOI: 10.1038/s41591-020-0913-5 |
| [104] |
Bao L., Deng W., Gao H. Reinfection could not occur in SARS-CoV-2 infected rhesus macaques // Nat. Med. 2020. Vol. 26. P. 1033–1036. DOI: 10.1038/s41591-020-0913-5 |
| [105] |
Guo X, Guo Z, Duan C, et al. Long-Term persistence of IgG antibodies in SARS-CoV. Infected Healthcare Workers. 2020. DOI: 10.1101/2020.02.12.20021386 |
| [106] |
Guo X., Guo Z., Duan C., et al. Long-Term persistence of IgG antibodies in SARS-CoV // Infected Healthcare Workers. 2020. DOI: 10.1101/2020.02.12.20021386 |
| [107] |
Wu L-P, Wang N-C, Chang Y-H, et al. Duration of antibody responses after severe acute respiratory syndrome. Emerg Infect Dis. 200;13(10):1562–1564. DOI: 10.3201/eid1310.070576 |
| [108] |
Wu L.-P., Wang N.-C., Chang Y.-H., et al. Duration of antibody responses after severe acute respiratory syndrome // Emerg. Infect Dis. 2007. Vol. 13. No. 10. P. 1562–1564. DOI: 10.3201/eid1310.070576 |
| [109] |
Gao H-X, Li Y-N, Xu Z-G, et al. Detection of serum immunoglobulin M and immunoglobulin G antibodies in 2019 novel coronavirus infected cases from different stages. Chinese Med J. 2020;133(12):1479–1480. DOI: 10.1097/CM9.0000000000000820 |
| [110] |
Gao H.-X., Li Y.-N., Xu Z.-G., et al. Detection of serum immunoglobulin M and immunoglobulin G antibodies in 2019 novel coronavirus infected cases from different stages // Chinese Med. J. 2020. Vol. 133. No. 12. P. 1479–1480. DOI: 10.1097/CM9.0000000000000820 |
| [111] |
Gao Y, Yuan Y, Li TT, et al. Evaluation the auxiliary diagnosis value of antibodies assays for detection of novel coronavirus (SARS-CoV-2) causing an outbreak of pneumonia (COVID-19). J Med Virol. 2020;92(10):1975–1979. DOI: 10.1002/jmv.25919 |
| [112] |
Gao Y., Yuan Y., Li T.T., et al. Evaluation the auxiliary diagnosis value of antibodies assays for detection of novel coronavirus (SARS-CoV-2) causing an outbreak of pneumonia (COVID-19) // J Med Virol. 2020. Vol. 92. No. 10/ P. 1975–1979. DOI: 10.1002/jmv.25919 |
| [113] |
Haveri A, Smura T, Kuivanen S, et al. Serological and molecular findings during SARS-CoV-2 infection: the first case study in Finland, January to February 2020. EuroSurveill. 2020;25(11):2000266. DOI: 10.2807/1560-7917.ES.2020.25.11.2000266 |
| [114] |
Haveri A., Smura T., Kuivanen S., et al. Serological and molecular findings during SARS-CoV-2 infection: the first case study in Finland, January to February 2020 // EuroSurveill. 2020. Vol. 25. No. 11. P. 2000266. DOI: 10.2807/1560-7917.ES.2020.25.11.2000266 |
| [115] |
Jiang H-W, Li Y, Zhang H, et al. SARS-CoV-2 proteome microarray for global profiling of COVID-19 specific IgG and IgM responses. Nat Commun. 2020;11:3581. DOI: 10.1038/s41467-020-17488-8 |
| [116] |
Jiang H.-W., Li Y., Zhang H., et al. SARS-CoV-2 proteome microarray for global profiling of COVID-19 specific IgG and IgM responses // Nat. Commun. 2020. Vol. 11. P. 3581. DOI: 10.1038/s41467-020-17488-8 |
| [117] |
Liu R, Liu X, Han H, et al. The comparative superiority of IgM-IgG antibody test to real-time reverse transcriptase PCR detection for SARS-CoV-2 infection diagnosis. Front Microbiol. 2020;10:3022. DOI: 10.3389/fmicb.2019.03022 |
| [118] |
Liu R., Liu X., Han H., et al. The comparative superiority of IgM-IgG antibody test to real-time reverse transcriptase PCR detection for SARS-CoV-2 infection diagnosis // Front. Microbiol. 2020. Vol. 10. P. 3022. DOI: 10.3389/fmicb.2019.03022 |
| [119] |
Pan Y, Li X, Yang G, et al. Serological immunochromatographic approach in diagnosis with SARS-CoV-2 infected COVID-19 patients. J Infect. 2020;81(1):e28-e32. DOI: 10.1016/j.jinf.2020.03.051 |
| [120] |
Pan Y., Li X., Yang G., et al. Serological immunochromatographic approach in diagnosis with SARS-CoV-2 infected COVID-19 patients // J. Infect. 2020. Vol. 81. No. 1. P. e28-e32. DOI: 10.1016/j.jinf.2020.03.051 |
| [121] |
To KK, Tsang OT, Leung WS, et al. Temporal profiles of viral load in posterior oropharyngeal saliva samples and serum antibody responses during infection by SARS-CoV-2: an observational cohort study. The Lancet. Infectious Diseases. 2020;20(5):565–574. DOI: 10.1016/S1473-3099(20)30196-1 |
| [122] |
To K.K., Tsang O.T., Leung W.S., et al. Temporal profiles of viral load in posterior oropharyngeal saliva samples and serum antibody responses during infection by SARS-CoV-2: an observational cohort study // The Lancet. Infectious Diseases. 2020. Vol. 20. No. 5. P. 565–574. DOI: 10.1016/S1473-3099(20)30196-1 |
| [123] |
Xiao DAT, Gao DC, Zhang DS. Profile of specific antibodies to SARS-CoV-2: The first report. J Infect. 2020;81(1):147–178. DOI: 10.1016/j.jinf.2020.03.012 |
| [124] |
Xiao D.A.T., Gao D.C., Zhang D.S. Profile of specific antibodies to SARS-CoV-2: The first report // J. Infect. 2020. Vol. 81. No. 1. P. 147–178. DOI: 10.1016/j.jinf.2020.03.012 |
| [125] |
Amanat F, Stadbauer D, Strohmeier S, et al. A serological assay to detect SARS-CoV-2 seroconversion in humans. Nature Medicine. 2020;26:1033–1036. DOI: 10.1101/2020.03.17.20037713 |
| [126] |
Amanat F., Stadbauer D., Strohmeier S., et al. A serological assay to detect SARS-CoV-2 seroconversion in humans // Nature Medicine. 2020. Vol. 26. P. 1033–1036. DOI: 10.1101/2020.03.17.20037713 |
| [127] |
Rodríguez Y, Novelli L, Rojas M, et al. Autoinflammatory and autoimmune conditions at the crossroad of COVID-19. J Autoimmun. 2020;114:102506. DOI: 10.1016/j.jaut.2020.102506 |
| [128] |
Rodríguez Y., Novelli L., Rojas M., et al. Autoinflammatory and autoimmune conditions at the crossroad of COVID-19 // J. Autoimmun. 2020. Vol. 114. P. 102506. DOI: 10.1016/j.jaut.2020.102506 |
Minnullin T.I., Stepanov A.V., Chepur S.V., Ivchenko E.V., Fateev I.V., Kryukov E.V., Tsygan V.N.
/
| 〈 |
|
〉 |