Dynamics of aquaporin content in the aero-hematic barrier during the latent phase of toxic pulmonary edema

Daria T. Sizova , Pavel G. Tolkach , Alexander A. Bardin , Vladimir N. Babakov , Nikolay G. Vengerovich , Sergey V. Chepur , Vadim A. Basharin

Bulletin of the Russian Military Medical Academy ›› 2024, Vol. 26 ›› Issue (4) : 541 -550.

PDF (2171KB)
Bulletin of the Russian Military Medical Academy ›› 2024, Vol. 26 ›› Issue (4) : 541 -550. DOI: 10.17816/brmma634392
Original Study Article
research-article

Dynamics of aquaporin content in the aero-hematic barrier during the latent phase of toxic pulmonary edema

Author information +
History +
PDF (2171KB)

Abstract

The study evaluates the dynamics of aquaporin (aquaporin-1, aquaporin-5, and epithelial sodium channel) content in the aero-hematic barrier during the latent phase of rat intoxication with carbonyl chloride (phosgene), thermal decomposition products of fluoroplast containing perfluoroisobutylene, and nitrogen dioxide. Rat intoxication was modeled using average lethal concentrations of these toxic substances. At 30 and 60 minutes post-exposure, pulmonary coefficient was measured and histological and immunohistochemical studies were performed. Western blot analysis was used to determine the aquaporin-5 content in rat lung tissues exposed to the thermal decomposition products of fluoroplast. It was found that rat intoxication with phosgene and thermal decomposition products of fluoroplast containing perfluoroisobutylene led to an increase in the relative content of aquaporin-5 and epithelial sodium channel-positive cells in lung tissues as early as 30 minutes post-exposure. At 60 minutes post-exposure, there were signs of the interstitial phase of toxic pulmonary edema and an increase in the pulmonary coefficient. Exposure to nitrogen dioxide resulted in an increase in the pulmonary coefficient and the relative content of aquaporin-5-positive cells, as well as pronounced signs of the interstitial phase of edema 30 minutes post-exposure. Western blot analysis using anti-aquaporin-5 antibodies revealed an increase in the staining intensity of complexes with molecular weights of 25 and 50 kDa, suggesting the formation of aquaporin-5 tetramers and their likely translocation from the intracellular compartment to the plasma membrane of alveolar cells. These findings indicate that aquaporin-5 plays an important role in the pathogenesis of toxic pulmonary edema induced by the studied pneumotoxicants. Targeting these molecules may be a promising approach for pathogenetic therapy of poisoning.

Keywords

aquaporin-1 / aquaporin-5 / nitrogen dioxide / immunohistochemistry / intoxication / carbonyl chloride (phosgene) / perfluoroisobutylene / toxic pulmonary edema / epithelial sodium channel

Cite this article

Download citation ▾
Daria T. Sizova, Pavel G. Tolkach, Alexander A. Bardin, Vladimir N. Babakov, Nikolay G. Vengerovich, Sergey V. Chepur, Vadim A. Basharin. Dynamics of aquaporin content in the aero-hematic barrier during the latent phase of toxic pulmonary edema. Bulletin of the Russian Military Medical Academy, 2024, 26(4): 541-550 DOI:10.17816/brmma634392

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Basharin VA, Chepur SV, Shchegolev AV, et al. The role and place of respiratory support in the treatment regimens for acute pulmonary edema caused by inhalation of toxic substances. Military Medical Journal. 2019;340(11):26–32. (In Russ.) EDN: JPJONV

[2]

Башарин В.А., Чепур С.В., Щеголев А.В., и др. Роль и место респираторной поддержки в схемах терапии острого легочного отека, вызванного ингаляционным воздействием токсичных веществ // Военно-медицинский журнал. 2019. Т. 340, № 11. С. 26–32. EDN: JPJONV

[3]

Basharin VA, Chepur SV, Shchegolev AV, et al. The role and place of respiratory support in the treatment regimens for acute pulmonary edema caused by inhalation of toxic substances. Military Medical Journal. 2019;340(11):26–32. (In Russ.) EDN: JPJONV

[4]

Shapovalov ID, Yaroshenko DM; Tolkach PG, et al. Experimental evaluation of the effectiveness of oxygen and prednisolone for the correction of toxic pulmonary edema caused by intoxication by thermal-destruction products of nitrocellulose. Medline.ru. 2024;25(1):205–219. EDN: BWCVDB

[5]

Шаповалов И.Д., Ярошенко Д.М., Толкач П.Г., и др. Экспериментальная оценка эффективности применения кислорода и преднизолона для коррекции токсического отека легких, вызванного интоксикацией продуктами термодеструкции нитроцеллюлозы // Medline.ru. Российский биомедицинский журнал. 2024. Т. 25, № 1. С. 205–219. EDN: BWCVDB

[6]

Shapovalov ID, Yaroshenko DM; Tolkach PG, et al. Experimental evaluation of the effectiveness of oxygen and prednisolone for the correction of toxic pulmonary edema caused by intoxication by thermal-destruction products of nitrocellulose. Medline.ru. 2024;25(1):205–219. EDN: BWCVDB

[7]

Patocka J. Perfluoroisobutene: poisonous choking gas. Mil Med Sci Lett. 2019;88(3):98–105. doi: 10.31482/mmsl.2019.006

[8]

Patocka J. Perfluoroisobutene: poisonous choking gas // Mil Med Sci Lett. 2019. Vol. 88, N 3. P. 98–105. doi: 10.31482/mmsl.2019.006

[9]

Patocka J. Perfluoroisobutene: poisonous choking gas. Mil Med Sci Lett. 2019;88(3):98–105. doi: 10.31482/mmsl.2019.006

[10]

Jugg BJ. Toxicology and treatment of phosgene induced lung injury. In: Chemical Warfare Toxicology. Fundamental Aspects. Edition: 1. Chapter: 4. Publisher: RSC. Worek F, Jener J, Thiermann H, eds. 2016;1:117–153. doi: 10.1039/9781782622413-00117

[11]

Jugg B.J. Toxicology and treatment of phosgene induced lung injury // Chemical warfare toxicology. Fundamental aspects. Edition: 1. Chapter: 4. Publisher: RSC, Worek F., Jener J., Thiermann H., eds. 2016. Vol. 1. Р. 117–153. doi: 10.1039/9781782622413-00117

[12]

Jugg BJ. Toxicology and treatment of phosgene induced lung injury. In: Chemical Warfare Toxicology. Fundamental Aspects. Edition: 1. Chapter: 4. Publisher: RSC. Worek F, Jener J, Thiermann H, eds. 2016;1:117–153. doi: 10.1039/9781782622413-00117

[13]

Berthiaume Y, Folkesson HG, Matthay MA. Lung edema clearance: 20 years of progress: invited review: alveolar edema fluid clearance in the injured lung. J Appl Physiol (1985). 2002;93(6):2207–2213. doi: 10.1152/japplphysiol.01201.2001

[14]

Berthiaume Y., Folkesson H.G., Matthay M.A. Lung edema clearance: 20 years of progress: invited review: alveolar edema fluid clearance in the injured lung // J Appl Physiol (1985). 2002. Vol. 93, N 6. P. 2207–2213. doi: 10.1152/japplphysiol.01201.2001

[15]

Berthiaume Y, Folkesson HG, Matthay MA. Lung edema clearance: 20 years of progress: invited review: alveolar edema fluid clearance in the injured lung. J Appl Physiol (1985). 2002;93(6):2207–2213. doi: 10.1152/japplphysiol.01201.2001

[16]

Skowronska A, Tanski D, Jaskiewicz L, Skowronski MT. Modulation by steroid hormones and other factors on the expression of aquaporin-1 and aquaporin-5. Vitam Horm. 2020;112;209–242. doi: 10.1016/bs.vh.2019.08.006

[17]

Skowronska A., Tanski D., Jaskiewicz L., Skowronski M.T. Modulation by steroid hormones and other factors on the expression of aquaporin-1 and aquaporin-5 // Vitam Horm. 2020. Vol. 112. P. 209–242. doi: 10.1016/bs.vh.2019.08.006

[18]

Skowronska A, Tanski D, Jaskiewicz L, Skowronski MT. Modulation by steroid hormones and other factors on the expression of aquaporin-1 and aquaporin-5. Vitam Horm. 2020;112;209–242. doi: 10.1016/bs.vh.2019.08.006

[19]

Zeuthen T. General models for water transport across leaky epithelia. Int Rev Cytol. 2002;215;285–317. doi: 10.1016/s0074-7696(02)15013-3

[20]

Zeuthen T. General models for water transport across leaky epithelia // Int Rev Cytol. 2002. Vol. 215. P. 285–317. doi: 10.1016/s0074-7696(02)15013-3

[21]

Zeuthen T. General models for water transport across leaky epithelia. Int Rev Cytol. 2002;215;285–317. doi: 10.1016/s0074-7696(02)15013-3

[22]

Berthiaume Y, Matthay MA. Alveolar edema fluid clearance and acute lung injury. Respir Physiol Neurobiol. 2007;159(3):350–359. doi: 10.1016/j.resp.2007.05.010

[23]

Berthiaume Y., Matthay M.A. Alveolar edema fluid clearance and acute lung injury // Respir Physiol Neurobiol. 2007. Vol. 159, N 3. P. 350–359. doi: 10.1016/j.resp.2007.05.010

[24]

Berthiaume Y, Matthay MA. Alveolar edema fluid clearance and acute lung injury. Respir Physiol Neurobiol. 2007;159(3):350–359. doi: 10.1016/j.resp.2007.05.010

[25]

King L, Agre P. Pathophysiology of the aquaporin water channels. Annu Rev Phpiol. 1996;58:619–648. doi: 10.1146/annurev.ph.58.030196.003155

[26]

King L.S., Agre P. Pathophysiology of the aquaporin water channels // Annu Rev Phpiol. 1996. Vol. 58. Р. 619–648. doi: 10.1146/annurev.ph.58.030196.003155

[27]

King L, Agre P. Pathophysiology of the aquaporin water channels. Annu Rev Phpiol. 1996;58:619–648. doi: 10.1146/annurev.ph.58.030196.003155

[28]

Ohinata A, Nagai K, Nomura J, et al. Lipopolysaccharide changes the subcellular distribution of aquaporin 5 and increases plasma membrane water permeability in mouse lung epithelial cells. Biochem Biophys Res Commun. 2005;326(3):521–526. doi: 10.1016/j.bbrc.2004.10.216

[29]

Ohinata A., Nagai K., Nomura J., et al. Lipopolysaccharide changes the subcellular distribution of aquaporin 5 and increases plasma membrane water permeability in mouse lung epithelial cells // Biochem Biophys Res Commun. 2005. Vol. 326, N 3. P. 521–526. doi: 10.1016/j.bbrc.2004.10.216

[30]

Ohinata A, Nagai K, Nomura J, et al. Lipopolysaccharide changes the subcellular distribution of aquaporin 5 and increases plasma membrane water permeability in mouse lung epithelial cells. Biochem Biophys Res Commun. 2005;326(3):521–526. doi: 10.1016/j.bbrc.2004.10.216

[31]

Sugita M, Ferraro P, Dagenais A, et al. Alveolar liquid clearance and sodium channel expression are decreased in transplanted canine lungs. Am J Respir Crit Care Med. 2003;167(10):1440–1450. doi: 10.1164/rccm.200204-312OC

[32]

Sugita M., Ferraro P., Dagenais A., Clermont M.E., et al. Alveolar liquid clearance and sodium channel expression are decreased in transplanted canine lungs // Am J Respir Crit Care Med. 2003. Vol. 167, N 10. P. 1440–1450. doi: 10.1164/rccm.200204-312OC

[33]

Sugita M, Ferraro P, Dagenais A, et al. Alveolar liquid clearance and sodium channel expression are decreased in transplanted canine lungs. Am J Respir Crit Care Med. 2003;167(10):1440–1450. doi: 10.1164/rccm.200204-312OC

[34]

Hasan B, Li FS, Siyit A, et al. Expression of aquaporins in the lungs of mice with acute injury caused by LPS treatment. Respir Physiol Neurobiol. 2014;200:40–45. doi: 10.1016/j.resp.2014.05.008

[35]

Hasan B., Li F.S., Siyit A., et al. Expression of aquaporins in the lungs of mice with acute injury caused by LPS treatment // Respir Physiol Neurobiol. 2014. Vol. 200. P. 40–45. doi: 10.1016/j.resp.2014.05.008

[36]

Hasan B, Li FS, Siyit A, et al. Expression of aquaporins in the lungs of mice with acute injury caused by LPS treatment. Respir Physiol Neurobiol. 2014;200:40–45. doi: 10.1016/j.resp.2014.05.008

[37]

Ishibashi H, Suzuki S, Moriya T, et al. Sex steroid hormone receptors in human thymoma. J Clin Endocrinol Metab. 2003:88(5):2309–2317. doi: 10.1210/jc.2002-021353

[38]

Ishibashi H., Suzuki S., Moriya T., Kaneko Ch., et al. Sex steroid hormone receptors in human thymoma // J Clin Endocrinol Metab. 2003. Vol. 88, N 5. P. 2309–2317. doi: 10.1210/jc.2002-021353

[39]

Ishibashi H, Suzuki S, Moriya T, et al. Sex steroid hormone receptors in human thymoma. J Clin Endocrinol Metab. 2003:88(5):2309–2317. doi: 10.1210/jc.2002-021353

[40]

Cai-Zhi S, Hua Sh, Xiao-Wei H, et al. Effect of dobutamine on lung aquaporin 5 in endotoxine shockinduced acute lung injury rabbit. J Thorac Dis. 2015;7(8):1467–1477. doi: 10.3978/j.issn.2072-1439.2015.08.22

[41]

Cai-Zhi S., Hua Sh., Xiao-Wei H., et al. Effect of dobutamine on lung aquaporin 5 in endotoxine shockinduced acute lung injury rabbit // J Thorac Dis. 2015. Vol. 7, N 8. P. 1467–1477. doi: 10.3978/j.issn.2072-1439.2015.08.22

[42]

Cai-Zhi S, Hua Sh, Xiao-Wei H, et al. Effect of dobutamine on lung aquaporin 5 in endotoxine shockinduced acute lung injury rabbit. J Thorac Dis. 2015;7(8):1467–1477. doi: 10.3978/j.issn.2072-1439.2015.08.22

[43]

Tolkach PG, Basharin VA, Chepur SV, et al. Ultrastructural changes in the air-blood barrier of rats in acute intoxication with furoplast pyrolysis products. Bulletin of Experimental Biology and Medicine. 2020;169(2):235–241. (In Russ.) EDN: USZBXQ doi: 10.1007/s10517-020-04866-x

[44]

Толкач П.Г., Башарин В.А., Чепур С.В., и др. Ультраструктурные изменения аэрогематического барьера крыс при острой интоксикации продуктами пирролиза фторопласта // Бюллетень экспериментальной биологии и медицины. 2020. Т. 169, № 2. С. 235–241. EDN: USZBXQ doi: 10.1007/s10517-020-04866-x

[45]

Tolkach PG, Basharin VA, Chepur SV, et al. Ultrastructural changes in the air-blood barrier of rats in acute intoxication with furoplast pyrolysis products. Bulletin of Experimental Biology and Medicine. 2020;169(2):235–241. (In Russ.) EDN: USZBXQ doi: 10.1007/s10517-020-04866-x

[46]

Tiunov LA, Golovenko NYa, Galkin BN, Barinov VA. Biochemical mechanisms of toxicity of nitrogen oxides. Biology Bulletin Reviews. 1991;111(5):738–750. (In Russ.) doi: 10.1007/s10540-005-2577-2

[47]

Тиунов Л.А., Головенко Н.Я., Галкин Б.Н., Баринов В.А. Биохимические механизмы токсичности оксидов азота // Успехи современной биологии. 1991. Т. 111, № 5. С. 738–750.

[48]

Tiunov LA, Golovenko NYa, Galkin BN, Barinov VA. Biochemical mechanisms of toxicity of nitrogen oxides. Biology Bulletin Reviews. 1991;111(5):738–750. (In Russ.) doi: 10.1007/s10540-005-2577-2

[49]

Agre P. Aquaporin water channels (Nobel Lecture). Angew Chem Int Ed. 2004;43(33):4278–4290. doi: 10.1007/s10540-005-2577-2

[50]

Agre P. Aquaporin water channels (Nobel Lecture) // Angew Chem Int Ed. 2004. Vol. 43, N 33. P. 4278–4290. doi: 10.1007/s10540-005-2577-2

[51]

Agre P. Aquaporin water channels (Nobel Lecture). Angew Chem Int Ed. 2004;43(33):4278–4290. doi: 10.1007/s10540-005-2577-2

[52]

Agre P. The aquaporin water channels. Proc Am Thorac Soc. 2006;3:5–13. doi: 10.1513/pats.200510-109JH

[53]

Agre P. The aquaporin water channels // Proc Am Thorac Soc. 2006. Vol. 3. P. 5–13. doi:10.1513/pats.200510-109JH

[54]

Agre P. The aquaporin water channels. Proc Am Thorac Soc. 2006;3:5–13. doi: 10.1513/pats.200510-109JH

[55]

Sorbo JG, Moe SE, Holen T. Early upregulation in nasal epithelium and strong expression in olfactory bulb glomeruli suggest a role for Aquaporin-4 in olfaction. FEBS Lett. 2007;581(25):4884–4890. doi: 10.1016/j.febslet.2007.09.018

[56]

Sorbo J.G., Moe S.E., Holen T. Early upregulation in nasal epithelium and strong expression in olfactory bulb glomeruli suggest a role for Aquaporin-4 in olfaction // FEBS Lett. 2007. Vol. 581, N 25. P. 4884–4890. doi: 10.1016/j.febslet.2007.09.018

[57]

Sorbo JG, Moe SE, Holen T. Early upregulation in nasal epithelium and strong expression in olfactory bulb glomeruli suggest a role for Aquaporin-4 in olfaction. FEBS Lett. 2007;581(25):4884–4890. doi: 10.1016/j.febslet.2007.09.018

[58]

Alam J, Jeon S, Choi Y. Determination of Anti-aquaporin 5 autoantibodies by immunofluorescence cytochemistry. Methods Mol Biol. 2019;1901:79–87. doi: 10.1007/978-1-4939-8949-2_6

[59]

Alam J., Jeon S., Choi Y. Determination of Anti-aquaporin 5 autoantibodies by immunofluorescence cytochemistry // Methods Mol Biol. 2019. Vol. 1901. P. 79–87. doi: 10.1007/978-1-4939-8949-2_6

[60]

Alam J, Jeon S, Choi Y. Determination of Anti-aquaporin 5 autoantibodies by immunofluorescence cytochemistry. Methods Mol Biol. 2019;1901:79–87. doi: 10.1007/978-1-4939-8949-2_6

RIGHTS & PERMISSIONS

Eco-Vector

AI Summary AI Mindmap
PDF (2171KB)

87

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/