Dynamics of endogenous interferon-alpha and -gamma production under the influence of ingaron therapy in patients with chronic epstein – barr viral infection with chronic fatigue syndrome

Irina A. Rakityanskaya , Tatyana S. Ryabova , Anastasia A. Kalashnikova , Andrey S. Manuilov , Andrey N. Bel'skikh , Andrey V. Apchel

Bulletin of the Russian Military Medical Academy ›› 2021, Vol. 23 ›› Issue (2) : 17 -28.

PDF (300KB)
Bulletin of the Russian Military Medical Academy ›› 2021, Vol. 23 ›› Issue (2) : 17 -28. DOI: 10.17816/brmma71302
Clinical Trials
research-article

Dynamics of endogenous interferon-alpha and -gamma production under the influence of ingaron therapy in patients with chronic epstein – barr viral infection with chronic fatigue syndrome

Author information +
History +
PDF (300KB)

Abstract

The influence of antiviral therapy with ingaron on the dynamics of production of interferons α and γ and clinical effects in patients with chronic viral Epstein – Barr infection was studied. The study involved 51 patients (33 women and 17 men aged 35,27 ± 1,28 years) suffering from chronic infection caused by the Epstein – Barr virus. The duration of the disease from the appearance of the first complaints to laboratory confirmation of the Epstein – Barr virus infection and diagnosis was 2,23 ± 0,21 years. Determined the serum, spontaneous and induced production of cytokines interferons α and γ in serum and in the culture of lymphocytes. Three months after the end of antiviral therapy, in patients with an initially low level of induced interferon-γ, the production of interferon-γ increased. The absence of an increase in the production of induced interferon-γ in patients one and three months after the end of therapy with ingaron indicates the absence of the effect of the drug on the level of endogenous interferon-γ. It has been established that the initially low level of induced interferon-γ can be a marker of the positive effect of the therapy with ingaron. Correlation analysis revealed the effect of baseline interferon-γ induced on the clinical picture of the disease. Thus, initially a high level of induced interferon-γ (2706 ± 1058.94 pg/ml) inversely affects the development of sweating in patients (r = –0.506, p = 0,023; τ = –0.419, р = 0.021), and initially low level of the induced IFN-γ (287.2 ± 64.65 pg/ml) — on development of weakness (r = –0.405, р = 0.045; τ = –0.419, р = 0.037). In general, ingarone can be used in the therapy of patients with chronic Epstein virus — Bar infection at a dose of 500,000 IU every other day, at least 10 injections.

Keywords

acyclic nucleosides / interferon γ and α / the number of copies of deoxyribonucleic acid / complex antiviral therapy / chronic fatigue syndrome / T-cell immunity / chronic infection caused by the Epstein–Barr virus

Cite this article

Download citation ▾
Irina A. Rakityanskaya, Tatyana S. Ryabova, Anastasia A. Kalashnikova, Andrey S. Manuilov, Andrey N. Bel'skikh, Andrey V. Apchel. Dynamics of endogenous interferon-alpha and -gamma production under the influence of ingaron therapy in patients with chronic epstein – barr viral infection with chronic fatigue syndrome. Bulletin of the Russian Military Medical Academy, 2021, 23(2): 17-28 DOI:10.17816/brmma71302

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Biron C, Sen G. Interferons and other cytokines. Fields virology. 4th ed. Philadelphia, Pa: Lippincott-Raven; 2001.

[2]

Biron C., Sen G.C. Interferons and other cytokines. Fields virology. 4th ed. Philadelphia, Pa: Lippincott-Raven, 2001.

[3]

Sen GC. Viruses and Interferons. Ann Rev Microbiol. 2001;(55):255–281. DOI: 10.1146/annurev.micro.55.1.255

[4]

Sen G.C. Viruses and Interferons // Ann. Rev. Microbiol. 2001. Vol. 55. P. 255–281. DOI: 10.1146/annurev.micro.55.1.255

[5]

Hill N, Sarvetnick N. Cytokines: promoters and dampeners of autoimmunity. Curr Open Immunol. 2002; 14(6):791–797. DOI: 10.1016/s0952-7915(02)00403-x

[6]

Hill N., Sarvetnick N. Cytokines: promoters and dampeners of autoimmunity // Curr. Open Immunol. 2002. Vol. 14. No. 6. P. 791–797. DOI: 10.1016/s0952-7915(02)00403-x

[7]

Gattoni A, Parlato A, Vangieri B, et al. Interferon-gamma: biologic functions and HCV therapy (type I/II) (1 of 2 parts). Clin Ter. 2006;157(4):377–386.

[8]

Gattoni A., Parlato A., Vangieri B., et al. Interferon-gamma: biologic functions and HCV therapy (type I/II) (1 of 2 parts) // Clin. Ter. 2006. Vol. 157. No. 4. P. 377–386.

[9]

Schoenborn J, Wilson C. Regulation of interferon-gamma during innate and adaptive immune responses. Adv Immunol. 2007;(96):41–101. DOI: 10.1016/S0065-2776(07)96002-2

[10]

Schoenborn J., Wilson C. Regulation of interferon-gamma during innate and adaptive immune responses // Adv. Immunol. 2007. No. 96. P. 41–101. DOI: 10.1016/S0065-2776(07)96002-2

[11]

Roff S, Noon-Song E, Yamamoto J. The significance of interferon-gamma in HIV-1 pathogenesis, therapy, and prophylaxis. Front Immunol. 2014;(4):498. DOI: 10.3389/fimmu.2013.00498

[12]

Roff S, Noon-Song E, Yamamoto J. The significance of interferon-gamma in HIV-1 pathogenesis, therapy, and prophylaxis // Front. Immunol. 2014. No. 4. P. 498. DOI: 10.3389/fimmu.2013.00498

[13]

Fan-ching L, Howard A. Young, Interferons Success in anti-viral immunotherapy. Cytokine Growth Factor Rev. 2014;25(4):369–376. DOI: 10.1016/j.cytogfr.2014.07.015

[14]

Fan-Ching L., Howard A. Young, Interferons Success in anti-viral immunotherapy // Cytokine Growth Factor Rev. 2014. Vol. 25. No. 4. P. 369–376. DOI: 10.1016/j.cytogfr.2014.07.015

[15]

Soowon K, Hailey M, Seungmin H. Direct antiviral mechanisms of Interferon-Gamma. Immune Netw. 2018;18(5):e33. DOI: 10.4110/in.2018.18.e33.

[16]

Soowon K., Hailey M., Seungmin H. Direct antiviral mechanisms of Interferon-Gamma // Immune Netw. 2018. Vol. 18. No. 5. P. e33. DOI: 10.4110/in.2018.18.e33

[17]

Fujisaki T, Nagafuchi S, Okamura T. Gamma-interferon for severe chronic active Epstein – Barr virus. Ann Intern Med. 1993;118(6):474–475. DOI: 10.7326/0003-4819-118-6-199303150-00022

[18]

Fujisaki T., Nagafuchi S., Okamura T. Gamma-interferon for severe chronic active Epstein – Barr virus // Ann. Intern. Med. 1993. Vol. 118. No. 6. P. 474–475. DOI: 10.7326/0003-4819-118-6-199303150-00022

[19]

Andersson J. Clinical and immunological considerations in Epstein – Barr virus-associated diseases. Scand J Infect Dis Suppl. 1996;(100):72–82.

[20]

Andersson J. Clinical and immunological considerations in Epstein-Barr virus-associated diseases // Scand. J. Infect. Dis. Suppl. 1996. No. 100. P. 72–82.

[21]

Balachandra K, Thawaranantha D, Ayuthaya P, et al. Effects of human alpha, beta and gamma interferons on varicella zoster virus in vitro. South As J Trop Med Publ Health. 1994;25(2):252–257.

[22]

Balachandra K., Thawaranantha D., Ayuthaya P., et al. Effects of human alpha, beta and gamma interferons on varicella zoster virus in vitro // South As. J. Trop. Med. Publ. Health. 1994. Vol. 25. No. 2. P. 252–257.

[23]

Schroder K, Hertzog P, Ravasi T, et al. Interferon-gamma: an overview of signals, mechanisms and functions. J Leukoc Biol. 2004;75(2):163–189. DOI: 10.1189/jlb.0603252

[24]

Schroder K., Hertzog P., Ravasi T., et al. Interferon-gamma: an overview of signals, mechanisms and functions // J. Leukoc. Biol. 2004. Vol. 75. No. 2. P. 163–189. DOI: 10.1189/jlb.0603252

[25]

Maleev VV, Shmelev VA, Gindis AA, et al. Modern approaches to the therapy of shingles. Interferon-gamma in the treatment of genital herpes. Infekcionnye bolezni. 2007;5(3):28–32. (In Russ.).

[26]

Малеев В.В., Шмелев В.А., Гиндис А.А., и др. Современные подходы к терапии опоясывающего лишая. Интерферон-гамма в терапии генитального герпеса // Инф. болезни. 2007. Т. 5, № 2. С. 28–32.

[27]

Rakityanskaya IA, Ryabova TS, Todzhibaev UA, et al. The effect of Ingaron on the dynamics of the number of copies of deoxyribonucleic acid Epstein–Barr virus in saliva samples and on the manifestation of clinical symptoms in patients with chronic Epstein – Barr virus infection. Vestnik Rossijskoj Voenno-Medicinskoj Akademii. 2019;2(65):18–23. (In Russ.).

[28]

Ракитянская И.А., Рябова Т.С., Тоджибаев У.А., и др. Влияние ингарона на динамику копий дезоксирибонуклеиновой кислоты вируса Эпштейна – Барр в образцах слюны и клинические проявления // Вестник Российской военно-медицинской академии. 2019. Т. 66, № 2. С. 18–23.

[29]

Lotz М, Tsoukas С, Fong S, et al. Regulation of Epstein-Barr virus infection by recombinant interferons. Selected sensitivity to interferon-gamma. Eur J Immunol. 1985;15(5):520–525. DOI: 10.1002/eji.1830150518

[30]

Lotz М., Tsoukas С., Fong S., et al. Regulation of Epstein-Barr virus infection by recombinant interferons. Selected sensitivity to interferon-gamma // Eur. J. Immunol. 1985. Vol. 15. No. 5. P. 520–525. DOI: 10.1002/eji.1830150518

[31]

Sainz B, Halford W. Alpha/Beta interferon and gamma interferon synergize to inhibit the replication of herpes simplex virus type 1. J Virol. 2002;76 (22):11541–11550. DOI: 10.1128/jvi.76.22.11541-11550.2002

[32]

Sainz B., Halford W. Alpha/Beta interferon and gamma interferon synergize to inhibit the replication of herpes simplex virus type 1 // J. Virol. 2002. Vol. 76. No. 22. P. 11541–11550. DOI: 10.1128/jvi.76.22.11541-11550.2002

[33]

Patterson C, Lawrence D, Echols L, et al. Immune-mediated protection from measles virus-induced central nervous system disease is noncytolytic and gamma interferon dependent. J Virol. 2002;(76):4497–4506. DOI: 10.1128/JVI.76.9.4497-4506.2002

[34]

Patterson C., Lawrence D., Echols L., et al. Immune-mediated protection from measles virus-induced central nervous system disease is noncytolytic and gamma interferon dependent // J. Virol. 2002. Vol. 76. P. 4497–4506. DOI: 10.1128/JVI.76.9.4497-4506.2002

[35]

Rakityanskaya IA, Ryabova TS, Kalashnikova AA. Influence of ingaron on the dynamics of interferon-α and -γ production and on the manifestation of clinical symptoms in patients with chronic virus Eрsthtein – Barr infection. Voprosi Virusologi. 2019;64(1):23–29. (In Russ.).

[36]

Ракитянская И.А., Рябова Т.С., Калашникова А.А. Влияние ингарона на продукцию интерферона-альфа и -гамма и на проявление клинических симптомов у больных хронической вирусной Эпштейна – Барр инфекцией. Вопросы вирусологии. 2019. Т. 64, № 1. С. 16–23.

[37]

Holmes G, Kaplan J, Gantz N, et al. Chronic fatigue syndrome: a working case definition. Ann Intern Med. 1988;108(3):387–389. DOI: 10.7326/0003-4819-108-3-387

[38]

Holmes G., Kaplan J., Gantz N., et al. Chronic fatigue syndrome: a working case definition // Ann. Intern. Med. 1988. Vol. 108. No. 3. P. 387–389. DOI: 10.7326/0003-4819-108-3-387

[39]

Fukuda K, Straus S, Hickie I, et al. The chronic fatigue syndrome: a comprehensive approach to its definition and study. International Chronic Fatigue Syndrome Study Group. Ann Intern Med. 1994;121(12):953–959. DOI: 10.7326/0003-4819-121-12-199412150-00009

[40]

Fukuda K., Straus S., Hickie I., et al. The chronic fatigue syndrome: a comprehensive approach to its definition and study. International Chronic Fatigue Syndrome Study Group // Ann. Intern. Med. 1994. Vol. 121. No. 12. P. 953–959. DOI: 10.7326/0003-4819-121-12-199412150-00009

[41]

Staines D. Postulated vasoactive neuropeptide autoimmunity in fatigue-related conditions: A brief review and hypothesis. Clin Dev Immunol. 2006;13(1):25–39. DOI: 10.1080/17402520600568252

[42]

Staines D. Postulated vasoactive neuropeptide autoimmunity in fatigue-related conditions: A brief review and hypothesis // Clin. Dev. Immunol. 2006. Vol. 13. No. 1. P. 25–39. DOI: 10.1080/17402520600568252

[43]

Griffith J, Zarrouf А. A systematic review of chronic fatigue syndrome: don’t assume it's depression. J Clin Psychiatry. 2008;(1):120–128. DOI: 10.4088/pcc.v10n0206

[44]

Griffith J., Zarrouf А. A systematic review of chronic fatigue syndrome: don’t assume it's depression // J. Clin. Psychiatry. 2008. Vol. 1. P. 120–128. DOI: 10.4088/pcc.v10n0206

[45]

Kimura H. Pathogenesis of chronic active Epstein – Barr virus infection: is this an infectious disease, lymphoproliferative disorder, or immunodeficiency? Rev Med Virol. 2006;(16):251–261. DOI: 10.1002/rmv.505

[46]

Kimura H. Pathogenesis of chronic active Epstein – Barr virus infection: is this an infectious disease, lymphoproliferative disorder, or immunodeficiency? // Rev. Med. Virol. 2006. Vol. 16. P. 251–261. DOI: 10.1002/rmv.505

[47]

Kimura H, Cohen J. Chronic active Epstein – Barr virus disease. Front Immunol. 2017;(28):1–6. DOI: 10.3389/fimmu.2017.01867

[48]

Kimura H., Cohen J. Chronic active Epstein – Barr virus disease // Front. Immunol. 2017. Vol. 28. P. 1–6. DOI: 10.3389/fimmu.2017.01867

[49]

Laichalk L, Hochberg D, Babcock G, et al. The dispersal of mucosal memory B cells: evidence from persistent EBV infection. Immunity 2002;16 (5):745–754. DOI: 10.1016/S1074-7613(02)00318-7

[50]

Laichalk L., Hochberg D., Babcock G., et al. The dispersal of mucosal memory B cells: evidence from persistent EBV infection // Immunity. 2002. Vol. 16. No. 5. P. 745–754. DOI: 10.1016/S1074-7613(02)00318-7

[51]

Raulet D, Gasser S, Gowen B, et al. Regulation of ligands for the NKG2D activating receptor. An Rev Immunol. 2013;(31):413–441. DOI: 10.1146/annurev-immunol-032712-095951

[52]

Raulet D., Gasser S., Gowen B., et al. Regulation of ligands for the NKG2D activating receptor // An. Rev. Immunol. 2013. Vol. 31. P. 413–441. DOI: 10.1146/annurev-immunol-032712-095951

[53]

Simon O, Seliger B. Molecular mechanisms of human herpes viruses inferring with host immune surveillance. J Immunother Cancer. 2020;8(2):e000841. DOI: 10.1136/jitc-2020-000841

[54]

Simon O., Seliger B. Molecular mechanisms of human herpes viruses inferring with host immune surveillance // J. Immunother. Cancer. 2020. Vol. 8. No. 2. P. e000841. DOI: 10.1136/jitc-2020-000841

[55]

Ghadially H, Brown L, Lloyd C, et al. MHC class I chain-related protein A and B (MICA and MICB) are predominantly expressed intracellularly in tumour and normal tissue. Br J Cancer. 2017;116:1208–1217. DOI: 10.1038/bjc.2017.79

[56]

Ghadially H., Brown L., Lloyd C., et al. MHC class I chain-related protein A and B (MICA and MICB) are predominantly expressed intracellularly in tumour and normal tissue // Br. J. Cancer. 2017. Vol. 116. P. 1208–1217. DOI: 10.1038/bjc.2017.79

[57]

Barbu M, Condrat C, Thompson D, et al. Microrna involvement in signaling pathways during viral infection. Front Cell Dev Biol. 2020;8:143. DOI: 10.3389/fcell.2020.00143

[58]

Barbu M., Condrat C., Thompson D., et al. Microrna involvement in signaling pathways during viral infection // Front. Cell. Dev. Biol. 2020. Vol. 8. P. 143. DOI: 10.3389/fcell.2020.00143

[59]

Skinner C, Ivanov N, Barr S, et al. An Epstein – Barr virus microRNA blocks interleukin-1 (IL-1) signaling by targeting IL-1 receptor 1. J Virol. 2017;(91):e00530–17. DOI: 10.1128/JVI.00530-17

[60]

Skinner C., Ivanov N., Barr S., et al. An Epstein – Barr virus microRNA blocks interleukin-1 (IL-1) signaling by targeting IL-1 receptor 1 // J. Virol. 2017. Vol. 91. P. e00530–17. DOI: 10.1128/JVI.00530-17

[61]

Abboud G. Tahiliani V, Desai P, et al. Natural killer cells and innate interferon gamma participate in the host defense against respiratory vaccinia virus infection. J Virol. 2016;90(1):129–141. DOI: 10.1128/JVI.01894-15

[62]

Abboud G., Tahiliani V., Desai P., et al. Natural killer cells and innate interferon gamma participate in the host defense against respiratory vaccinia virus infection // J. Virol. 2016. Vol. 90. No. 1. P. 129–141. DOI: 10.1128/JVI.01894-15

[63]

Okano M, Thiele G, Kobayashi R, et al. Interferon-gamma in a family with X-linked lymphoproliferative syndrome with acute Epstein – Barr virus infection. J Clin Immunol. 1989;9(1):48–54. DOI: 10.1007/BF00917127

[64]

Okano M., Thiele G., Kobayashi R., et al. Interferon-gamma in a family with X-linked lymphoproliferative syndrome with acute Epstein – Barr virus infection // J. Clin. Immunol. 1989. Vol. 9. No. 1. P. 48–54. DOI: 10.1007/BF00917127

[65]

Linde A, Andersson B, Svenson S, et al. Serum levels of lymphokines and soluble cellular receptors in primary Epstein – Barr virus infection and in patients with chronic fatigue syndrome. J Infect Dis. 1992;165(6):994–1000. DOI: 10.1093/infdis/165.6.994

[66]

Linde A., Andersson B., Svenson S., et al. Serum levels of lymphokines and soluble cellular receptors in primary Epstein – Barr virus infection and in patients with chronic fatigue syndrome // J. Infect. Dis. 1992. Vol. 165. No. 6. P. 994–1000. DOI: 10.1093/infdis/165.6.994

[67]

Hornef MW, Wagner HJ, Kruse A, et al. Cytokine production in a whole-blood assay after Epstein – Barr virus infection in vivo. Clin Diagn Lab Immunol. 1995;2(2):209–213.

[68]

Hornef M.W., Wagner H.J., Kruse A., et al. Cytokine production in a whole-blood assay after Epstein – Barr virus infection in vivo // Clin. Diagn. Lab. Immunol. 1995. Vol. 2. No. 2. P. 209–213.

[69]

Liang L, Shi R, Xin L, et al. Interferon-Gamma response to treatment of active pulmonary and extrapulmonary tuberculosis. J Tuberc Lung Dis. 2017;21(10):1145–1149. DOI: 10.5588/ijtld.16.0880

[70]

Liang L., Shi R., Xin L., et al. Interferon-Gamma response to treatment of active pulmonary and extrapulmonary tuberculosis // J. Tuberc. Lung. Dis. 2017. Vol. 21. No. 10. P. 1145–1149. DOI: 10.5588/ijtld.16.0880

RIGHTS & PERMISSIONS

Rakityanskaya I.A., Ryabova T.S., Kalashnikova A.A., Manuilov A.S., Bel'skikh A.N., Apchel A.V.

AI Summary AI Mindmap
PDF (300KB)

175

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/